
1260 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 47, NO. 8, AUGUST 1999

Achieving 100% Throughput
in an Input-Queued Switch

Nick McKeown, Senior Member, IEEE,Adisak Mekkittikul, Member, IEEE,
Venkat Anantharam,Fellow, IEEE, and Jean Walrand,Fellow, IEEE

Abstract—It is well known that head-of-line blocking limits
the throughput of an input-queued switch with first-in–first-out
(FIFO) queues. Under certain conditions, the throughput can be
shown to be limited to approximately 58.6%. It is also known
that if non-FIFO queueing policies are used, the throughput can
be increased. However, it has not been previously shown that if a
suitable queueing policy and scheduling algorithm are used, then
it is possible to achieve 100% throughput for all independent
arrival processes. In this paper we prove this to be the case using
a simple linear programming argument and quadratic Lyapunov
function. In particular, we assume that each input maintains
a separate FIFO queue for each output and that the switch is
scheduled using a maximum weight bipartite matching algorithm.
We introduce two maximum weight matching algorithms: longest
queue first (LQF) and oldest cell first (OCF). Both algorithms
achieve 100% throughput for all independent arrival processes.
LQF favors queues with larger occupancy, ensuring that larger
queues will eventually be served. However, we find that LQF can
lead to the permanent starvation of short queues. OCF overcomes
this limitation by favoring cells with large waiting times.

Index Terms—Arbitration, ATM, input-queued switch, input-
queueing, packet switch, queueing networks, scheduling algo-
rithm.

I. INTRODUCTION

SINCE Karol et al.’s paper was published in 1986 [11], it
has become well known that an port input-queued

switch with first-input–first-output (FIFO) queues can have a
throughput limited to just %. The conditions
for this to be true are that:

1) arrivals at each input are independent and identically
distributed (i.i.d.);

2) arrival processes at each input are independent of ar-
rivals at other inputs;

3) all arrival processes have the same arrival rate and
destinations are uniformly distributed over all outputs;

Paper approved by P. E. Rynes, the Editor for Switching Systems of the
IEEE Communications Society. Manuscript received July 29, 1997; revised
October 5, 1998. This paper was presented in part at INFOCOM’96, San
Francisco, CA.

N. McKeown is with the Department of Electrical Engineering, Stanford
University, Stanford, CA 94305-9030 USA (e-mail: nickm@stanford.edu).

A. Mekkittikul was with the Department of Electrical Engineering,
Stanford University, Stanford, CA 94305-9030 USA. He is now with
Berkeley Concept Research Corporation, Berkeley, CA 94704 USA (e-mail:
adisak@bcrcorp.com).

V. Anantharam is with the Department of Electrical Engineering and
Computer Sciences, University of California at Berkeley, Berkeley, CA
94720 USA (e-mail: ananth@eecs.berkeley.edu).

J. Walrand is with Odyssia Systems, Berkeley, CA 94710 USA (e-mail:
jean@odyssiasystems.com).

Publisher Item Identifier S 0090-6778(99)06305-9.

Fig. 1. Components of an input-queued cell-switch.

4) arriving packets are of fixed and equal length, called
cells;

5) is large.

When conditions 1) and 2) are true we shall say that arrivals
are independent, and when condition 3) is true we shall say
that arrivals areuniform.

The throughput is limited because a cell can be held up by
another cell ahead of it in line that is destined for a different
output. This phenomenon is known as head-of-line (HOL)
blocking.

It is well documented that this result applies only to input-
queued switcheswith FIFO queues. And so many techniques
have been suggested for reducing HOL blocking using non-
FIFO queues, for example, by examining the first cells
in a FIFO queue, where [5], [8], [10]. In fact, HOL
blocking can be eliminated entirely by using a simple buffering
strategy at each input port. Rather than maintain a single FIFO
queue for all cells, each input maintains a separate queue
for each output [1], [9], [16]–[19], as shown in Fig. 1. This
queuing discipline is often referred to as virtual output queuing
(VOQ). HOL blocking is eliminated because a cell cannot be
held up by a cell queued ahead of it that is destined for a
different output. The implementation of VOQ is slightly more
complex, requiring FIFO’s to be maintained by each input
buffer. But no additional speedup is required; at most one cell
can arrive and depart from each input in a slot. During each
slot, a scheduling algorithm decides the configuration of the
switch by finding a matching on a bipartite graph (described
below). A number of different techniques have been used for
finding such a matching, for example, using neural networks
[2], [4], [22] or iterative algorithms [1], [14], [15]. These algo-

