Implementing Quality Improvement Programs Designed to Enhance Customer Satisfaction: Quasi-experiments in the U.S. and Spain

Duncan I. Simester
John R. Hauser
Birger Wernerfelt
and
Roland T. Rust

June 1999

Duncan I. Simester is an Associate Professor of Management Science, Massachusetts Institute of Technology, Sloan School of Management, 38 Memorial Drive, E56-305, Cambridge, MA 02142, (617) 258-0679, (617) 258-7597 fax, simester@mit.edu. John R. Hauser is the Kirin Professor of Marketing, Massachusetts Institute of Technology, Sloan School of Management, 38 Memorial Drive, E56-314, Cambridge, MA 02142. Birger Wernerfelt is a Professor of Management Science, Massachusetts Institute of Technology, Sloan School of Management, 38 Memorial Drive, E56-326, Cambridge, MA 02142. Roland T. Rust is the Madison S. Wigginton Professor of Management and Director of the Center for Service Marketing, Owen Graduate School of Management, Vanderbilt University.

This research was funded by the International Center for Research on the Management of Technology and the Center for Innovation in Product Development. We wish to thank Ning Peng, Lisa Tener, and Robert Klein who participated in the design and implementation of the quality improvement effort and the quasi-experiment. We also which to acknowledge the generous contributions of time and data by the firm that is the subject of this study. The qualitative research was conducted by Applied Marketing Science, Inc. in Waltham, MA.
Implementing Quality Improvement Programs Designed to Enhance Customer Satisfaction: Quasi-experiments in the U.S. and Spain

Abstract

We describe two related quasi-experiments, one in the United States and one in Spain, in which a sophisticated, high-technology firm designed and implemented customer-satisfaction improvement programs. Voice-of-the-customer measurements and “House-of-Quality” techniques were used to design intervention programs to improve satisfaction with five targeted customer needs. Although the interventions implemented in the two countries differed in some respects, both interventions were targeted at the same five needs and the same type of business-to-business customers. In each country, the programs were implemented in “treatment” regions, but not in “control” regions and the firm collected pretest and posttest satisfaction measures for targeted and non-targeted needs. An analysis of these measures reveals that the intervention had a significant impact on satisfaction with the targeted needs in both countries.

The data also reveal a complex and, in many respects, surprising picture. While the interventions were able to effect significant, enduring improvements in satisfaction with the targeted needs, several natural assumptions failed. First, although the firm believed *ex ante* that the interventions were similar, seemingly inconsequential differences in empowerment between the Spanish and U.S. interventions appear *ex post* to be important. Second, despite the use of state-of-the-art methods to identify customer needs, overall satisfaction responded significantly to effects that were not captured by the measured needs. Third, despite the careful selection of control regions, there were unobserved ecological impacts on satisfaction which could only be accounted for with a nonequivalent-dependent-variables design. Such designs are rare in industry. The absence of such controls in typical industry studies may explain the growing concern among industry commentators that quality interventions do not yield their anticipated outcomes.
Enhancing Customer Satisfaction with Quality Improvements

Many literatures within marketing seek to understand and develop means to enhance customer satisfaction. The marketing research literature has developed a variety of methods to identify and prioritize customer needs to focus managerial effort; the product-quality literature proposes methods to link product or service improvements to customer needs in order to design interventions to enhance satisfaction with respect to those needs; the service-quality literature focuses on measuring changes in service quality; the customer-satisfaction literature seeks to establish the means by which customer satisfaction can be improved; and the return-on-quality literature seeks to determine whether such improvements lead to increased profits.

While these literatures vary in their analyses and definitions of constructs, they generally agree that if a firm were to improve its products and services in order to fulfill important customer needs, then that firm would enhance its customers’ satisfaction and its future profits (Anderson and Sullivan 1993, Fornell 1992; Hauser, Simester and Wernerfelt 1994, 1996, 1997; Rust, Zahorik, and Keiningham 1995; Zeithaml, Parasuraman and Berry 1990). Such prescriptions are common in textbooks and monographs and are supported by several excellent laboratory studies and many compelling anecdotes of product and service quality successes. However, there are few published field experiments (or quasi-experiments) designed to test whether firms can implement quality improvement interventions that lead to measurable improvements in customer satisfaction. One notable exception is Bolton and Drew’s (1991) description of GTE’s attempt to improve telephone service.

Widespread acceptance of the relationship is evident in the growing popular literature on quality, and the reliance on customer satisfaction measures in new product development and employee compensation (Anderson, Fornell and Lehman, 1994). In contrast, despite initially accepting the wisdom of implementing new quality interventions, firms are now beginning to demand explicit justification for their investments. Consulting firms and industry commentators are encouraging this trend with a series of
studies questioning the benefits of quality interventions (Howe, Geaddert, and Howe 1995; Rust, Zahorik, and Keiningham 1995):

“A study by the American Quality Foundation and Ernst & Young suggests that many companies are wasting their efforts in trying to improve quality. The consulting firms of AT Kerney and Arthur D. Little present equally disappointing findings in two separate studies: (1) 80% of more than 100 British firms reported ‘no significant impact as a result of TQM’ and (2) almost two-thirds of 500 U.S. companies saw ‘zero competitive gains’.”

- Anderson, Fornell and Lehman (1994, p. 53)

A scientific evaluation of an actual industrial program provides an important contribution to this debate. In this paper we describe two quasi-experiments undertaken by a technically sophisticated, $2 billion, international firm seeking to evaluate a new quality-and-customer-satisfaction intervention. For this paper we disguise the firm by calling it KemTek. The intervention began when a CEO-led task force determined that enhancing customer satisfaction was key to the firm’s survival. The task force commissioned state-of-the-art marketing research to determine important customer needs and adopted widely-used quality tools to design a customer-satisfaction improvement program to improve its products and services on these important customer needs. It hoped the improvements would enhance customer satisfaction and, hence, long-term profitability in its business-to-business market.

