Kspace facts

Resolution is determined by the largest spatial freq sampled.

\[\text{FOV} = \text{matrix} \times \text{resolution} \]

If the object is real, half the information in kspace matrix is redundant. We only need to record half of it.

kspace

- Image space (magnitude)
- kspace (magnitude)
kspace artifacts: spike

One “white pixel” in kspace from a electric spark

Kspace artifacts: Symmetric N/2 ghost

Even numbered lines got $\exp(i\phi)$

Odd numbered lines got $\exp(-i\phi)$

$\phi = 12$ degrees
kspace artifacts: subject motion

Yellow = position 1
Orange = moved 2 pixels

Movement in real space = linear phase shift across kspace.

=> Orange points have linear phase $\theta = a k_y$

Fast Imaging

"Dost thou love life?
Then do not squander time,
for that’s the stuff
life is made of."

- Benjamin Franklin
Requirements for brain mapping

Considerations:
• Signal increase = 0 to 5% (small)
• Motion artifact on conventional image is 0.5% - 3%
• Need to see changes on timescale of hemodynamic changes (seconds)

Requirement: Fast, “single shot” imaging, image in 80ms, set of slices every 1-3 seconds.

What’s the difference?

conventional MRI
“slice select”
“freq. enc” (read-out)
RF
G_z
G_y
G_x
S(t)

T2*

etc...

ectoplanar imaging
RF
G_z
G_y
G_x
S(t)

Wald
MGH-NMR Center
“Echo-planar” encoding

Observations:

• Adjacent points along kx are taken with short Δt (= 5 us). (high bandwidth)

• Adjacent points along ky are taken with long Δt (= 500us). (low bandwidth)

• A given line is read quickly, but the total encode time is longer than conventional Imaging.

• Adjacent lines are traversed in opposite directions.

Wald MGH-NMR Center
Enemy #1 of EPI: local susceptibility gradients

B₀ field maps in the head

EPI: Local susceptibility gradients

Local susceptibility gradients have 2 effects:

• Local dephasing of the signal (signal loss) mainly from thru plane gradients

• Local geometric distortions, mainly from local in-plane gradients.
Susceptibility: thru plane dephasing

Signal from whole slice comes from adding together the MR vectors. When in phase, add constructively, SNR increases like slice thickness.

Susceptibility Artifact and Slice Thickness

Signal from whole slice comes from adding together the MR vectors, which get out of phase when the magnetic field is not uniform.
Local susceptibility gradients:
thru-plane dephasing

Bad for thick slice above frontal sinus...

Local gradients: geometric distortion

Local gradient alters the helix of phase we have so carefully wound.

Phase error accumulates over entire kspace.
 (conventional imaging phase is reset every line)

>> faster encoding is better.

Readout points are taken close together (~5us)

Phase encode points are taken farther apart (~500us)

>> distortion occurs in P.E. direction.
Local gradients: geometric distortion

Two sets of EPI:
1) encode in 32ms
2) encode in 23ms

Characterization of grad. performance
• length of readout train for given resolution
(requires fast slew and high grad amplitude)

'echo spacing' (esp) = 512 us for 1.5T, readout length = 32 ms
= 366us for 3T, readout length = 23 ms
EPI problems: N/2 ghost

Asymmetry in alternate lines gives N/2 image ghost.

Asymmetry from:
- Eddy currents
- Receiver filter
- Receiver timing
- Head coil tuning.

EPI problems: frequency offset

If one object has a different NMR frequency (e.g., fat and water) it gets shifted in PE direction. (why?)
EPI and Spirals

Eddy currents: ghosts
Susceptibility: distortion, dephasing
k = 0 is sampled: 1/2 through
Corners of kspace: yes
Gradient demands: very high

Spirals
blurring
dehphasing
1st
no
pretty high
EPI and Spirals

EPI at 3T

Spirals at 3T
(from G. Glover)