0090–6778/99$10.00 1999 IEEE

MCKEOWN et al.: ACHIEVING 100% THROUGHPUT IN AN INPUT-QUEUED SWITCH 1261

rithms were designed to give high throughput while remaining
simple to implement in hardware. When traffic is uniform,
these algorithms perform well (90% throughput). The iSLIP
algorithm [14], [15], for example, has been demonstrated using
simulation to achieve 100% throughput when the traffic is
independent and uniform. However, all of these algorithms
perform less well and are unable to sustain a throughput of
100% when traffic is nonuniform.

It is worth asking the question:

What is the highest throughput that can be achieved
by an input-queued switch which uses the queueing
discipline shown in Fig. 1?

In this paper we prove that for independent arrivals (uniform
or nonuniform), a maximum throughput of 100% is achievable
using two maximum weight matching algorithms.

In Section II we describe our model for an input-queued
switch that uses virtual output queuing, as illustrated in Fig. 1.
We then consider three graph algorithms that can be used to
schedule the transfer of cells through the switch. First, in
Section III, we describe the “maximum size” algorithm. Al-
though this algorithm achieves 100% throughput for uniform
traffic, we show that it can become unstable, even starve input
queues, when arrivals are nonuniform. Next, in Section IV,
we describe two maximum weight scheduling algorithms that
overcome this limitation: LQF and OCF. In conjunction with
the Appendix, we prove that these two scheduling algorithms
are stable for all uniform and nonuniform independent ar-
rival processes up to a maximum throughput of 100%. It
is important to note that this is a theoretical result—the
maximum weight matching algorithms that we propose are
not readily implemented in hardware. Furthermore, it should
be noted that the aim of this paper is to find algorithms that
achieve 100% throughput for best-effort traffic. No attempt
is made to achieve fairness between different flows, or to
provide guaranteed qualities of service. We expect future
results will combine algorithms that achieve high throughput
(such as those presented here) with additional mechanisms that
impose fairness or bandwidth guarantees (e.g., round-robin
or weighted round-robin). Our result indicates that practical
techniques approximating the algorithms presented here can
be expected to achieve high throughput.

II. OUR MODEL

Consider the input-queued cell switch in Fig. 1 connecting
inputs to outputs. The stationary and ergodic arrival

process at input , , is a discrete-time process
of fixed size packets, or cells. At the beginning of each slot,
either zero or one cell arrives at each input. Each cell contains
an identifier that indicates which output, , it is
destined for. When a cell destined for outputarrives at input
, it is placed in the FIFO queue which has occupancy

. We refer to as a VOQ. Define the following
vector which represents the occupancy of all queues at slot

(1)

Similarly, we define the waiting time to be the
number of time slots spent in the queue by the cell at the head

of VOQ at time slot . And we define the following
vector to represents the waiting time of the head-of-line cells
at all VOQ’s at slot :

(2)

We shall define the arrival process to be the process
of arrivals at input for output at rate , and the set of
all arrival processes . is
consideredadmissibleif no input or output is oversubscribed,
i.e., , otherwise it isinadmissible.

The FIFO queues are served as follows. A scheduling
algorithm selects amatch, or matching, , between the inputs
and outputs, defined as a collection of edges from the set of
nonempty input queues to the set of outputs such that each
nonempty input is connected to at most one output, and each
nonempty output is connected to at most one input. At the
end of the slot, if input is connected to output, one cell is
removed from and sent to output. Clearly, the departure
process from output, , rate , is also a discrete-time
process with either zero or one cell departing from each output
at the end of each slot. We shall define the departure process

, rate , as the process of departures from output
that were received from input. Note that the departure rate
may not be defined if the departure process is not stationary
and ergodic.

To find a matching , the scheduling algorithm solves a
bipartite graph matching problem. An example of a bipartite
graph is shown in Fig. 2.

If the queue is nonempty, then and there
is an edge in the graph between input and output . We
associate a weight with each such edge. The meaning
of the weights depend on the algorithm, and we consider two
classes of algorithm here.

Maximum Size Matching Algorithms:Algorithms that find
the match containing the maximum number of edges.