The implementation is unique from the perspective of field research because this firm, with its science-oriented culture, sought to measure the impact of the program by (1) designing parallel quasi-experiments in two countries and (2) investing approximately two years and $500,000 in data collection to measure the impact of the program. Given the significant capital investment required to implement similar programs in all of its divisions, the firm sought to determine whether this investment was justified. By describing the development and implementation of the firm’s intervention and by providing data on the outcome of the quasi-experiments we seek to add insight to the relevant scientific literatures within marketing and to provide a window on the implementation of one large-scale, market-driven, customer-satisfaction intervention in industry.
The study confirms the basic premise: KemTek’s efforts led to measurable and enduring improvements in satisfaction with the targeted needs. Beyond this, however, the data contain a number of surprises. At least three commonly held beliefs are questioned. First, while we (and KemTek) believed *ex ante* that the treatments in the two countries, the U.S. and Spain, were equivalent, this appears not to have been the case. Seemingly minor and inconsequential differences in the manner in which employees were empowered appear to have been quite important. Second, while we used state-of-the-art methods to elicit customer attributes (and evidence suggests that the list of attributes was fairly exhaustive), some of the improvement in overall satisfaction was due to factors not captured in attribute satisfaction. This suggests the need for academic research to improve our measurement (and understanding) of the determinants of overall satisfaction. Third, in spite of relatively large sample sizes, the nonequivalent treatment and control groups were not sufficient to identify significant effects in both quasi-experiments. Fortunately, we had data available to incorporate a “nonequivalent-dependent-variables” design with the standard “pretest/posttest untreated control group” design to enhance the power of the analysis (Cook and Campbell, 1979, pp. 249, 261). Together these three lessons may help explain why industry commentators and firms themselves are starting to question the wisdom of quality interventions. If these three effects are not taken into account, industry might be led to erroneous conclusions that some quality and customer-satisfaction interventions do not work when a more complete analysis might suggest otherwise.

Quasi-experimental Design and Measures

KemTek implemented a quasi-experimental design that included an extensive array of controls, including use of:

1. Pretest and posttest measures from the same panel of customers
2. Nonequivalent control groups
3. Nonequivalent dependent variables
4. Replication in separate countries (chosen by KemTek to vary in the amount of competition)

Using Cook and Campbell’s (1979) notation, we depict the design in each country as follows:
Measurement activities are denoted by O, treatment activities are denoted by X, and the dashed line distinguishes between treatment and control regions. That is, KemTek chose a set of treatment regions in each country (above the dashed line) and implemented the customer-satisfaction improvement programs to every customer that they could reach in the treatment regions. KemTek did not implement the program, nor undertake any special activities to improve customer satisfaction, in the control regions (below the dashed line). Identical measurement instruments (O’s) were fielded prior to (O₁) and following the intervention (O₂). The measurement instruments included two sets of dependent variable scales, one of which was expected to change because of the treatment (O₁A) and one which was not expected to change (O₁B). (For a detailed discussion of the use of two related but different sets of dependent variables see Cook and Campbell 1979, p. 261). The design was replicated in two countries. Because the interventions were not identical in both countries, we consider the implementations as two separate, but related quasi-experiments. Technically, this is equivalent to allowing a “country” variable to interact with every other variable and variable interaction.

The implementation of the quasi-experiments is detailed in a Technical Appendix which is available from the authors. The implementation included the following steps:

1. Product and market selection.
2. Identification of customers’ needs.
3. Design of pretest and posttest measurements.
4. Design of the customer satisfaction improvement program (experimental intervention) to improve customer satisfaction by targeting key customer needs.
5. Implementation of the customer satisfaction improvement program.

With the exception of the posttest measures (which occurred after implementation of the improvement program) this list represents an approximate chronological order of the activities.
KemTek sells a variety of integrated systems based on chemical, electronic, and materials technology. Some of its products are sold in the business-to-business market, some directly to end consumers, and some to intermediate customers (retailer/manufacturers) who use KemTek’s product as raw material to produce finished goods for the end consumer. At the time we became involved, a CEO-led task force had decided that KemTek’s profits were stagnating and that the firm could increase long-term profits by undertaking programs to increase customer satisfaction.\(^1\) This would be a significant capital investment over five years, so the task force decided to test the intervention using a major product/market chosen from KemTek’s line of businesses.

The product/market that best matched the criteria was a product/market in which KemTek’s products were used by small, retail stores to produce a finished product for the end consumers. While we cannot name the product category, the business-to-business customers (retailers) in this category would be analogous to tailors who produced finished apparel from cloth and sewing machines. In KemTek’s market, the final item was sold for approximately $10 while the intermediate product cost the retailer approximately $1.50 per item. Production equipment (analogous to sewing machines) was a one-time capital cost for the retailer. The quality of the final item depended upon the manner in which the intermediate product was used and stored by the retailer. Those retailers with greater expertise in these tasks produced higher quality finished goods. KemTek’s task force believed that training in the use and storage of the intermediate product combined with the maintenance and use of production equipment would greatly improve the quality of the final item and increase customer satisfaction. (One of the authors underwent training on KemTek’s products and can attest that high quality output requires expertise to produce and that training improves the judged quality of the output.) Here customer satisfaction refers to the satisfaction of the retailers who can now produce a higher-quality product and, hopefully, increase their own profitability.

KemTek’s activities were global, so the task force interviewed management at KemTek’s corporate office in order to select two countries in which to implement the intervention. The United
States and Spain were selected. There were many similarities between the U.S and Spain. KemTek sold identical products in both countries; the product was used for the same purposes; it was distributed through independent distributors; it was used to produce the same final product; and this final product was produced and sold by similar types of retailers. Kemtek’s management structures were also similar – both countries shared the same senior management and local managers were company employees in regular contact with the corporate office.

Although KemTek’s products were branded, retailers did not purchase directly from KemTek. They purchased from independent, non-exclusive distributors who also supplied retailers with a variety of products, both KemTek’s and other firms' products. The distributors neither dealt exclusively with KemTek nor enjoyed exclusive markets. The distributors employed their own sales staff and, typically, did not offer training in the use or storage of the KemTek’s products. KemTek’s own direct sales force did not have frequent contact with the retailers, concentrating instead on larger volume customers in other product categories. (Prior to the implementation, the Spanish sales staff may have visited their customers relatively more than the U.S. sales staff. However, such visits were not made frequently). The task-force believed that a carefully designed program to call on retailers represented an opportunity to enhance retailers’ satisfaction.

Notwithstanding these similarities, the two countries differ. One important difference is competition. At the time of the intervention KemTek enjoyed an effective monopoly in the U.S. However, in other countries, a global competitor was beginning to offer products that competed with KemTek’s products. KemTek saw the entry of this competitor as a major threat to its future profitability and believed that defending KemTek’s worldwide markets was a primary strategic objective for the firm. To gather data for strategic decisions they chose to run one quasi-experiment in a country where there was no competition (the U.S.) and one country in which the competitor had already entered. After considering many countries KemTek chose Spain. If the findings were similar, they would represent evidence that the effect of the intervention was relatively insensitive to changes in the intensity of
competition. If the findings were different, the competitive environment might help to explain the observed disparities.

In Spain, the competitor had entered the market approximately two years prior to the intervention and had begun to offer a substitute product at a slightly lower price. Some Spanish retailers were not yet aware of the availability of the competitive brand, but all were aware of KemTek’s brand. KemTek believed that supply constraints had restricted the competitor's ability to enter the domestic U.S. market. It correctly predicted that entry would not occur before completion of the study. Based on their long experience in these two markets, KemTek felt that the presence of competition would be a much larger factor than other differences between the U.S. and Spain.

