
Spoken Dialogue Management Using Probabilistic Reasoning

Nicholas Roy and Joelle Pineau and Sebastian Thrun
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

{nicholas.roy|joelle.pineau|sebastian.thrun}@cs.cmu.edu

Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics
(ACL 2000). Hong Kong, Oct. 2000

Abstract

Spoken dialogue managers have benefited
from using stochastic planners such as
Markov Decision Processes (MDPs). How-
ever, so far, MDPs do not handle well noisy
and ambiguous speech utterances. We use a
Partially Observable Markov Decision Pro-
cess (POMDP)-style approach to generate
dialogue strategies by inverting the notion of
dialogue state; the state represents the user’s
intentions, rather than the system state. We
demonstrate that under the same noisy con-
ditions, a POMDP dialogue manager makes
fewer mistakes than an MDP dialogue man-
ager. Furthermore, as the quality of speech
recognition degrades, the POMDP dialogue
manager automatically adjusts the policy.

1 Introduction

The development of automatic speech recognition
has made possible more natural human-computer
interaction. Speech recognition and speech un-
derstanding, however, are not yet at the point
where a computer can reliably extract the in-
tended meaning from every human utterance.
Human speech can be both noisy and ambigu-
ous, and many real-world systems must also be
speaker-independent. Regardless of these diffi-
culties, any system that manages human-machine
dialogues must be able to perform reliably even
with noisy and stochastic speech input.

Recent research in dialogue management has
shown that Markov Decision Processes (MDPs)
can be useful for generating effective dialogue
strategies (Young, 1990; Levin et al., 1998); the
system is modelled as a set of states that represent

the dialogue as a whole, and a set of actions corre-
sponding to speech productions from the system.
The goal is to maximise the reward obtained for
fulfilling a user’s request. However, the correct
way to represent the state of the dialogue is still
an open problem (Singh et al., 1999). A common
solution is to restrict the system to a single goal.
For example, in booking a flight in an automated
travel agent system, the system state is described
in terms of how close the agent is to being able to
book the flight.

Such systems suffer from a principal prob-
lem. A conventional MDP-based dialogue man-
ager must know the current state of the system at
all times, and therefore the state has to be wholly
contained in the system representation. These
systems perform well under certain conditions,
but not all. For example, MDPs have been used
successfully for such tasks as retrieving e-mail or
making travel arrangements (Walker et al., 1998;
Levin et al., 1998) over the phone, task domains
that are generally low in both noise and ambigu-
ity. However, the issue of reliability in the face of
noise is a major concern for our application. Our
dialogue manager was developed for a mobile
robot application that has knowledge from sev-
eral domains, and must interact with many peo-
ple over time. For speaker-independent systems
and systems that must act in a noisy environment,
the user’s action and intentions cannot always be
used to infer the dialogue state; it may be not
be possible to reliably and completely determine
the state of the dialogue following each utterance.
The poor reliability of the audio signal on a mo-
bile robot, coupled with the expectations of nat-
ural interaction that people have with more an-
thropomorphic interfaces, increases the demands
placed on the dialogue manager.

Most existing dialogue systems do not model
confidences on recognition accuracy of the hu-
man utterances, and therefore do not account for
the reliability of speech recognition when apply-
ing a dialogue strategy. Some systems do use the
log-likelihood values for speech utterances, how-
ever these values are only thresholded to indicate
whether the utterance needs to be confirmed (Ni-
imi and Kobayashi, 1996; Singh et al., 1999). An
important concept lying at the heart of this issue
is that of observability – the ultimate goal of a
dialogue system is to satisfy a user request; how-
ever, what the user really wants is at best partially
observable.

We handle the problem of partial observabil-
ity by inverting the conventional notion of state
in a dialogue. The world is viewed as partially
unobservable – the underlying state is the inten-
tion of the user with respect to the dialogue task.
The only observations about the user’s state are
the speech utterances given by the speech recog-
nition system, from which some knowledge about
the current state can be inferred. By accepting
the partial observability of the world, the dia-
logue problem becomes one that is addressed by
Partially Observable Markov Decision Processes
(POMDPs) (Sondik, 1971). Finding an optimal
policy for a given POMDP model corresponds to
defining an optimal dialogue strategy. Optimality
is attained within the context of a set of rewards
that define the relative value of taking various ac-
tions.