Maximum Weight Matching Algorithms:Algorithms that
find the maximum weight matching where, in this paper, we
consider only algorithms for which the weight is
integer-valued, equaling the occupancy of or the
waiting time of the cell at the head of line at .

Clearly, a maximum size matching is a special case of the
maximum weight matching with weight when

is nonempty.

III. M AXIMUM SIZE MATCHINGS

The maximum size matching for a bipartite graph can
be found by solving an equivalent network flow problem
[20]. There exist many algorithms for solving these problems,
the most efficient algorithm currently known converges in

time and is described in [7].1

It can be demonstrated2 using simulation that the maximum
size matching algorithm is stable for i.i.d. arrivals up to an
offered load of 100% when the traffic is uniform [15]. It
is important to note that a maximum size matching is not

1This algorithm is equivalent to Dinic’s algorithm [6].
2Clearly, such a demonstration by simulation is not as strong as an

analytical proof.

1262 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 47, NO. 8, AUGUST 1999

(a) (b)

Fig. 2. DefineG = [V; E] as an undirected graph connecting the set of verticesV with the set of edgesE. The edge connecting verticesi; 1 � i � M

andj; 1 � j � N has an associated weight denotedwi; j . GraphG is bipartite if the set of inputsI = fi: 1 � i �Mg and outputsJ = fj: 1 � j � Ng
partition V such that every edge has one end inI and one end inJ . MatchingM on G is any subset ofE such that no two edges inM have a
common vertex. Amaximum matching algorithmis one that finds the matchingMmax with the maximum total size or total weight. (a) Example ofG
for jIj = M and jIj = N . (b) Example of matchingM on G.

necessarily desirable. First, underadmissibletraffic, it can
lead to instability and unfairness, particularly for nonuniform
traffic patterns. To demonstrate this behavior, Fig. 3 shows
an example of a potentially unstable 3 3 switch with just
four active flows,3 and scheduled using the maximum size
matching algorithm. It is assumed that ties are broken by
selecting among alternatives with equal probability. Arrivals
to the switch are i.i.d. Bernoulli arrivals and each flow has
arrivals at rate , where . Even though the
traffic is admissible, it is straightforward to show that the
switch can be unstable for sufficiently small. Consider the
event that at slot , both and have arrivals
with probability and ,
in which case input 1 receives service with probability 2/3.
Therefore, the total rate at which input 1 receives service is
at most

But the arrival rate to input 1 is , so if

(which holds for), then the switch is unstable and
the traffic cannot be sustained by the maximum size matching
algorithm.

Second, underinadmissible traffic, the maximum size
matching algorithm can lead tostarvation. An example of
this behavior is shown in Fig. 4 for a 2 2 switch. It is
clear that because all three queues are permanently occupied,

3It can also be shown that a 2� 2 switch with nonuniform traffic can be
unstable when scheduled using a maximum size matching algorithm. However,
our proof is more complex and is omitted here.

Fig. 3. An example ofinstability under admissible traffic using a maximum
size matching algorithm for a 3� 3 switch with nonuniform traffic.

Fig. 4. Under aninadmissibleworkload, the maximum size matching will
always serve just two queues,starving the flow from input 1 to output 1.

the algorithm will always select the “cross” traffic: input 1 to
output 2 and input 2 to output 1. It is worth noting that the
practical scheduling algorithms described previously attempt
to approximate a maximum size matching [1], [2], [4], [14],
[22]. It is therefore not surprising that these algorithms perform
well when the traffic is uniform, but perform less well when
the traffic is nonuniform.

IV. M AXIMUM WEIGHT MATCHINGS

The maximum weight matching for a bipartite graph
is one that maximizes and can be found
by solving an equivalent network flow problem. The most
efficient known algorithm for solving this problem converges
in running time [20].

MCKEOWN et al.: ACHIEVING 100% THROUGHPUT IN AN INPUT-QUEUED SWITCH 1263

The maximumsizematching algorithm knows only whether
an input queue is empty or nonempty. Therefore, if the
traffic is nonuniform and the occupancy of some queues begins
to increase, this algorithm does not know to favor those queues
and reduce their backlog.

On the other hand, a maximumweightmatching algorithm
can take into account the occupancy of each VOQ or
the waiting time of the cell at head of line. Such algorithms
can give preference to queues with greater occupancy or to
older cells. In fact, as our results show, these algorithms can
lead to a maximum throughput of 100% for independent and
either uniform or nonuniform arrivals.