Three U.S. cities, New York, San Francisco and Dallas, were assigned to treatment status while Chicago, Los Angeles and Miami were assigned to control status. In Spain, Barcelona and Malaga were designated as treatment regions and Madrid and Alicante as control regions. KemTek anticipated that these divisions would yield large samples of approximately equivalent customers.

The two-step voice-of-the-customer analysis described in Griffin and Hauser (1993) was used to identify important retailer needs. This process yielded a list of seventeen needs. KemTek invested significant effort to identify these needs. Based on their experience in the market and voice-of-the-customer theory, KemTek believed that a combination of the seventeen needs would almost completely explain the systematic variance in overall satisfaction. The proprietary nature of the data prevents us from publishing a complete description of each need, however, an edited description can be found below (and in Table 1).

Pretest and posttest measures were collected through telephone interviews. The pretest measures were collected approximately six months prior to the intervention and the posttest measures were collected approximately six months after the intervention. The same retailers answered both the pretest and the posttest questions. The interviews included the following groups of questions:

1. Brand awareness
2. Overall satisfaction
3. Satisfaction with each of the seventeen (retailer) customers’ needs.
4. Perceived importance of each of the seventeen customers’ needs.
5. Demographics and store description.

A total of 327 and 224 complete responses were collected in Spain and the US respectively, distributed across the test and control cities as follows.

<table>
<thead>
<tr>
<th>Treatment Regions</th>
<th>Control Regions</th>
</tr>
</thead>
<tbody>
<tr>
<td>New York</td>
<td>Chicago</td>
</tr>
<tr>
<td>San Francisco</td>
<td>Los Angeles</td>
</tr>
<tr>
<td>Dallas</td>
<td>Miami</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
<tr>
<td>Barcelona</td>
<td>Madrid</td>
</tr>
<tr>
<td>Malaga</td>
<td>Alicante</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
</tr>
</tbody>
</table>

The House of Quality methodology was used to guide the design of the intervention programs. Based on the importance measures, the cost and feasibility of actions that KemTek might take, the estimated impact of the actions, and discussions with the local managers in both the U.S. and Spain, an interfunctional team decided to focus on five of the seventeen retailer needs. The remaining twelve needs can be further categorized. Five are entirely distinct from the Targeted Needs and were unlikely to be affected by the intervention. In particular, the intervention programs did not alter the price of the product, change the durability, look, or portability of the equipment, or provide any advertising support to the retailers. The remaining seven needs are less distinct, so that the intervention could have had an ancillary effect on these needs. For ease of exposition we will use the terms ‘Targeted’, ‘Ancillary’, and ‘Distinct’ to categorize the different needs. We summarize these categories below.
<table>
<thead>
<tr>
<th>Targeted Needs</th>
<th>Ancillary Needs</th>
<th>Distinct Needs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Can vary size</td>
<td>Anyone can use.</td>
<td>Compact and portable</td>
</tr>
<tr>
<td>Color</td>
<td>Can switch types without waste.</td>
<td>Equipment looks serious & professional</td>
</tr>
<tr>
<td>Finished product has no defects</td>
<td>Equipment & supplies always available</td>
<td>Equipment that is durable</td>
</tr>
<tr>
<td>Sharp</td>
<td>Manufacturer fixes problems quickly.</td>
<td>Manufacturer provides advertising support</td>
</tr>
<tr>
<td>Time</td>
<td>Manufacturer that I can deal with easily Quick to use and trouble free</td>
<td>Price is reasonable</td>
</tr>
<tr>
<td></td>
<td>What you see is what you get.</td>
<td></td>
</tr>
</tbody>
</table>

The difference in the anticipated impact on the seventeen needs provides the nonequivalent-dependent-variables control (Cook and Campbell, 1979). One of the reasons we use the nonequivalent dependent variables as controls is that any unobserved change in overall satisfaction with KemTek, perhaps due to competition in Spain, might increase or decrease customers’ perceptions of all needs, targeted, ancillary, and distinct. Such average changes in perceptions of all needs are often called “halo” effects (Beckwith and Lehmann, 1975, 1976, Crosby and Stephens, 1987). Because the distinct needs were not targeted by the intervention and were not expected to change differentially in the treatment or control regions, we can use them to control for both unobserved halo effects and other unobserved ecological changes.

Decisions on the final design of the intervention were made by committees comprising each country’s local management, the authors, the task force, and senior management from KemTek’s corporate office. These committees judged that the intervention would improve perceptions with respect to the Targeted Needs and that the net effect would increase long-term profits. The specific intervention was a training program designed (1) to help retailers improve their use and storage of KemTek’s intermediate product and (2) to help retailers set up and maintain their production equipment to make the best use of KemTek’s product. Training procedures and collateral materials (procedure check lists, product samples, replacement parts, and accessories) were each designed to focus on one or more of the five Targeted Needs. The team intended that the effect of the intervention would be the same in both the U.S. and Spain but that the details would be optimized to the local situations in each country.
Implementation of the Customer-Satisfaction Improvement Programs

United States

Eleven management volunteers, whose prior experience provided them with the necessary expertise, implemented the experimental treatment. This effort represented incremental resources invested by KemTek (the existing salesforce continued their normal activities).

To standardize the treatment, the implementation team participated in a group training session and received detailed script and procedure manuals. Implementation of the program began four months after completion of the pretest measures and started with a telemarketing call by each representative to his assigned sample of approximately 20 retailers. (The eleven management representatives were all males). The goal of this first contact was to establish an initial relationship with the retailer and schedule a convenient time for a site visit. The representatives were instructed to assure the retailers that the purpose of the visit was neither to collect data nor to induce a purchase, but rather to offer assistance in the use of KemTek's product.

Actual field visits of approximately one hour were made to 179 of the retailers in the treatment regions who participated in the pretest measures. The field visits began with the representative determining the quality of the manufactured item at the start of the visit. The representatives then described storage and usage procedures that would improve perceived quality. To achieve improvements, the representatives cleaned and, where necessary, serviced the retailers' equipment, provided free product samples, supplied free accessories and/or recommended changes in the retailers' current procedures. Before leaving, the representatives demonstrated the improvements by comparing the output produced by the retailer at the beginning of the visit with that produced at the end of the visit. In the month after their visits the representatives followed-up with telephone calls and, if appropriate, supplied retailers with additional literature and accessories.

As a record of each visit, the management representatives completed a brief log summarizing the actions that they had taken and the retailers’ responses. Analysis of these logs indicated that 96% of the
retailers visited were supplied with free product, literature, and/or accessories and that in almost every case the retailers acknowledged that there was a dramatic improvement in the perceived quality of the manufactured product that they produced. They had not expected a visit from a representative of KemTek, but almost universally appreciated the visit.

In the months following the site visits by the management representatives, retailers might or might not have been given a higher than normal level of attention from KemTek’s sales representatives. It was not feasible for KemTek to record whether such visits took place, which retailers were visited, or the content of the visits. Because the sales representatives were free to make their own decisions, we assume that that they made such visits only if that did not divert them from other activities that they perceived as more productive.

