UNDECIDABILITY PROBLEMS

* (1) Playing with PCP
(Adapted from John Martin, *Introduction to Languages and the Theory of Computation*, 20.3)

Say you are given the following five PCP dominos:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>ba</td>
</tr>
<tr>
<td>aba</td>
<td>abb</td>
</tr>
<tr>
<td>#1</td>
<td>#2</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>a</td>
</tr>
<tr>
<td>#3</td>
<td>#5</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>b</td>
</tr>
<tr>
<td>#4</td>
<td></td>
</tr>
</tbody>
</table>

a) Which domino(s) could be used first in a PCP solution? Why?

b) Which domino(s) could be used last in a PCP solution? Why?

c) Find a PCP solution with these dominos.
(Don’t spend too much time on this part if it’s taking too long!)

** (2) Silly PCP, Tricks are for Kids!

* a) In a variation of PCP, each domino the top string has the same length as the bottom string. Show that this variation of PCP is decidable.

** b) Prove that PCP is decidable over the unary* alphabet \(\sum = \{a\} \).

* Compare the word “unary” to “binary,” and note that the root for one is “un” (e.g. “unit,” “universal,”) while the root for two is “bi” (“biweekly”).
** (2) TMs can feel useless, too

(Adapted from Michael Sipser, *Introduction to the Theory of Computation, 2nd ed.*, Problem 5.13.)

A useless state in a Turing machine is one that is never entered on any input string.

Consider the problem of determining whether a Turing machine has any useless states.

a) Formulate this problem as a language:

\[\text{USELESS}_\text{TM} = \]

b) Fill in the steps of the following proof that \(\text{USELESS}_\text{TM} \) is undecidable:

For contradiction, assume that \(\text{USELESS}_\text{TM} \) is decidable by TM R.

Construct a new TM S that uses R to decide \(A_{\text{TM}} \).

\(S \) creates a new TM \(T \) that has a useless state when \(M \) doesn’t accept \(w \), and does not have a useless state when \(M \) does accept \(w \).

\(S = \) “On input ________________ :

1. Construct a new TM \(T = \) “On input \(x \):

 a. Replace \(x \) on the input by the string \(<M, w> \)

 b. Run the universal TM \(U \) to simulate. (Note that \(U \) was designed to use all its states.)

 c. If \(U \) accepts, enter a special state \(q_A \) and accept.

2. Run \(R \) on ____________ to determine whether \(T \) has any useless states.

3. If \(R \) rejects, then \(M \) _______ (accepts/rejects) \(w \), so \(S \) _______ (accepts/rejects).

 Otherwise, \(S \) _______ (accepts/rejects).

If \(M \) accepts \(w \), then \(T \) enters all states, but if \(M \) doesn’t accept \(w \) then \(T \) avoids \(q_A \).

So \(T \) has a useless state, \(q_A \), if and only if \(M \) doesn’t accept \(w \).

Thus \(S \) decides \(A_{\text{TM}} \). Because \(A_{\text{TM}} \) is ____________, we have reached a ____________ and conclude that ____________.