A. Our Algorithms

In this paper we consider two maximum weight matching
algorithms: the “longest queue first” (LQF) algorithm, and the
“oldest cell first” (OCF) algorithm. LQF considers the queue
occupancy by assigning a weight . Queues
with larger occupancy will be assigned a larger weight, and
are thus more likely to be served.4 As we shall see, LQF
results in 100% throughput. However, LQF can lead to the
permanent starvation of a nonempty queue. To understand how
this happens, consider a 22 switch with for all

, and . In the first timeslot, an arrival will occur
at and so will remain unserved. In fact, because
of the continuous arrivals to will remain unserved
indefinitely.

Our second algorithm, OCF, overcomes this problem by
considering the waiting times of cells at the head of each
VOQ. OCF considers the waiting time by assigning a weight

. Cells that have been waiting the longest
time will be assigned a larger weight and are thus more likely
to be served. It is clear that no queues will be starved of
service indefinitely: if a cell is not served, its waiting time
will increase. Eventually, its weight will increase to a value
that ensures that it is served.

V. MAIN RESULTS

A. The LQF Algorithm

Theorem 1: The LQF maximum weight matching algorithm
is stable for all admissible i.i.d. arrival processes.

Proof: The proof is given in Appendix A. In summary,
we show that for an switch scheduled using the LQF
algorithm, there is a negative expected single-step drift in the
sum of the squares of the occupancy. In other words

where
is a second-order Lyapunov function

and, using the result of Kumar and Meyn [13], we show
that the system is stable. The term indicates that

4When the maximum weight matching algorithm encounters “ties” (i.e.,
different patterns of connections that lead to different matchings of equal
weight), it may arbitrarily select any of the maximum weight matchings. For
example, it could randomly choose one matching.

whenever the occupancy of the input queues is large enough,
the expected drift is negative; should become very
large, the downward drift also becomes large.

B. The OCF Algorithm

Theorem 2: The OCF maximum weight matching algo-
rithm is stable for all admissible i.i.d. arrival processes.

Proof: The proof is given in Appendix B. The proof
consists of two steps. First, we prove the stability of the
waiting time. Then, we show that the stability of the waiting
time implies the stability of queue occupancy, which proves
Theorem 2.

Similar to the LQF proof, we show that for an
switch scheduled using the OCF algorithm, there is a negative
expected single-step drift in the value of a second-order Lya-
punov function of the waiting times

where and is a positive-definite matrix.
This, in turn, implies the stability of the waiting time.
Once we have proved the stability of the waiting time, it is

straightforward to prove the stability of the queue occupancy.
Because there can be at most one arrival to any queue in
one slot, the total number of arrivals after an HOL cell, by
definition the current queue occupancy, is bounded above by
the number of slots an HOL cell has been waiting—the waiting
time, i.e., . Therefore, the
stability of the waiting time implies the stability of the queue
occupancy.

VI. CONCLUSION

We have shown that if an input-queued switch maintains
a separate FIFO queue for each output at each input, then a
throughput of 100% can be achieved for independent arrivals.
If a maximum-sized matching algorithm is used to schedule
cells, then we demonstrate that a throughput of 100% may
not be possible when arrivals are nonuniform. However, if a
maximum weight matching algorithm is used, we have shown
that a throughput of 100% is achievable for both uniform
and nonuniform arrivals. In particular, we have described two
maximum weight matching algorithms: LQF and OCF. LQF
considers the occupancy of the input queues, giving preference
to queues that contain more cells. When the occupancy is large
enough at any queue, it is ensured of service. Furthermore,
when the occupancies of all the queues exceed a threshold,
the total queue occupancy exhibits an overall downward drift,
ensuring that the total queue occupancy will not become
unbounded.

Unfortunately, the LQF algorithm can lead to the indefinite
starvation of one or more inputs. We may overcome this
limitation by modifying the weights used by the algorithm.
In particular, OCF assigns the weights to equal the waiting
time of the cell at the head-of-line of each input queue. This

1264 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 47, NO. 8, AUGUST 1999

is sufficient to ensure that every cell will eventually be served,
and that the system will remain stable.

APPENDIX A
LQF PROOF

A. Definitions

In this appendix we use the following definitions for an
switch.