Spain

KemTek intended that the intervention in Spain would yield the same results as in the U.S., however the details would be adapted to the Spanish market. Unlike in the U.S., the KemTek employees in Spain were not incremental resources but rather a redirection of activities from business as usual to the customer-satisfaction improvement program. As a result, the Spanish employees were given more freedom in implementing the intervention. They chose a program which included three site visits to each retailer by local sales representatives of KemTek. The series of visits was positioned as a training program, with retailers promised a “Gold Seal Accreditation” upon completion of the visits. Prior to the program the representatives received one day of technical training and were accompanied for two days on site visits by expert technicians sent specifically for this purpose from the corporate office. On the first visit the representatives asked for a product sample to assess initial quality. They then presented the goals of the Gold Seal program, gave training on the use and storage of KemTek’s product, cleaned and replaced equipment, recommended, sold, and/or installed additional accessories, and finished by asking for another product sample to compare the quality improvement. On the second visit, the representatives installed a check list summarizing and reiterating their earlier advice and followed up on any previous
service requests. On the third visit, Gold Seal Accreditation certificates were issued and any additional service or training requests were satisfied. Approximately 75% of the retailers in the Spanish treatment regions participated in the program. The remaining retailers either could not be located by the implementation team or refused to participate.

Analysis of the Related Quasi-Experiments

The task-force designed the interventions in both the U.S. and Spain to improve satisfaction with respect to the Targeted Needs. They predicted that improvements on the Targeted Needs would enhance *Overall Satisfaction* and would, in turn, lead to more long-term profit for KemTek. Our first analyses test KemTek’s predictions. Because this is a quasi-experiment (without random assignment of customers to treatment groups), we must understand the baseline satisfaction in each treatment group. Thus, we first compare pretest satisfaction for retailers who received the experimental treatment with those who did not. The averages of the pretest satisfaction measures in the treatment and control regions are summarized in Table 1. It is evident that in Spain retailers in the treatment cities generally reported higher levels of pretest satisfaction than retailers in the control cities. It appears that the groups are not equivalent on pretest satisfaction, despite the relatively large sample sizes and KemTek’s efforts to identify roughly equivalent groups.

Table 1 about here.

The pretest satisfaction levels in Table 1 are not the same in the treatment and control regions. These differences suggest that the regions have not been subject to identical histories. We control for differences in pretest satisfaction of the customer needs with the standard pretest-posttest analysis described below. This analysis assures that we do not misattribute *a priori* differences in the groups to the effects of the treatment.

In addition, the existence of prior differences cautions that differences might persist. Thus, we must consider controls to correct for any potential continued, unobserved “ecological” changes that might affect the change in satisfaction between the pretest and posttest. This is a serious issue in Spain because
KemTek was concerned that unobserved actions by the competitor would lower retailers’ perceived satisfaction with all needs. While KemTek believed that these changes would be the same in the treatment and control cities, they did not have any the capability to collect detailed information about competitive activity – unobserved effects were a real possibility. Fortunately, KemTek’s extensive data collect gave us the means to control for potential unobserved impacts on customer needs. We do this by using changes in the Distinct Needs as a nonequivalent-dependent-variables control (Cook and Campbell 1979, p. 261).

We first develop a model to predict what posttest satisfaction with the customer needs would have been in the absence of an intervention. We develop this model by estimating the following equation using the responses to the five Distinct Needs where i indexes individual respondents and n indexes the needs. This equation simultaneously controls for three effects: an individual-specific effect, a need-specific effect, and a pretest measure effect.

$$Posttest\ Satisfaction_{in} = \alpha_i + \beta_{1i} Average\ Pretest\ Satisfaction_{in} + \beta_{2i} Pretest\ Satisfaction_{in} + error$$ \hspace{1cm} (1)

The individual-specific effect accounts for heterogeneity in customers’ reactions to the scales. (We used the same scale format for all needs and for Overall Satisfaction.) For each individual customer, i, we allow a mean bias, α_i, to account for any yeasaying or naysaying tendency on the part of respondents (Greenleaf, 1992). This parameter also controls for halo effects.

The need-specific effect accounts for the fact that, on average, some needs are satisfied better than others. We use the average pretest rating of need n. We call this variable Average Pretest Satisfaction$_n$ and allow its contribution to Posttest Satisfaction to vary by individual. Based on Table 1, we use separate averages for the test and control groups.

The final control variable is the individual respondents’ pretest ratings. Because these ratings are measured with error we must account for their reliability (Silk 1994; Caporaso and Roos 1973). Indeed, if the pretest ratings were the only variable in the model and we expected no change in the “true” ratings, then the regression coefficient would estimate the reliability. 3 We allow the reliability, β_{2i}, to be
heterogeneous.

Although simply comparing the change in satisfaction (Posttest Satisfaction - Pretest Satisfaction) is intuitively appealing, the reliability arguments alone argue for a more general model with $\beta_{2i} \neq 1$. In addition, two other arguments suggest that we allow β_{2i} to be estimated. If satisfaction changes over time, we expect current satisfaction to reflect prior satisfaction updated by recent experiences. The coefficient β_{2i} would also reflect the weight assigned to prior satisfaction. Furthermore, pretest satisfaction levels may affect the ability to implement improvements, $\beta_{2i} < 1$ could be interpreted as an indicator that it is harder to improve satisfaction when retailers are already satisfied – in other words, β_{2i} is a correction for scale saturation. All three arguments suggest that $\beta_{2i} < 1$. This estimates from our data turn out to be within this range.

We estimate Equation 1 using data only from the Distinct Needs which should be unaffected by the intervention. The data includes the individual ratings (327 respondents in Spain and 224 in the U.S.) on each of the five Distinct Needs. This is logically equivalent to estimating a separate three-parameter model for each respondent based on observations of the five Distinct Needs. This implies a model with 1653 parameters estimated with 2755 observations. We used a Chow (1960) test to compare the fit of this model with a parsimonious model that estimated aggregate coefficients rather than individual coefficients for each respondent (Equation 1 without the i subscripts on α_i, β_{1i}, and β_{2i}). The Chow test rejected the parsimonious model in both Spain and the U.S. ($p<0.01$).

