Participating Faculty

Mark Bear, Modification of the Cerebral Cortex by Sensory Experience

Ed Boyden, Development of Neural Control Tools and Application to Brain Disorders

Martha Constantine-Paton, Activity-Dependent Development of Synapses

Michale Fee, How the Brain Learns and Generates Complex Sequential Behaviors

Guoping Feng, Mechanisms of Neuronal Circuitry Development and Psychiatric Disorders

Frank Gertler, Molecular Mechanisms of Axonal Outgrowth and Brain Development

Ki Ann Goosens, Brain Mechanisms that Underlie Fear, Anxiety and Stress

Ann Graybiel, Function of the Basal Ganglia

Leonard Guarente, Effects of SIRT1 on Neurodegenerative Diseases and Cognition

Richard Hynes, Biology of Cell Adhesion in Development and Disease

Robert Horvitz, Genetics of Nervous System Development and Function in C. elegans

David Housman, Pathology Mechanisms and Genetic Modifiers in Huntington’s Disease

Rudolf Jaenisch, Epigenetic Control of Brain Development and Function

Alan Jasanoff, Non-Invasive Functional Imaging Methods to Study Neural Behavior

Yingxi Lin, Development and Function of Inhibitory Circuits in the Brain

Susan L. Lindquist, Correcting the Protein Misfolding of Neurodegenerative Disease

J. Troy Littleton, Synapse Formation, Function and Plasticity in Drosophila

Carlos Lois, Neurogenesis and Assembly of Brain Circuits

Christopher Moore, Brain Dynamics Involved in Sensory Perception

Elly Nedivi, Characterization of Genes Involved in CNS Plasticity

William Quinn, Genetic Analysis of Learning and Memory in Drosophila

Peter Reddien, Genetic Control of Nervous System Regeneration in Planarians

Morgan Sheng, Molecular Mechanisms of Synaptic Plasticity

Hazel Sive, Brain Patterning and Morphogenesis in Zebrafish

Mriganka Sur, Plasticity Mechanisms in the Developing and Adult Cerebral Cortex

Susumu Tonegawa, Genetic Approaches to Learning and Memory Circuits in Mice

Li-Huei Tsai, Mechanisms of Alzheimer’s Disease and Epigenetic Regulation of Learning & Memory

Matthew Wilson, Neuronal Plasticity, Learning & Sleep

Weifeng Xu, Molecular Mechanisms Underlying Hippocampal Synaptic Plasticity
Introducing a New Interdepartmental Neuroscience Graduate PhD Program Offered Through the Departments of Biology and Brain & Cognitive Sciences

By bridging research labs in multiple departments and centers, the Molecular and Cellular Neuroscience Program will provide an outstanding and unprecedented research and training environment for the top neuroscience undergraduates from around the globe. We hope you join us for this exciting push as we seek to understand the many mysteries of the brain.

Molecular and Cellular Neuroscience @ MIT

MIT is introducing a new Molecular and Cellular Neuroscience (MCN) program for graduate education. With participating faculty located in the Picower Institute for Learning and Memory, the McGovern Institute for Brain Research, the Whitehead Institute and the Departments of Biology and Brain and Cognitive Sciences, incoming students have access to many of the top neuroscience laboratories in the world. Students will be admitted through the Biology or Brain and Cognitive Sciences graduate programs and can join the MCN program anytime during their first year, offering access to participating inter-departmental faculty and neuroscience coursework across campus. MIT is at the forefront of molecular and cellular neuroscience research, and incoming students can now access this world-class research community as it strives to understand the biological basis of brain function and neurological disease.

How to Apply to the Molecular & Cellular Neuroscience Program:

Applicants interested in the MCN program will be admitted through the Biology or Brain and Cognitive Sciences graduate program, details of which can be found at web.mit.edu/bcs and web.mit.edu/biology/www. Additional information about the MCN program can be found at web.mit.edu/neuro.

In addition to a wide array of faculty research efforts across a spectrum of basic and medical neuroscience interests, incoming students have access to the diverse curriculum offered in the Biology and Brain & Cognitive Sciences Departments, including coursework in Cellular and Molecular Neuroscience, Genetic Neurobiology, Developmental Neuroscience, Systems Neuroscience, Neurobiology of Disease, Neural Plasticity, Neuroanatomy, Biochemistry, Genetics, Neurotechnology, Neuro-pharmacology, Neurobiology of Aging, Cellular Neurophysiology, Cell Biology, and Development & Evolution.