We will show that conventional MDP solutions
are insufficient, and that a more robust method-
ology is required. Note that in the limit of per-
fect sensing, the POMDP policy will be equiva-
lent to an MDP policy. What the POMDP policy
offers is an ability to compensate appropriately
for better or worse sensing. As the speech recog-
nition degrades, the POMDP policy acquires re-
ward more slowly, but makes fewer mistakes and
blind guesses compared to a conventional MDP
policy.

There are several POMDP algorithms that
may be the natural choice for policy genera-
tion (Sondik, 1971; Monahan, 1982; Parr and
Russell, 1995; Cassandra et al., 1997; Kaelbling
et al., 1998; Thrun, 1999). However, solving real
world dialogue scenarios is computationally in-

tractable for full-blown POMDP solvers, as the
complexity is doubly exponential in the number
of states. We therefore will use an algorithm for
finding approximate solutions to POMDP-style
problems and apply it to dialogue management.
This algorithm, the Augmented MDP, was devel-
oped for mobile robot navigation (Roy and Thrun,
1999), and operates by augmenting the state de-
scription with a compression of the current belief
state. By representing the belief state succinctly
with its entropy, belief-space planning can be ap-
proximated without the expected complexity.

In the first section of this paper, we develop the
model of dialogue interaction. This model allows
for a more natural description of dialogue prob-
lems, and in particular allows for intuitive han-
dling of noisy and ambiguous dialogues. Few
existing dialogues can handle ambiguous input,
typically relying on natural language processing
to resolve semantic ambiguities (Aust and Ney,
1998). Secondly, we present a description of an
example problem domain, and finally we present
experimental results comparing the performance
of the POMDP (approximated by the Augmented
MDP) to conventional MDP dialogue strategies.

2 Dialogue Systems and POMDPs

A Partially Observable Markov Decision Process
(POMDP) is a natural way of modelling dialogue
processes, especially when the state of the sys-
tem is viewed as the state of the user. The par-
tial observability capabilities of a POMDP pol-
icy allows the dialogue planner to recover from
noisy or ambiguous utterances in a natural and
autonomous way. At no time does the machine
interpreter have any direct knowledge of the state
of the user, i.e, what the user wants. The machine
interpreter can only infer this state from the user’s
noisy input. The POMDP framework provides a
principled mechanism for modelling uncertainty
about what the user is trying to accomplish.

The POMDP consists of an underlying, unob-
servable Markov Decision Process. The MDP is
specified by:

• a set of states Sε{s1, s2, . . .n}
• a set of actions Aε{a1, a2, . . . , am}
• a set of transition probabilities T (s′, a, s) =
P (s′|s, a)

• a set of rewards R : S ×A 7→ <
• an initial state so

The actions represent the set of responses that
the system can carry out. The transition prob-
abilities form a structure over the set of states,
connecting the states in a directed graph with
arcs between states with non-zero transition prob-
abilities. The rewards define the relative value
of accomplishing certain actions when in certain
states.

The POMDP adds:

• a set of observations Oε{o1, o2, . . . , ol}
• a set of observation probabilities O(o, s, a) =
P (o | s, a)

and replaces

• the initial state so with an initial belief, P (so :
so εS)

• the set of rewards with rewards conditioned on
observations as well: R : S ×A×O 7→ <

The observations consist of a set of keywords
which are extracted from the speech utterances.
The POMDP plans in belief space; each belief
consists of a probability distribution over the set
of states, representing the respective probability
that the user is in each of these states. The ini-
tial belief specified in the model is updated every
time the system receives a new observation from
the user.

The POMDP model, as defined above, first
goes through a planning phase, during which it
finds an optimal strategy, or policy, which de-
scribes an optimal mapping of action a to be-
lief P (s : so εS), for all possible beliefs. The
dialogue manager uses this policy to direct its
behaviour during conversations with users. The
optimal strategy for a POMDP is one that pre-
scribes action selection that maximises the ex-
pected reward. Unfortunately, finding an opti-
mal policy exactly for all but the most trivial
POMDP problems is computationally intractable.
A near-optimal policy can be computed signifi-
cantly faster than an exact one, at the expense of
a slight reduction in performance. This is often
done by imposing restrictions on the policies that
can be selected, or by simplifying the belief state

and solving for a simplified uncertainty represen-
tation.