The coefficients estimated for each individual were used to predict posttest satisfaction for the Targeted Needs, the Ancillary Needs, and Overall Satisfaction. We then test our prediction that satisfaction with the Targeted Needs will be higher among customers in the treatment cities by comparing observed measures to those predicted by Equation 1. If KemTek’s intervention had a measurable effect, then the relative effect (observed satisfaction minus satisfaction predicted by pretest measures) should be significantly larger in the treatment regions than in the control regions.
Residual Satisfaction

Before presenting the results, we introduce one more construct, Residual Satisfaction. Based on KemTek’s experience and voice-of-the-customer theory, KemTek assumed that Overall Satisfaction could be decomposed based on satisfaction with the customer needs (see review in Griffin and Hauser, 1993). KemTek went to considerable effort to assure an exhaustive list of customer needs. We define Residual Satisfaction to test KemTek’s assumption. We begin by approximating the customer-need decomposition with a linear model.

\[\text{Overall Pretest Satisfaction}_i = \theta_1 + \theta_2 \sum w_{in} \text{Pretest Satisfaction}_{in} + \text{error} \]

(2)

The terms \(\theta_1 \) and \(\theta_2 \) are estimated using OLS. The \(w_{in} \) is a weight ascribed to each of the seventeen needs. For robustness we considered three different methods for determining the weight to ascribe to each need (determining the \(w_{in} \) terms): equal weights, stated weights, and revealed weights. “Equal weights” attribute the same weight to each need (Einhorn and Hogarth, 1975). “Stated weights” uses retailers’ responses to the importance questions in the pretest and posttest measurement waves. “Revealed weights” uses OLS coefficients in which Overall Satisfaction is regressed on all seventeen needs. For parsimony and ease of exposition we focus on the Equal Weights model. Very similar results were obtained using the Stated Weights model. Weights in the Revealed Weights model cannot be estimated reliably due to collinearity between the needs. (See also comparisons in Griffin and Hauser 1993).

Residual Satisfaction is then that portion of Overall Satisfaction that cannot be explained with the measures of satisfaction for the customer needs. That is,

\[\text{Residual Satisfaction}_i = \text{Overall Pretest Satisfaction}_i - \theta_1 - \theta_2 \sum w_{in} \text{Pretest Satisfaction}_{in} \]

(3)

Comparing Equations 2 and 3 we see that for the pretest measures, Residual Satisfaction is equivalent to the (zero-mean) “errors” in Equation 2. For the posttest measures it is possible that Residual Satisfaction is larger (smaller) in the treatment regions than in the control regions. To make the comparison fair, we must use Equation 1 to control for any unobserved differences between the test and
control measures.6 Observed Residual Satisfaction is calculated from the observed measures of Overall Satisfaction and satisfaction with the customer needs. Predicted Residual Satisfaction is based on measures predicted by Equation 1. If variance in the seventeen customer needs is sufficient to explain systematic variance in Overall Satisfaction, then the difference between observed and predicted Residual Satisfaction should not be significantly different in the test region versus in the control region.

Results

Table 2 summarizes the net impact of the U.S. and Spanish interventions.7 The Distinct Needs act as a control and, hence, are not included in Table 2.

Table 2 about here.

The results support our prediction that satisfaction with the Targeted Needs will be higher in the treatment cities. Table 2 suggests that the quality improvements yielded enduring and measurable improvements in customer satisfaction with the Targeted Needs. These results are comforting. A carefully designed and implemented customer-satisfaction improvement intervention could yield positive results. Despite the lack of significance in the U.S. for Overall Satisfaction, KemTek considered all of the data and, combined with managerial judgment, felt that the both the U.S. and Spanish interventions achieved their objectives.

KemTek continued with their customer-satisfaction initiatives. It is beyond the scope of this paper (and proprietary to KemTek) to discuss the details necessary to estimate whether the increased revenues justified the interventions’ costs. We can only say that, today, customer satisfaction is an important criterion by which executives at KemTek are evaluated.

However, there are two surprises in Table 2. First, the results also suggest that there were differences between the U.S. and Spanish interventions, even though KemTek believed \textit{ex ante} that they would be equivalent. It appears that the scope of the intervention in Spain was much broader than in the U.S. While the intervention in the U.S. appeared to affect satisfaction with the Targeted Needs, it did not appear to affect the Ancillary Needs. The change in Overall Satisfaction had a positive sign in the U.S.,
but the change was not significant. In contrast, the Spanish intervention appeared to increase satisfaction with the Ancillary Needs and Overall Satisfaction. Second, in Spain, the changes in the customer needs did not appear to be sufficient to explain the change in Overall Satisfaction. There was also a significant impact on Residual Satisfaction.

The data in Table 2 can only highlight the surprises, not explain them. However, because we were involved from the beginning and have access to the paper trail, we can use our experience to conjecture on (1) the cause of the apparent difference in scope of the two interventions and (2) the significant effect in Spain on Residual Satisfaction. We address each of these in turn. We then discuss another important lesson from the quasi-experiments – the practical importance of the “nonequivalent-dependent-variables” design which was necessary to identify the significance of the interventions.

Surprise 1: The Variation in the Scope of the Intervention Between the U.S. and Spain

The U.S. intervention was implemented by management volunteers who had considerable technical expertise but very limited previous interaction with retailers in this market. The absence of market knowledge made these management volunteers dependent upon the task force and the local U.S. management for guidance in conducting their field visits. This guidance was provided in a formal training session and through detailed script and procedure manuals which the task force reviewed and helped design. The influence of the task force and the volunteers’ need for guidance ensured that the intervention was closely focused on the Targeted Needs.

In contrast, the Spanish interventions were implemented by KemTek’s local sales representatives, who had extensive market experience, but limited technical expertise. These representatives received some technical training but little other guidance and their activities were subjected to less review and control by the task force. In the absence of that control, the Spanish representatives may have diverted their efforts from the specific activities proposed by the task force to other improvements suggested by their knowledge of the market. Lessening the task force’s control appears to have yielded more wide-ranging improvements, without compromising the impact on the Targeted Needs. To the extent that this
holds up in other quasi-experiments, this result argues for a policy of allowing resources to be allocated by the parties who are best informed about their use.

Other differences between the Spanish and U.S. interventions can be interpreted as an outcome of empowering the Spanish representatives. For example, the Spanish representatives chose to make three separate visits to the treatment retailers, while their U.S. counterparts were instructed to make just a single visit. This difference obviously provided the Spanish representatives with more time to satisfy a broader range of retailer needs. If the same level of control had been exercised over the Spanish representatives as was exercised over their U.S. counterparts, the Spanish intervention would probably also have been a single visit.

Although this ex post analysis highlights the differences between the US and Spanish interventions, KemTek’s management did not have the luxury of this data when they designed the interventions. KemTek is an experienced multinational firm operating in a large number of geographic markets. They decided to control carefully the U.S. management volunteers and to impose much less control in Spain. Ex ante KemTek did not believe the empowerment of the Spanish representatives was a major difference. Ex post we now realize it may have been a major difference. Although the quasi-experiments by themselves cannot rule out other differences between the U.S. and Spain, such as culture, language, and the presence of competition, empowerment survives as an attractive explanation. For example, experienced KemTek managers did not feel culture and language caused the difference. The presence of competition differed between the quasi-experiments, but KemTek’s hypothesis was that competition would decrease the impact of the intervention, not make it more wide-ranging.