1) The rate matrix of the stationary arrival processes:

where

and associated rate vector

(3)

2) The arrival matrix, representing the sequence of arrivals
into each queue:

where

if arrival occurs at at time
else

and associated arrival vector

3) The service matrix, indicating which queues are served
at slot

where

if is served at time
else

and , the set of service5 matrices.
Note that: , and

hence if is a permutation matrix. If
, we say that is a quasi-permutation

matrix. We define the associated service vector:

hence .
4) The approximatenext-state vector:

which approximates the exact next-state of each queue

(4)

5Note that our definition of the “service” matrix is a permutation matrix
which includes the case where an empty queue is served. We adopt this
definition here for ease of exposition—it does not affect the result.

B. Proof of Theorem

Before proving the theorem, we first state the following fact
and prove the subsequent lemmas.

Fact 1—Birkhoff’s Theorem:The doubly substochastic
square matrices form a convex set with the set

of extreme points equal to permutation matrices.
This is proved in [3].
Lemma 1: The doubly substochastic nonsquare

matrices form a convex set with the set of extreme points
equal to quasi-permutation matrices.

Proof: Observe that we can add rows to any
nonsquare substochastic matrix and introduce new entries
so that the row sums of the new rows equal one and fur-
ther that the column sums are also each one. We can use
Birkhoff’s Theorem to write the augmented matrix as a convex
combination of permutation matrices. The first
rows of the permutation matrix are an matrix which
forms a permutation matrix with some of the columns.
The same argument may be applied to additional columns if

.
Lemma 2: , where

, the service matrix se-
lected by the maximum weight matching algorithm to maxi-
mize .

Proof: Consider the linear programming problem:

s.t.

which has a solution equal to an extreme point of the convex
set . Hence,

and so

Lemma 3:

Proof:

where because is a real vector,
and .

Taking the expected value:

MCKEOWN et al.: ACHIEVING 100% THROUGHPUT IN AN INPUT-QUEUED SWITCH 1265

From Lemma 2 we know that , proving
the lemma.

Lemma 4: , where is
any rate vector such that , there exists
such that

Proof:

where is the angle between and .
We now show that for some whenever

. First, we show that . We do this by
contradiction: suppose that , i.e., and are
orthogonal. This can only occur if , or if for some

, both and , which is not possible: for
arrivals to have occurred at queue , must be greater
than zero. Therefore, unless . Now we
show that is bounded away from zero, i.e., that
for some . Because wherever , and
because

(5)

where , and
.

Also, , and
so is bounded by

(6)

Therefore

Lemma 5: , there exists
such that

Proof:

if
else

therefore

(7)

Fig. 5. Arrivals and departures timeline for the VOQQi; j . Arrivals are
shown below the line, departures are shown above the line.Ci; j(n) is the
current HOL cell atQi; j which may or may not depart in the current slot, and
Ci; j(n+ l) is the cell that will replaceCi; j(n) as HOL cell after it departs.

and so

Using Lemma 4, this concludes the proof.
Lemma 6: There exists a s.t.

, where .
Proof: and

in Lemma 5.
We are now ready to prove the main theorem.

in the main theorem is a quadratic Lyapunov function and,
according to the argument of Kumar and Meyn [13], it follows
that the switch is stable.

APPENDIX B
OCF PROOF

A. Definitions

In addition to the definitions defined in Appendix A, the
following definitions are necessary in this Appendix. Consider
Fig. 5.

1) denotes the HOL cell of at slot .
2) The interarrival time vector:

(8)

where is the interarrival time between
and the cell behind it in line.

3) The waiting time vector:

(9)

where is the waiting time of at slot .
4) The positive-definite diagonal matrix whose diagonal

elements are .
5) denotes a vector in which each element is a

product of the corresponding elements of the vectors:
, and , i.e., .

6) The approximate waiting time next-state vector:

(10)

1266 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 47, NO. 8, AUGUST 1999

B. Proof of Theorem

The proof consists of two steps. First, we prove the stability
of the waiting time. Then, we show that the stability of the
waiting time implies the stability of queue occupancy. But
before proving the theorem, we first state the following facts
and prove the subsequent lemmas.

Fact 2: An interarrival time is independent of a
waiting time .

Fact 3: . Since there is only at most one arrival
per slot, the arrival time of any two consecutive cells must be
at least one slot apart.

Fact 4: because there is at
most one arrival per slot.