In the Augmented MDP approach, the POMDP
problem is simplified by noticing that the belief
state of the system tends to have a certain struc-
ture. The uncertainty that the system has is usu-
ally domain-specific and localised. For example,
it may be likely that a household robot system can
confuse TV channels (‘ABC’ for ‘NBC’), but it is
unlikely that the system will confuse a TV chan-
nel request for a request to get coffee. By making
the localised assumption about the uncertainty, it
becomes possible to summarise any given belief
vector by a pair consisting of the most likely state,
and the entropy of the belief state.

p(s) ∼= <argmax
s

p(s);H(p(s))> (1)

H(p(s)) = −
N∑

i=1

p(s) log2 p(s) (2)

The entropy of the belief state approximates a suf-
ficient statistic for the entire belief state 1. Given
this assumption, we can plan a policy for every
possible such {state, entropy} pair, that approx-
imates the POMDP policy for the corresponding
belief p(s).

Figure 1: Florence Nightingale, the prototype nursing home
robot used in these experiments.

3 The Example Domain

The system that was used throughout these ex-
periments is based on a mobile robot, Florence

1Although sufficient statistics are usually moments of
continuous distributions, our experience has shown that the
entropy serves equally well.

Nightingale (Flo), developed as a prototype nurs-
ing home assistant. Flo uses the Sphinx II speech
recognition system (Ravishankar, 1996), and the
Festival speech synthesis system (Black et al.,
1999). Figure 1 shows a picture of the robot.

Since the robot is a nursing home assistant, we
use task domains that are relevant to assisted liv-
ing in a home environment. Table 1 shows a list of
the task domains the user can inquire about (the
time, the patient’s medication schedule, what is
on different TV stations), in addition to a list of
robot motion commands. These abilities have all
been implemented on Flo. The medication sched-
ule is pre-programmed, the information about the
TV schedules is downloaded on request from the
web, and the motion commands correspond to
pre-selected robot navigation sequences.

Time
Medication (Medication 1, Medication 2, ..., Medication n)
TV Schedules for different channels (ABC, NBC, CBS)
Robot Motion Commands (To the kitchen, To the Bedroom)

Table 1: The task domains for Flo.

If we translate these tasks into the framework
that we have described, the decision problem has
13 states, and the state transition graph is given
in Figure 2. The different tasks have varying lev-
els of complexity, from simply saying the time, to
going through a list of medications. For simplic-
ity, only the maximum-likelihood transitions are
shown in Figure 2. Note that this model is hand-
crafted. There is ongoing research into learning
policies automatically using reinforcement learn-
ing (Singh et al., 1999); dialogue models could be
learned in a similar manner. This example model
is simply to illustrate the utility of the POMDP
approach.

There are 20 different actions; 10 actions corre-
spond to different abilities of the robot such as go-
ing to the kitchen, or giving the time. The remain-
ing 10 actions are clarification or confirmation ac-
tions, such as re-confirming the desired TV chan-
nel. There are 16 observations that correspond to
relevant keywords as well as a nonsense observa-
tion. The reward structure gives the most reward
for choosing actions that satisfy the user request.
These actions then lead back to the beginning
state. Most other actions are penalised with an
equivalent negative amount. However, the confir-

mation/clarification actions are penalised lightly
(values close to 0), and the motion commands are
penalised heavily if taken from the wrong state,
to illustrate the difference between an undesirable
action that is merely irritating (i.e., giving an in-
appropriate response) and an action that can be
much more costly (e.g., having the robot leave
the room at the wrong time, or travel to the wrong
destination).

3.1 An Example Dialogue

Table 2 shows an example dialogue obtained by
having an actual user interact with the system on
the robot. The left-most column is the emitted
observation from the speech recognition system.
The operating conditions of the system are fairly
poor, since the microphone is on-board the robot
and subject to background noise as well as being
located some distance from the user. In the fi-
nal two lines of the script, the robot chooses the
correct action after some confirmation questions,
despite the fact that the signal from the speech
recogniser is both very noisy and also ambiguous,
containing cues both for the “say hello” response
and for robot motion to the kitchen.