We feel that this potential evidence for empowerment is a major practical lesson, both for the manner in which global marketers approach their markets and as evidence of the efficiency of trusting in local marketing knowledge. At minimum it is an interesting hypothesis worth further testing.

Surprise 2: A Significant Increase in Residual Satisfaction in Spain

The increase in Residual Satisfaction in Spain offers evidence that the improvement in Overall
Satisfaction due to the intervention cannot be fully explained by the changes in satisfaction with the seventeen measured needs. More generally, this suggests that Overall Satisfaction in Spain is affected by factors other than the seventeen measured needs. This result occurred despite the considerable resources that KemTek invested to ensure that no retailer needs were omitted. Professionals and managers with extensive experience in the relevant products and markets used state-of-the-art methods.

We can estimate the likelihood of missing customer needs by using Griffin and Hauser’s (1993) beta-binomial model. Their model suggests that 99% of the product and service delivery needs were uncovered by the 38 merged interviews. (The relevant model is the improved questioning method described on page 10 of their article). Even if we limit the analysis to the 20 Spanish interviews, the model suggests that 98% of the product and services needs were uncovered. It is unlikely that KemTek missed a sufficient number of retailer needs to explain the significant increase in Residual Satisfaction. It is more likely that the intervention in Spain affected constructs that do not fit Griffin and Hauser’s (1993, p. 4) definition of “a description, in the customer’s own words, of the benefit fulfilled by the product or service experience.”

Our Residual Satisfaction estimation procedure controlled for changes in the importances of the customer needs, thus we also reject that potential explanation for the observed effect. In general, Residual Satisfaction might be due to nonlinearities in the relationship between needs and Overall Satisfaction (Mittal, Ross and Baldasare, 1998). We do not think that is the case here because (1) we tested for nonlinearities and did not find them, (2) linear models have fit well in the past, and (3) if the effect were due only to nonlinearities, we would have seen it in the U.S. as well as Spain.8

However, the hypothesis that Residual Satisfaction in Spain reflects one or more unmeasured determinants of Overall Satisfaction is consistent with our earlier arguments that the Spanish intervention was broader in scope than the U.S. intervention. The Spanish representatives may have found a way to enhance Overall Satisfaction directly rather than through the seventeen needs – a way not anticipated by the task force. We offer three hypotheses to suggest further research.
Labeling and self-perception. The Spanish representatives chose to give retailers in Spain, who completed the three step training and service program, a Gold Seal Accreditation, certifying their participation. Retailers in both the U.S. and Spain were given positive reinforcement when they were shown how much better they could use the equipment after receiving training. However, the accreditation was used only in Spain. The labeling literature suggests that the very act of certifying successful completion may have influenced retailers’ perceptions. Labeling a retailer as the type of person who would tie himself or herself to KemTek (certification) might lead to behavior and beliefs consistent with the label (Allen 1982; Allen and Dillon 1982). Because they were KemTek customers, the label is consistent with their self-schema and, hence, more likely to be salient (Tybout and Yalch 1980). In addition, the fact that the Spanish retailers invested their own time in the training may have led to a self-perception that it was worthwhile to link themselves to KemTek (Folkes and Kiesler 1991; Bem 1972).

Commitment and Trust. The Spanish representatives chose three visits rather than just one. (There was a follow-up in the U.S., but it was only via telephone.) On each subsequent visit the representatives reacted to requests made on the previous visit. This might signal the desire to invest in a durable relationship of shared interests which could lead to commitment and trust (Dwyer, Schurr and Oh 1987). This hypothesis is consistent with Morgan and Hunt (1994) who propose commitment and trust as important determinants of successful channel relationships; in apparent accordance with predictions from the economic literature on repeated games (Abreu 1988; Axelrod 1984). ⁹

Spain vs. the U.S. Finally, the effects occurred in Spain but not the U.S. While KemTek did not believe that language or culture were the determinants, we can not rule out the hypothesis that mechanisms of customer satisfaction vary based on language and culture.

It is beyond the scope of this paper (and KemTek’s data) to test these hypotheses. However, we suggest that such data be collected in future customer-satisfaction interventions. Measurement scales exist in the literature for these constructs (e.g., Morgan and Hunt 1994; Sullivan, et. al. 1981).
Practical Need for the Nonequivalent-Dependent-Variables Control

KemTek invested in extensive measures to determine whether their customer-satisfaction intervention had the desired effect. These measures included both pretest and posttest measures, control groups, and nonequivalent dependent measures. This level of measurement is well beyond that which is typical in industry. From our experience, the most common designs are one-group pretest-posttest designs or, sometimes, posttest-only designs. The limitations of these designs are widely recognized and well-understood in the academic literature (e.g., Cook and Campbell 1979, p. 247). Nonetheless, the wide industrial use of such designs might lead to false rejection of customer-satisfaction initiatives. For example, in Spain, where satisfaction with all customer needs was generally trending downward (likely due to competitive actions), had we analyzed KemTek’s test groups only we would have found either no effect or a negative effect.

The more interesting aspect of KemTek’s design was the availability of the nonequivalent dependent variables. These variables, which were clearly not targeted by the intervention, enabled us to control for the otherwise-unobservable ecological impacts on all customer needs. To illustrate their impact, we reanalyze the data with the more-typical pretest-posttest test-control experimental design illustrated below.

\[
\begin{array}{c}
O_{1A} \times O_{2A} \\

O_{1B} \quad O_{2B}
\end{array}
\]

With this design we can no longer estimate Equation 1 because the nonequivalent dependent variables are not being used. In particular, we cannot estimate heterogeneous overall scale effects, \(\alpha_i \), or heterogeneous scale reliabilities, \(\beta_{i2} \). However, we can estimate an aggregate scale intercept, \(\alpha \), and an aggregate scale reliability, \(\beta_2 \). The relevant equation then becomes:

\[
Posttest \ Satisfaction_{it} = \alpha + \beta_1 Average \ Pretest \ Satisfaction_{it} + \beta_2 Pretest \ Satisfaction_{it} + \beta_3 Intervention \quad (4)
\]
The results based on this design are summarized in Table 3. In the U.S. the results are qualitatively similar, perhaps because there was no competitor cause unobserved ecological changes in all customer needs. However, in Spain, where there was likely significant, but unobserved, competitive activity, the results change dramatically. There is still a significant impact on Overall Satisfaction and Residual Satisfaction, but there was no significant effect on the Targeted Needs and on the Ancillary Needs. (In fact, the sign is negative.) Without the nonequivalent-dependent-variable controls, the analysis in Table 3 might have falsely rejected the ability of the customer-satisfaction intervention to affect the Targeted Needs. It is also possible that industry would consider an even simpler model, which does not account for the reliability of the measures. One such model might simply examine the differences in the means between the pretest and posttest measures. When we examined such a model, it also estimated a significant increase in the targeted needs in the U.S. and a non-significant decrease in the targeted needs in Spain.

