More Gauss’s Law

Going back to the cylinder from yesterday, let’s see what happens to the field if the density varies as \(\rho(r) = br \). We now have to evaluate the integral \(\iiint \rho dV \) instead of simply taking \(\rho \) times the total volume. To save time, we don’t have to integrate three variables; \(\rho \) depends on \(r \), so we only have to integrate over \(r \).

Draw a cylinder of radius \(r' \), thickness \(dr' \), and length \(l \), so the volume element is \(dV = 2\pi r' l \, dr' \). (Alternatively, we could integrate over three variables and show that \(\iiint r' \, dr' \, d\theta' \, dz' = 2\pi l \int r' \, dr' \).) When \(r < R \), the enclosed charge is \(\int_0^r (br')(2\pi r' l \, dr') = 2\pi l \int_0^r r'^2 \, dr' = (2/3)\pi l br'^3 \), so Gauss’s Law gives \(2\pi rlE = (8/3)\pi^2 blr^3 \) and \(E = (4/3)\pi br^2 \). When \(r > R \), we change the enclosed charge integral to run from 0 to \(R \) instead.

It’s crucial to know formulae for geometry. For instance, for a spherical shell, \(dV = (dr') (4\pi r'^2) \).

What to look for when we are doing a Gauss’s Law problem:

1. Is there enough symmetry in the field to pick a Gaussian surface?
2. Is there enough symmetry in the charge density?

Example: Given a concentric sphere (radius \(a \), density \(\rho_1 = b/r \)) inside a spherical shell (inner radius \(b > a \), outer radius \(c > b \), constant density \(\rho_2 \)), find the electric field at a radius \(b < r < c \). (If we solved for all \(r \), we’d find that there’s one electric field, but it’s represented as a piecewise function with four parts; we need to solve for each part separately.) The flux is \(E \cdot 4\pi r^2 \) and the enclosed charge is \(\rho_2 (4\pi r^3/3 - 4\pi b^3/3) + \int_0^a (b/r') 4\pi r'^2 \, dr' \).

Now take a spherical shell of radius \(R \) with charge \(+Q \). Inside the shell, there is no enclosed charge, so Gauss’s Law tells us that there is no electric field. Outside the shell, the enclosed charge is \(+Q \), so \(E(4\pi r^2) = 4\pi (+Q) \) and \(E = Q/r^2 \).

This raises two important points:

1. Outside a solid sphere of charge, you can treat it like a point charge.
2. Inside a solid sphere of charge, you only have to consider the charge within that radius.

Gravity

An extension: Because gravity is also an inverse square law, we can write a “Gauss’s Law for gravity.” Let’s define the gravitational field as:

\[
\vec{g} = \frac{\vec{F}_{mi}}{m_i} = -\frac{Gm_c m_i/r^2}{m_i} \hat{r}_{ct} = -\frac{Gm_c \hat{r}_{ct}}{r^2}
\]

Thus, \(\int \vec{g} \cdot d\vec{a} = -4\pi Gm_{ene} \). At a distance \(r \) away, this gives \(g4\pi r^2 = -4\pi Gm_c \), so \(g = -Gm_c/r^2 \). This easily shows you can treat a planet as a point mass—a fact that took Newton a very long time to prove!
One problem involving gravity is the “annoying roommate problem.” You have an annoying roommate, so you drop them into a slit in the Earth. Using Gauss’s Law for gravity, you can show:

\[\vec{F} = m\vec{a} \]
\[-\frac{G m_{\text{enc}} m_p}{x^2} = m_p \frac{d^2 x}{dt^2} \]
\[-\frac{G \rho \frac{4}{3} \pi x^3}{x^2} = \frac{d^2 x}{dt^2} \]

This looks just like \(\frac{d^2 x}{dt^2} = -k x/m \), which has frequency \(\omega_0 = \sqrt{k/m} \). This differential equation is similar, so we can see that the roommate has frequency \(\omega_0 = \sqrt{G \rho (4/3) \pi} = 2\pi/T \).

Coming up next class: an infinite sheet, boundary conditions, pressure on a surface charge, and parallel plates. Energy will be on Monday.