4 Experimental Results

We compared the performance of the three al-
gorithms (conventional MDP, POMDP approx-
imated by the Augmented MDP, and exact
POMDP) over the example domain. The met-
ric used was to look at the total reward accumu-
lated over the course of an extended test. In or-
der to perform this full test, the observations and
states from the underlying MDP were generated
stochastically from the model and then given to
the policy. The action taken by the policy was re-
turned to the model, and the policy was rewarded
based on the state-action-observation triplet. The
experiments were run for a total of 100 dialogues,
where each dialogue is considered to be a cycle of
observation-action utterances from the start state
request_begun through a sequence of states
and back to the start state. The time was nor-
malised by the length of each dialogue cycle.

4.1 The Restricted State Space Problem

The exact POMDP policy was generated using
the Incremental Improvement algorithm (Cassan-

Want Time

Want TV Info

Want CBS Info

Want ABC Info

Want NBC Info

Start Meds Schedule

Send Robot Send Robot to Kitchen

Send Robot to Bedroom

Continue Meds Done Meds

No Request Request begun

Figure 2: A simplified graph of the basic Markov Decision Process underlying the dialogue manager. Only the maximum-
likelihood transitions are shown.

Observation True State Belief Entropy Action Reward
flo hello request begun 0.406 say hello 100
flo what is like start meds 2.735 ask repeat -100
flo what time is it for will the want time 0.490 say time 100
flo was on abc want tv 1.176 ask which station -1
flo was on abc want abc 0.886 say abc 100
flo what is on nbc want nbc 1.375 confirm channel nbc -1
flo yes want nbc 0.062 say nbc 100
flo go to the that pretty good what send robot 0.864 ask robot where -1
flo that that hello be send robot bedroom 1.839 confirm robot place -1
flo the bedroom any i send robot bedroom 0.194 go to bedroom 100
flo go it eight a hello send robot 1.110 ask robot where -1
flo the kitchen hello send robot kitchen 1.184 go to kitchen 100

Table 2: An example dialogue. Note that the robot chooses the correct action in the final two exchanges, even though the
utterance is both noisy and ambiguous.

dra et al., 1997). The solver was unable to com-
plete a solution for the full state space, so we cre-
ated a much smaller dialogue model, with only 7
states and 2 task domains: time and weather in-
formation.

Figure 3 shows the performance of the three
algorithms, over the course of 100 dialogues.
Notice that the exact POMDP strategy outper-
formed both the conventional MDP and approx-
imate POMDP; it accumulated the most reward,
and did so with the fastest rate of accumulation.
The good performance of the exact POMDP is
not surprising because it is an optimal solution for
this problem, but time to compute this strategy is
high: 729 secs, compared with 1.6 msec for the
MDP and 719 msec for the Augmented MDP.

4.2 The Full State Space Problem

Figure 4 demonstrates the algorithms on the full
dialogue model as given in Figure 2. Because of
the number of states, no exact POMDP solution
could be computed for this problem; the POMDP

0

5000

10000

15000

20000

25000

30000

0 10 20 30 40 50 60 70 80 90 100

R
ew

ar
d

G
ai

ne
d

Number of Dialogs

Reward Gained per Dialog, for Small Decision Problem

Exact POMDP policy
Approx. POMDP

Conventional MDPLarger Slope ==
Better Performance

Figure 3: A comparison of the reward gained over time
for the exact POMDP, POMDP approximated by the Aug-
mented MDP, and the conventional MDP for the 7 state
problem. In this case, the time is measured in dialogues,
or iterations of satisfying user requests.

policy is restricted to the approximate solution.
The POMDP solution clearly outperforms the

conventional MDP strategy, as it more than triples
the total accumulated reward over the lifetime
of the strategies, although at the cost of taking
longer to reach the goal state in each dialogue.

-5000

0

5000

10000

15000

20000

25000

0 10 20 30 40 50 60 70 80 90 100

R
ew

ar
d

G
ai

ne
d

Number of Dialogs

Reward Gained per Dialog, for Full Decision Problem

Approx. POMDP
Conventional MDP

Figure 4: A comparison of the reward gained over time for
the approximate POMDP vs. the conventional MDP for the
13 state problem. Again, the time is measured in number of
actions.

Table 3 breaks down the numbers in more de-
tail. The average reward for the POMDP is 18.6
per action, which is the maximum reward for
most actions, suggesting that the POMDP is tak-
ing the right action about 95% of the time. Fur-
thermore, the average reward per dialogue for the
POMDP is 230 compared to 49.7 for the conven-
tional MDP, which suggests that the conventional
MDP is making a large number of mistakes in
each dialogue.