Table 3 about here.
Potential Limitations

Although KemTek collected more data than is normal in industrial settings, we caution the reader that the two interventions were quasi-experiments rather than fully-controlled experiments. KemTek wanted to understand the results of the interventions, but they had to balance this goal with their fiduciary responsibility of earning profit in these markets. As a result, the U.S. and Spanish interventions differ on more than one dimension. We have done our best to interpret these differences in light of our knowledge of the interventions and KemTek’s knowledge of the markets, but the natural limits of quasi-experiments remain.

Second, although our experience, and that of KemTek, suggest that the Distinct Needs were appropriate as nonequivalent-dependent-variable controls, it is always possible that there was some small impact on the Distinct Needs that was due to the intervention. For example, retailer perceptions of satisfaction with price may have changed more in the treatment regions than the control regions even though the actual measures, say the price of the product, remained unchanged. An alternative explanation that attempts to explain such a change might be that perceptions of the Distinct Needs required maintenance effort and the Spanish representatives diverted efforts from the Distinct Needs toward the Targeted Needs. Although neither we, nor KemTek, believe this was the explanation, we can not rule it out completely. Our experiences suggest that it is more likely that competitive entry targeted all needs (targeted, ancillary, and distinct) and that, without the intervention, all needs would have been lowered. Even if we accept this alternative explanation that the effect of the intervention was only relative, KemTek still considered the intervention to be successful. Not only were the Targeted Needs chosen because they were most important to customers, but there is evidence that Overall Satisfaction increased. It clearly increased when the Distinct Needs act as controls (Table 2) and, as indicated in Table 3, it increases even when the Distinct Needs are not used as controls.
Conclusions

We reported on the results of controlled, longitudinal field studies in two countries, in which a sophisticated, high technology firm used state-of-the-art marketing-research and “quality” tools to design and implement a customer-satisfaction improvement program. The results confirm the basic premise that it is possible to implement quality improvements that yield enduring and measurable improvements in customers' perceptions of satisfaction. This finding is particularly notable due to the delay between the intervention and posttest measures and the rather targeted nature of the treatment. The experimental treatment focused on providing training to customers in the use and storage of a business-to-business product. No changes were made to the price or the production, distribution, or sales systems. The intervention was successful in a country where the firm enjoyed an effective monopoly and in a representative country in which the firm faced a strong competitive entrant.

Besides demonstrating that a carefully-design customer-satisfaction intervention could be successful in a field setting, the matched quasi-experiments highlight three interesting lessons. First, the more broad-ranging impact in Spain suggests that firms can combine careful central planning (voice of the customer, House of Quality, interfunctional task force) with a strategy that empowers employees to adapt interventions to local market conditions. Second, the ability of the Spanish representatives to effect a significant improvement in Residual Satisfaction suggests the need to understand further those aspects of Overall Satisfaction that can be affected independently of the satisfaction with the customer needs. Finally, the Spanish analyses, as compared to the U.S. analyses, suggest that the popular press and industry might be falsely rejecting customer-satisfaction initiatives because they are relying on insufficient controls to evaluate the initiatives properly. KemTek collected data that was well beyond industry norms. Perhaps those norms need be rethought.
References

Table 1
Average Pretest Satisfaction

<table>
<thead>
<tr>
<th></th>
<th>Spain Treatment</th>
<th>Spain Control</th>
<th>U.S. Treatment</th>
<th>U.S. Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Satisfaction</td>
<td>7.91</td>
<td>7.36**</td>
<td>6.80</td>
<td>7.23</td>
</tr>
<tr>
<td>Targeted Needs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Can vary size</td>
<td>3.07</td>
<td>4.66**</td>
<td>5.47</td>
<td>6.62**</td>
</tr>
<tr>
<td>Color</td>
<td>7.06</td>
<td>6.88</td>
<td>6.84</td>
<td>6.95</td>
</tr>
<tr>
<td>Finished product has no defects</td>
<td>7.63</td>
<td>6.81**</td>
<td>7.10</td>
<td>7.18</td>
</tr>
<tr>
<td>Sharp</td>
<td>7.75</td>
<td>7.21*</td>
<td>7.18</td>
<td>7.52</td>
</tr>
<tr>
<td>Time</td>
<td>8.96</td>
<td>7.53**</td>
<td>7.56</td>
<td>7.92</td>
</tr>
<tr>
<td>Ancillary Needs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anyone can use</td>
<td>7.96</td>
<td>7.54</td>
<td>7.75</td>
<td>7.73</td>
</tr>
<tr>
<td>Can switch types without waste</td>
<td>6.15</td>
<td>7.37**</td>
<td>7.06</td>
<td>6.73</td>
</tr>
<tr>
<td>Compact and portable</td>
<td>8.14</td>
<td>7.38**</td>
<td>6.77</td>
<td>7.02</td>
</tr>
<tr>
<td>Equipment and supplies always available</td>
<td>8.81</td>
<td>7.74**</td>
<td>8.39</td>
<td>7.91</td>
</tr>
<tr>
<td>Manufacturer fixes problems quickly</td>
<td>7.52</td>
<td>7.32</td>
<td>7.63</td>
<td>7.29</td>
</tr>
<tr>
<td>Manufacturer that I can deal with easily</td>
<td>7.57</td>
<td>7.79</td>
<td>7.49</td>
<td>7.24</td>
</tr>
<tr>
<td>Quick to use and trouble free</td>
<td>8.39</td>
<td>8.02</td>
<td>7.82</td>
<td>7.84</td>
</tr>
<tr>
<td>What you see is what you get</td>
<td>8.30</td>
<td>7.52**</td>
<td>7.35</td>
<td>7.36</td>
</tr>
<tr>
<td>Distinct Needs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compact and portable</td>
<td>8.14</td>
<td>7.38**</td>
<td>6.77</td>
<td>7.02</td>
</tr>
<tr>
<td>Equipment looks serious and professional</td>
<td>8.11</td>
<td>7.89</td>
<td>6.87</td>
<td>7.22</td>
</tr>
<tr>
<td>Equipment that is durable</td>
<td>7.27</td>
<td>7.10</td>
<td>7.69</td>
<td>7.44</td>
</tr>
<tr>
<td>Manufacturer provides advertising support</td>
<td>7.61</td>
<td>7.26</td>
<td>6.17</td>
<td>6.30</td>
</tr>
<tr>
<td>Price is reasonable</td>
<td>6.93</td>
<td>6.51</td>
<td>6.93</td>
<td>6.86</td>
</tr>
<tr>
<td>Sample size</td>
<td>139</td>
<td>188</td>
<td>99</td>
<td>125</td>
</tr>
</tbody>
</table>

The data in the table are averages of the respective pretest satisfaction measures.