Fact 5: For any queue whose arrival rate is zero,
, , thus . Considering

the fact that a zero waiting time does not contribute to the
sum value , without loss of generality, we can
set the corresponding service indicator to zero for all
time .

Lemma 7: , where
is such that .

Proof: The proof is similar to the proof of Lemma 2 in
Appendix A.

Lemma 8: , where is any
rate vector such that , there
exists such that

Proof: By expansion

(11)

Subtracting from both sides and taking the
expected value

(12)

After imposing the admissibility constraints and the schedul-
ing algorithm properties, we obtain the following inequalities:

(13)

where is a nonnegative constant.

From (12) and (13), we obtain

(14)

From the relationship of the arrival vector

(15)

Applying Lemma 7

(16)

(17)

where is the angle between and .
Using the same approach as in Lemma 4, it follows that

(18)

Using (14), (17), and (18)

(19)

where .
Lemma 9: , where is any

rate vector such that , there
exists such that

Proof: We can draw the following relationship between
the two waiting times:

.
(20)

Since is a positive definite matrix, (20) implies

(21)
Hence

(22)

This proves the Lemma.
Lemma 10: There exists a quadratic Lyapunov function

such that

(23)

where is a constant and .
Proof: From Lemma 9

, and .
Theorem 3: Under the OCF algorithm, the waiting times

are stable for all admissible and independent arrival processes,
i.e., .

MCKEOWN et al.: ACHIEVING 100% THROUGHPUT IN AN INPUT-QUEUED SWITCH 1267

Proof: Similar to the argument in the LQF proof.
Theorem 4: Under the OCF algorithm, the queue occu-

pancies are stable for all admissible and independent arrival
processes, i.e., .

Proof: From Fact 4, .
Thus,

(24)

REFERENCES

[1] T. Anderson, S. Owicki, J. Saxe, and C. Thacker, “High speed switch
scheduling for local area networks,”ACM Trans. Comput. Syst.,pp.
319–352, Nov. 1993.

[2] M. Ali and H. Nguyen, “A neural network implementation of an input
access scheme in a high-speed packet switch,” inProc. GLOBECOM
1989, pp. 1192–1196.

[3] G. Birkhoff, “Tres observaciones sobre el algebra lineal,”Univ. Nac.
Tucumán Rev. Ser.,vol. A5, pp. 147–150, 1946.

[4] T. X. Brown and K. H. Liu, “Neural network design of a Banyan net-
work controller,”IEEE J. Select. Areas Commun.,vol. 8, pp. 1289–1298,
Oct. 1990.

[5] M. Chen and N. D. Georganas, “A fast algorithm for multi-channel/port
traffic scheduling,” inProc. IEEE Supercom/ICC‘94,pp. 96–100.

[6] E. A. Dinic, “Algorithm for solution of a problem of maximum flow
in a network with power estimation,”Soviet Math. Dokl.,vol. 11, pp.
1277–1280, 1970.

[7] J. E. Hopcroft and R. M. Karp, “Ann5=2 algorithm for maximum
matching in bipartite graphs,”Soc. Ind. Appl. Math. J. Comput.,vol. 2,
pp. 225–231, 1973.

[8] A. Huang and S. Knauer, “Starlite: A wideband digital switch,” inProc.
GLOBECOM‘84,pp. 121–125.

[9] M. Karol, K. Eng, and H. Obara, “Improving the performance of input-
queued ATM packet switches,” inINFOCOM‘92, pp. 110–115.

[10] M. Karol and M. Hluchyj, “Queuing in high-performance packet-
switching,” IEEE J. Select. Areas Commun.,vol. 6, pp. 1587–1597,
Dec. 1988.

[11] M. J. Karol, M. Hluchyj, and S. Morgan, “Input vs. output queuing on a
space-division packet switch,” inProc. GLOBECOM 1986,pp. 659–665.

[12] , “Input versus output queuing on a space division switch,”IEEE
Trans. Commun.,vol. COM-35, pp. 1347–1356, Dec. 1987.

[13] P. R. Kumar and S. P. Meyn, “Stability of queuing networks and
scheduling policies,”IEEE Trans. Automat. Contr.,vol. 40, Feb. 1995.

[14] N. McKeown, J. Walrand, and P. Varaiya, “Scheduling cells in an
input-queued switch,”IEE Electron. Lett.,pp. 2174–2175, Dec. 9, 1993.