Finally, the standard deviation for the POMDP
is much narrower, suggesting that this algorithm
is getting its rewards much more consistently than
the conventional MDP.

4.3 Verification of Models on Users

We verified the utility of the POMDP approach
by testing the approximating model on human
users. The user testing of the robot is still pre-
liminary, and therefore the experiment presented
here cannot be considered a rigorous demonstra-
tion. However, Table 4 shows some promising
results. Again, the POMDP policy is the one pro-
vided by the approximating Augmented MDP.

The experiment consisted of having users inter-
act with the mobile robot under a variety of con-
ditions. The users tested both the POMDP and an
implementation of a conventional MDP dialogue
manager. Both planners used exactly the same
model. The users were presented first with one
manager, and then the other, although they were
not told which manager was first and the order
varied from user to user randomly. The user la-
belled each action from the system as “Correct”

(+100 reward), “OK” (-1 reward) or “Wrong” (-
100 reward). The “OK” label was used for re-
sponses by the robot that were questions (i.e., did
not satisfy the user request) but were relevant to
the request, e.g., a confirmation of TV channel
when a TV channel was requested.

The system performed differently for the three
test subjects, compensating for the speech recog-
nition accuracy which varied significantly be-
tween them. In user #2’s case, the POMDP man-
ager took longer to satisfy the requests, but in
general gained more reward per action. This is
because the speech recognition system generally
had lower word-accuracy for this user, either be-
cause the user had unusual speech patterns, or be-
cause the acoustic signal was corrupted by back-
ground noise.

By comparison, user #3’s results show that in
the limit of good sensing, the POMDP policy ap-
proaches the MDP policy. This user had a much
higher recognition rate from the speech recog-
niser, and consequently both the POMDP and
conventional MDP acquire rewards at equivalent
rates, and satisfied requests at similar rates.

5 Conclusion

This paper discusses a novel way to view the
dialogue management problem. The domain is
represented as the partially observable state of
the user, where the observations are speech ut-
terances from the user. The POMDP represen-
tation inverts the traditional notion of state in dia-
logue management, treating the state as unknown,
but inferrable from the sequences of observations
from the user. Our approach allows us to model
observations from the user probabilistically, and
in particular we can compensate appropriately for
more or less reliable observations from the speech
recognition system. In the limit of perfect recog-
nition, we achieve the same performance as a
conventional MDP dialogue policy. However, as
recognition degrades, we can model the effects
of actively gathering information from the user
to offset the loss of information in the utterance
stream.

In the past, POMDPs have not been used for di-
alogue management because of the computational
complexity involved in solving anything but triv-
ial problems. We avoid this problem by using an

POMDP Conventional MDP
Average Reward Per Action 18.6 +/- 57.1 Average Reward Per Action 3.8 +/- 67.2
Average Dialogue Reward 230.7 +/- 77.4 Average Dialogue Reward 49.7 +/- 193.7

Table 3: A comparison of the rewards accumulated for the two algorithms (approximate POMDP and conventional MDP)
using the full model.

POMDP Conventional MDP
User 1 Reward Per Action 52.2 24.8

Errors per request 0.1 +/- 0.09 0.55 +/- 0.44
Time to fill request 1.9 +/- 0.47 2.0 +/- 1.51

User 2 Reward Per Action 36.95 6.19
Errors per request 0.1 +/- 0.09 0.825 +/- 1.56
Time to fill request 2.5 +/- 1.22 1.86 +/- 1.47

User 3 Reward Per Action 49.72 44.95
Errors per request 0.18 +/- 0.15 0.36 +/- 0.37
Time to fill request 1.63 +/- 1.15 1.42 +/- 0.63

Table 4: A comparison of the rewards accumulated for the two algorithms using the full model on real users, with results
given as mean +/- std. dev.

augmented MDP state representation for approxi-
mating the optimal policy, which allows us to find
a solution that quantitatively outperforms the con-
ventional MDP, while dramatically reducing the
time to solution compared to an exact POMDP
algorithm (linear vs. exponential in the number
of states).

We have shown experimentally both in sim-
ulation and in preliminary user testing that the
POMDP solution consistently outperforms the
conventional MDP dialogue manager, as a func-
tion of erroneous actions during the dialogue. We
are able to show with actual users that as the
speech recognition performance varies, the dia-
logue manager is able to compensate appropri-
ately.

