Outline

- Motivations
- Distance-based pricing
- Congestion pricing
 - Overview
 - Scheme types
 - Technology
 - Case studies
 - Other issues
 - Context of Malaysia
- Questions?
Typical Motivations for Initiating Pricing Strategies

- **Primary:**
 - Demand management (i.e., congestion abatement)
 - Time, fuel, reliability
 - Revenue generation
 - Decreasing contribution from vehicle fuel tax
 - Build additional infrastructure or expand (transit) services
 - Stable and predictable revenue source

- **Secondary:**
 - Increased economic efficiency → net benefits to society
 - Internalize external costs
 - Increase transit ridership
 - Increase capacity utilization
 - Improve distribution of goods
Some Pricing Strategies

- **“Common”**
 - Distance-based pricing
 - Intercity and urban
 - Congestion pricing
 - Urban and congested corridors

- **More innovative**
 - Car sharing
 - Variable insurance
Distance-Based Pricing

- Passenger and freight vehicles
 - U.S. consideration
 - Revenue generation
 - Gas tax replacement
 - fuel economy
 - alternative fuel vehicles
 - Measure vehicle miles traveled (VMT)
 - Considered infeasible to replace gas tax in U.S. at this time
 - Cost (admin & tech)
 - Gas tax “sufficient” for next 20 yrs.
Distance-Based Pricing

- **Heavy vehicles only (Swiss case)**
 - **Goals**
 - Internalize external costs
 - Revenue generation
 - Reduce alpine road traffic
 - **Results**
 - Fleet adaptation
 - Replacement of high-emission trucks
 - More specialized vehicles
 - Organizational changes
 - Industry mergers
 - Freight and fleet management
 - Some indication for mode shift
 - Little influence on consumer prices

Source: Rapp Trans AG
Congestion Pricing Overview

- A.K.A. Value, Dynamic, Variable, & Peak-Period Pricing
 - It is:
 - Modifying travel demand to achieve a desired change in consumer behavior
 - Charging customers more during peak periods than off-peak to reduce the demand fluctuation throughout the time period when capacity is fixed
 - Used in other industries:
 - Telephone companies
 - Airlines
 - Hotels
 - Energy
 - Most likely used for roads and parking
 - Elasticities for road value pricing are typically between 0 to -0.5
 - Can be time-, spatial-, or distance-based
 - Can be fixed-price or dynamic
 - Increasing consideration in recent years
 - ITS technology
 - More case studies to draw upon
 - Congestion is an ever-increasing problem
Possible Effects of Congestion Pricing

- For highway traffic flow, the elimination of a few trips from the peak period could create substantial reductions in overall congestion. Source: FHWA, 1999

- How are trips eliminated?
 - Move to off-peak times
 - Move to less congested routes
 - Alternative modes of travel selected
 - Increased vehicle occupancy rate
 - Combine or eliminate some low-value trips
Pricing Schemes

- Basic road value pricing schemes:
 1. Areawide value pricing
 2. Single facility, route, or corridor value pricing
 3. Partial facility (i.e. lanes) value pricing
 4. Vehicle-use pricing
Technology

ELECTRONIC TOLL COLLECTION

- Automatic Vehicle Identification (AVI)
 - Toll tags and tag readers
 - Lasers
 - RF
 - IR
 - Automatic Number Plate Recognition (ANPR)

- Automatic Vehicle Location (AVL) Systems
 - Similar to those used for fleet management
 - Data can be stored in on-board processing units
 - Facility-specific

- GPS
 - Could be integrated with ITIS
 - Limitations in urban areas

- AVI and AVL can be linked with “smartcards”
 - Malaysia Toll Roads
smartcards

- Integration with multiple modes and services
 - Transit
 - Parking
 - Toll roads
 - Taxis
- “Open”

A multi-application smart card (Source: GemPlus)
Singapore

- Area Licensing Scheme introduced 1975
 - First in world
 - Part of an overall transport strategy
 - High entry barrier to car ownership
 - Peak-period fee almost 5% of car-owning household’s annual income
 - Results: traffic entering zone dropped >40% and greatly increased transit use and carpooling
- Upgraded to Electronic road pricing system in 1998
- Key ERP Characteristics:
 - Expanded areawide scheme
 - Results: reduction of 15% in vehicle crossings
 - Cordon Entry Points (approx. 30 gantries) to “Restricted Zone”
 - AVI w/ smartcards and In-Vehicle Unit (IU)
 - 7:30 AM to 7:00 PM M-F
 - Fees
 - Fees vary every half-hour at pre-determined rates (i.e. predictably dynamic)
 - Different prices for different user groups
 - Fare charged each time entering cordon
Singapore ERP Configuration

Fig. 3 ERP system equipment configuration
London

- Areawide pricing scheme
 - Central London
- 7:00 AM to 6:30 PM
- Users self-report
- ANPR technology for enforcement
- Fees:
 - One-time £5 fee each day
 - Discounts to certain groups
 - e.g. electric vehicles
 - Flexible payment options for different users (e.g. fleet accounts)
- Result:
 - Travel delays and journey time reliability have improved 30%
 - Journey times have decreased 14%
 - Large shift to public transport
Congestion Pricing Requires an Increased Focus on:

- Multimodal/intermodal facilities
 - EFPS
 - Parking lots
- Transit (from mode shifts)
- Land-use
- TOD
- Non-motorized transport
Public Acceptance

- More likely to “sell” value pricing when it is part of an overall transport strategy
- Pre-Implementation
 - Mostly negative views when applied to current facilities
 - Viewed more acceptable when applied to new facilities (providing alternatives)
- Dynamic pricing less acceptable if alternatives absent
- Post-implementation surveys typically show public support
- Equity could be addressed by establishing “credits”
 - Baseline # of crossings, miles, boardings, etc. gifted to targeted (e.g. low-income) groups
- Privacy issues need to be addressed
- Information campaigns
Salient Characteristics for Successful Implementation

- Clearly defined goals
- Politically feasible
- Simple
 - Predictable prices
- Marketing and educational campaigns
- Equitable
- Enforceable
- Low administrative costs and burdens
- Promotes sustainability
 - e.g., discounts to alternative fuel vehicles
Salient Characteristics for Successful Implementation (cont.)

- Use of revenue?
- Offer alternatives
- Price fluctuation for congestion management
- Address user groups individually
 - Differentiation of charges, technology, and payment options
- Technology
 - Established
 - Accommodate foreign vehicles
 - User-friendly
 - Flexible
 - “Open” system
 - Integration with other modes and systems
Context of Malaysia

- **Point 1:**
 - Developed World
 - Freeway corridor congestion
 - Developing world
 - True urban gridlock

- **Point 2:**
 - Many of Malaysia’s toll roads are private
 - Increased difficulty for implementation and architecture
 - Contractual toll limits

- **Point 3:**
 - Low vehicle operating costs

- **Point 1 + Point 2 + Point 3 =**
 - Areawide congestion charging may be a strong strategy
 - Technology is available
 - Further research needs to look at Malaysia-specific characteristics of the system
Questions and Discussion