[15] N. McKeown, “Scheduling algorithms for input-queued cell switches,”
Ph.D. dissertation, Univ. California at Berkeley, 1995.

[16] H. Obara, “Optimum architecture for input queuing ATM switches,”IEE
Electron. Lett.,pp. 555–557, Mar. 28, 1991.

[17] H. Obara and Y. Hamazumi, “Parallel contention resolution control
for input queuing ATM switches,”Electron. Lett.,vol. 28, no. 9, pp.
838–839, Apr. 23, 1992.

[18] H. Obara, S. Okamoto, and Y. Hamazumi, “Input and output queuing
ATM switch architecture with spatial and temporal slot reservation
control,” Electron. Lett.,pp. 22–24, Jan. 2, 1992.

[19] Y. Tamir and G. Frazier, “High performance multi-queue buffers for
VLSI communication switches,” inProc. 15th Ann. Symp. Computer
Architecture,June 1988, pp. 343–354.

[20] R. E. Tarjan, “Data structures and network algorithms,”Soc. Ind. Appl.
Math., Philadelphia, PA, Nov. 1983.

[21] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queuing systems and scheduling policies for maximum throughput in
multihop radio networks,”IEEE Trans. Automat. Contr.,vol. 37, pp.
1936–1948, Dec. 1992.

[22] T. P. Troudet and S. M. Walters, “Hopfield neural network architecture
for crossbar switch control,”IEEE Trans. Circuits Syst.,vol. 38, pp.
42–57, Jan. 1991.

Nick McKeown (S’91–M’95–SM’97) completed
the Ph.D. degree at the University of California at
Berkeley in 1995.

He is a Professor of electrical engineering and
computer science at Stanford University, Stanford,
CA, where he works on the theory, design, and
implementation of high-speed Internet routers and
switches. He has worked for Hewlett-Packard
Labs, Cisco Systems, and has an active consulting
business.

Dr. McKeown is as an Editor of IEEE
TRANSACTIONS ON COMMUNICATIONS, the Robert Noyce Faculty Fellow at
Stanford, and is a Research Fellow of the Alfred P. Sloan Foundation.

Adisak Mekkittikul (S’87–M’98) received the
Ph.D. degree in electrical engineering from Stanford
University, Stanford, CA.

He is a Senior Member of Technical Staff at
Berkeley Concept Research Corp. His research
interests include high-speed switches and routers
and wireless networks. Previously, he worked
for Hewlett-Packard, Cirrus Logic, and Trident
Microsystems.

Venkat Anantharam (M’86–SM’96–F’98) re-
ceived the B.Tech. degree in electronics in 1980
from the Indian Institute of Technology at Madras
(now Chennai) and the M.A. and C.Phil. degrees
in mathematics and the M.S. and Ph.D. degrees
in electrical engineering in 1983, 1984, 1982, and
1986, respectively, from the University of California
at Berkeley.

From 1986 to 1994, he was on the faculty of
the School of Electrical Engineering at Cornell
University, Ithaca, NY. Since 1994, he has been on

the faculty of the Electrical Engineering and Computer Science Department
at the University of California at Berkeley.

Dr. Anantharam is a recipient of the Philips India Medal (1980), the
President of India Gold Medal (1980), the NSF Presidential Young Investigator
Award (1988), the IBM Faculty Development Award (1989), and co-recipient
(with S. Verdú) of the Information Theory Society Paper Award (1998).
He currently serves as an Associate Editor for the IEEE TRANSACTIONS

ON INFORMATION THEORY, queueing systems: theory and applications, and
Markov processes and related fields.

Jean Walrand (S’71–M’74–SM’90–F’93) received
the Ph.D. degree from the Department of Electrical
Engineering and Computer Sciences of the Univer-
sity of California at Berkeley.

He is a Professor in the Department of Electrical
Engineering and Computer Sciences of the Univer-
sity of California at Berkeley. His research interests
include decision theory, stochastic processes, and
communication networks. He is the author ofAn
Introduction to Queuing Networks(Prentice Hall,
1988), Communication Networks: A First Course

(2nd ed., McGraw-Hill, 1998), and co-author ofHigh-Performance Commu-
nication Networks(Morgan Kaufman, 1996).

Prof. Walrand is a Fellow of the Belgian American Education Foundation
and a recipient of the Lanchester Prize.