While the results of the POMDP approach to
the dialogue system are promising, a number of
improvements are needed. The POMDP is overly
cautious, refusing to commit to a particular course
of action until it is completely certain that it is ap-
propriate. This is reflected in its liberal use of ver-
ification questions. This could be avoided by hav-
ing some non-static reward structure, where infor-
mation gathering becomes increasingly costly as
it progresses.

The policy is extremely sensitive to the param-
eters of the model, which are currently set by

hand. While learning the parameters from scratch
for a full POMDP is probably unnecessary, auto-
matic tuning of the model parameters would def-
initely add to the utility of the model. For exam-
ple, the optimality of a policy is strongly depen-
dent on the design of the reward structure. It fol-
lows that incorporating a learning component that
adapts the reward structure to reflect actual user
satisfaction would likely improve performance.

6 Acknowledgements

The authors would like to thank Tom Mitchell for
his advice and support of this research.

Kevin Lenzo and Mathur Ravishankar made
our use of Sphinx possible, answered requests for
information and made bug fixes willingly. Tony
Cassandra was extremely helpful in distributing
his POMDP code to us, and answering promptly
any questions we had. The assistance of the
Nursebot team is also gratefully acknowledged,
including the members from the School of Nurs-
ing and the Department of Computer Science In-
telligent Systems at the University of Pittsburgh.

This research was supported in part by Le
Fonds pour la Formation de Chercheurs et l’Aide
à la Recherche (Fonds FCAR).

References

Harald Aust and Hermann Ney. 1998. Evaluating di-
alog systems used in the real world. In Proc. IEEE
ICASSP, volume 2, pages 1053–1056.

A. Black, P. Taylor, and R. Caley, 1999. The Festival
Speech Synthesis System, 1.4 edition.

Anthony Cassandra, Michael L. Littman, and Nevin L.
Zhang. 1997. Incremental pruning: A simple, fast,
exact algorithm for partially observable Markov de-
cision processes. In Proc. 13th Ann. Conf. on Un-
certainty in Artificial Intelligence (UAI–97), pages
54–61, San Francisco, CA.

Leslie Pack Kaelbling, Michael L. Littman, and An-
thony R. Cassandra. 1998. Planning and acting in
partially observable stochastic domains. Artificial
Intelligence, 101:99–134.

Esther Levin, Roberto Pieraccini, and Wieland Eckert.
1998. Using Markov decision process for learning
dialogue strategies. In Proc. International Confer-
ence on Acoustics, Speech and Signal Processing
(ICASSP).

George E. Monahan. 1982. A survey of partially ob-
servable Markov decision processes. Management
Science, 28(1):1–16.

Yasuhisa Niimi and Yutaka Kobayashi. 1996. Dialog
control strategy based on the reliability of speech
recognition. In Proc. International Conference on
Spoken Language Processing (ICSLP).

Ronald Parr and Stuart Russell. 1995. Approximating
optimal policies for partially observable stochastic
domains. In Proceedings of the 14th International
Joint Conferences on Artificial Intelligence.

M. Ravishankar. 1996. Efficient Algorithms for
Speech Recognition. Ph.D. thesis, Carnegie Mel-
lon.

Nicholas Roy and Sebastian Thrun. 1999. Coastal
navigation with mobile robots. In Advances in Neu-
ral Processing Systems, volume 12.

Satinder Singh, Michael Kearns, Diane Litman, and
Marilyn Walker. 1999. Reinforcement learning for
spoken dialog systems. In Advances in Neural Pro-
cessing Systems, volume 12.

E. Sondik. 1971. The Optimal Control of Partially
Observable Markov Decision Processes. Ph.D. the-
sis, Stanford University, Stanford, California.

Sebastian Thrun. 1999. Monte Carlo POMDPs. In
S. A. Solla, T. K. Leen, and K. R. Müller, edi-
tors, Advances in Neural Processing Systems, vol-
ume 12.

Marilyn A. Walker, Jeanne C. Fromer, and Shrikanth
Narayanan. 1998. Learning optimal dialogue
strategies: a case study of a spoken dialogue agent
for email. In Proc. ACL/COLING’98.

Sheryl Young. 1990. Use of dialogue, pragmatics and
semantics to enhance speech recognition. Speech
Communication, 9(5-6), Dec.