** Indicates that the treatment and control averages (in the same country) are significantly different at the 0.01 level (two-tail test).

* Indicates that the treatment and control averages (in the same country) are significantly different at the 0.05 level (two-tail test).
Table 2
Differences in Posttest Satisfaction Between Control Regions and Test Regions
Controlling for Individual Differences (Equation 1)

<table>
<thead>
<tr>
<th></th>
<th>Spain</th>
<th>U.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Satisfaction</td>
<td>0.57*</td>
<td>0.15</td>
</tr>
<tr>
<td>Targeted Needs</td>
<td>0.60*</td>
<td>0.38*</td>
</tr>
<tr>
<td>Ancillary Needs</td>
<td>0.48**</td>
<td>0.00</td>
</tr>
<tr>
<td>Residual Satisfaction</td>
<td>0.46**</td>
<td>0.03</td>
</tr>
</tbody>
</table>

Number of Respondents

<table>
<thead>
<tr>
<th></th>
<th>Treatment Group</th>
<th>Control Group</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>133</td>
<td>182</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>124</td>
</tr>
</tbody>
</table>

The data in the table correspond to the differences in average *Adjusted Posttest Satisfaction* between the treatment and control groups. *Adjusted Posttest Satisfaction*\(_n\) = *Posttest Satisfaction*\(_n\) - \(\alpha_i\) - \(\beta_{i1}\) *Average Pretest Satisfaction*\(_n\) - \(\beta_{i2}\) *Pretest Satisfaction*\(_n\), calibrated using satisfaction with the 5 Distinct Needs.

The sample size for *Residual Satisfaction* and for *Overall Satisfaction* is the number of respondents. Samples sizes for the Targeted and Ancillary Need comparisons are 5 and 7 times larger, respectively.

** Indicates that the treatment group prediction error is significantly larger than the control group prediction error (in the same country) at the 0.01 level (one-tail test).

* Indicates that the treatment group prediction error is significantly larger than the control group prediction error (in the same country) at the 0.05 level (one-tail test).
Table 3
Estimated Impact of the Treatment on Posttest Satisfaction
Without Controlling for Changes in Distinct Needs

<table>
<thead>
<tr>
<th>Variables</th>
<th>Spain</th>
<th>U.S.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Satisfaction</td>
<td>0.46*</td>
<td>0.30</td>
</tr>
<tr>
<td>Targeted Needs</td>
<td>-0.18</td>
<td>0.35**</td>
</tr>
<tr>
<td>Ancillary Needs</td>
<td>-0.14</td>
<td>0.03</td>
</tr>
<tr>
<td>Residual Satisfaction</td>
<td>0.60**</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Number of Respondents

<table>
<thead>
<tr>
<th></th>
<th>Treatment Groups</th>
<th>Control Groups</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>139</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>99</td>
<td>125</td>
</tr>
</tbody>
</table>

The data in the table describes the β_2 coefficient from the following model $Posttest\ Satisfaction_{in} = \alpha + \beta_1 Average\ Pretest\ Satisfaction_{in} + \beta_2 Pretest\ Satisfaction_{in} + \beta_3 Intervention$ estimated on the treatment and control groups in each country. For Overall Satisfaction and Residual Satisfaction the coefficients β_1 and β_2 cannot be estimated independently, thus β_1 is restricted to equal zero. The sample sizes for the Targeted Needs and the Ancillary Needs models are five and seven times larger than the number of respondents (respectively).

** Indicates that the β_3 coefficient is significantly larger than zero at the 0.01 level (one-tail test).

* Indicates that the β_3 coefficient is significantly larger than zero at the 0.05 level (one-tail test).
Endnotes

1 By customer satisfaction, the task force referred to a long-term customer attitude that would enable KemTek to retain customers profitably. This definition differs from that used by, say Bolton and Drew (1991), who refer to customer satisfaction as a transitory judgment based on a single transaction. Cronin and Taylor (1994) refer to the long-term attitude as “service quality.” KemTek’s definition is similar to cumulative satisfaction which is a proxy for future economic returns (Anderson, et. al. 1994, p. 54). For the remainder of the paper we adopt KemTek’s definition, but caution the reader that the literature varies in its use of the words “customer satisfaction” (Yi 1990).

2 Our descriptions of the intervention programs balance the need for complete details with KemTek’s desire for confidentiality. We hope that these descriptions are sufficient for the issues addressed in this paper.

3 To see this, set up the regression equation, $x_2 = \alpha + \beta x_1 + error$ where both x_1 and x_2 are measured with error. The coefficient, β, is then an estimate of the true variance divided by the total variance.

4 Bolton and Drew (1991) offer a similar argument and note that this is consistent with a Bayesian framework in which customers use both current and prior information (see also Boulding, Kalra, Staelin and Zeithaml 1993). Further support for this approach can be found in Silk (1994); Bolton and Drew (1991); and Caporaso and Roos (1973).

5 Although the individual estimates of posttest satisfaction might have high variance, the estimates of average posttest satisfaction are compared across large sample sizes (test vs. control in the U.S. and Spain) and have many degrees of freedom. This approach is not unlike that used in conjoint analysis when separate response functions are estimated for each respondent, but predictions are based on simulators that aggregate across all respondents. For example, see Green and Srinivasan (1990) and Wittink and Cattin (1989). To test the sensitivity to degrees of freedom, we also estimated a model based on the seven Ancillary and five Distinct Needs. Such models have twelve observations and nine degrees of freedom for each respondent. Significance levels changed slightly but the results were qualitatively similar.

6 To control for the possibility that the intervention changed θ_1 and θ_2 we re-calibrate Equation 2 for the posttest data. This is appropriately conservative as it biases us against finding a significant difference in Residual Satisfaction.

7 The sample size is slightly smaller for Table 2 versus Table 1 due to technical reasons. That is, for some individual respondents there is not sufficient variance in the distinct needs to identify the three individual-specific parameters. For example, Equation 1 becomes over-specified if a respondent gave the same pretest satisfaction response for all five Distinct Needs. Fewer observations are lost in a model which uses the twelve needs (distinct and ancillary). Such a model gives qualitatively similar results.

8 We considered log transformations and the introduction of quadratic terms. For a discussion of the robustness of linear models see Griffin and Hauser (1993).
9 Commitment is an “enduring desire to maintain a valued relationship,” (Moorman, Zaltman, and Deshpandé 1992, p. 316) and “an implicit or explicit pledge of relational continuity” (Dwyer, Schurr and Oh 1987, p. 19). Trust is “a willingness to rely on an exchange partner in whom one has confidence” (Moorman, Zaltman and Deshpandé 1992, p. 315) and “the belief that a party’s word or promise is reliable and a party will fulfill his/her obligations in an exchange relationship (Schurr and Ozanne 1985, p. 940).