24 Functions of several variables, partial derivatives

Example 24.1. Functions of several variables

\[f(x, y) = x^2 + y^2 \Rightarrow f(1, 2) = 5 \text{ etc.} \]

\[f(x, y) = xy^2 e^{x+y} \]

\[f(x, y, z) = xy \log z \]

Ideal gas law: \(P = kT/V \)

24.1 Dependent and independent variables

In \(z = f(x, y) \) we say \(x, y \) are independent and \(z \) is dependent.

This indicates that \(x \) and \(y \) are free to take values and then \(z \) depends on these values.

For now it will be clear which are which, later we’ll have to take more care.

24.2 Partial derivatives

Definition. The partial derivative of \(f \) with respect to \(x \) is denoted \(\frac{\partial f}{\partial x} \). It is computed by differentiating with respect to \(x \) holding all other independent variables fixed –i.e. pretend they are constant.

Example 24.2. Suppose \(f(x, y) = x^2 y + y^2 + x^2 - 3 \). Find \(\frac{\partial f}{\partial x} \) and \(\frac{\partial f}{\partial y} \).

answer: \(\frac{\partial f}{\partial x} = 2xy + 2x, \quad \frac{\partial f}{\partial y} = x^2 + 2y. \)

24.2.1 Notation

Suppose that \(z = f(x, y) \). Then we use all of the following notations for \(\frac{\partial f}{\partial x} \):

\[\frac{\partial f}{\partial x} = \frac{\partial z}{\partial x} = f_x = z_x. \]

If we want to evaluate it at a point we write

\[\left. \frac{\partial f}{\partial x} \right|_{(x_0, y_0)} = f_x(x_0, y_0) = \left. \frac{\partial f}{\partial x} \right|_0 = z_x(x_0, y_0). \]

Example 24.3. Suppose \(f(x, y) = x^2 y + y^2 + x^2 - 3 \). Compute the partial with respect to \(x \) and evaluate it at the point \((1, 2)\).

answer: \(\frac{\partial f}{\partial x} = 2xy + 2x, \quad \left. \frac{\partial f}{\partial x} \right|_{(1,2)} = 2 \cdot 1 \cdot 2 + 2 \cdot 1 = 6. \)
24.2.2 Higher order partials

Example 24.4. Let \(f(x, y) = x^2 y^3 + xy + x^3 + y^4 + 2 \). Compute \(\frac{\partial^2 f}{\partial x \partial y} \).

Answer: First compute \(\frac{\partial f}{\partial x} = 2xy^3 + y + 3x^2 \). Then compute the partial with respect to \(y \) of \(\frac{\partial f}{\partial x} \):

\[
\frac{\partial^2 f}{\partial x \partial y} = 6xy^2 + 1.
\]

Note: we can compute the derivatives in either order and get the same answer, i.e.

\[
\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = 6xy^2 + 1.
\]