1 Handling Topicalization and Relative Clauses

(1) Topicalization
 a. I like fish.
 b. Fish, I like.

(2) Relative Clauses 1
 a. the empty bottle
 b. the bottle [which is empty]
 c. the bottle [that is empty]

(3) Base sentence: Sandy met Joey in Oakland.
 a. The person [who, [t met Joey in Oakland]]
 b. The person [who, [Sandy met t, in Oakland]]
 c. The place [where, [Sandy met Joey t,]]

Movement: a way to create predicates from sentences
- a way to create λ-abstractions.

2 Handling Traces

What do traces refer to?
An intuition: the ‘head’ of the NP

Another structure:
3 The Notion of ‘Variable’

Traces are interpreted as variables.

Variables denote individuals, but only with respect to an assignment.

(4) If α is a trace, then, for any assignment a, $[\alpha]^a = a$.

• Modifying semantic composition rules to handle variable assignments.

Interpretation independent of variable assignments:

(5) For any tree α, α is in the domain of $] _ _ _ _ _$ iff for all assignments a and b, $[\alpha]^a = [\beta]^b$.

If α is in the domain of $] _ _ _ _ _$, then for all assignments a, $[\alpha]^a = [\alpha]^a$.

4 Predicate Abstraction

(6) **Predicate Abstraction:**

If α is a branching node, whose daughters are a relative pronoun and β then $[\alpha] = \lambda x \in D. [\beta]^x$.

• syncategorematicity

denotations under assignments ≠ denotations applied to assignments

(7) a. $[\text{whom John likes}]_\text{Frank}\neq [\text{whom John likes}]_\text{Tim}$

b. $[\text{sleeps}]_\text{Ann}\neq [\text{sleeps}]_\text{Ann}$

c. $[\text{John likes}]_x\neq [\text{John likes}]_x$

Proof strategy: top-down or bottom-up
5 **such that-relatives**

(8)
 a. the book such that John bought it.
 b. the book which John bought.

Additional flexibility:

(9)
 a. the book such that John denied the claim that Mona wrote it
 b. *the book that John denied the claim that Mona wrote.

(10) **Pronoun Rule**
 If α is a pronoun, then for any assignment $\alpha \in D$, $[\alpha]^\alpha = \alpha$.

(11) **Predicate Abstraction** (Revised):
 If α is a branching node, with β and γ as daughters, where β is a relative pronoun or such, then $[\alpha] = \lambda x \in D. [\gamma]^x$.

(12) **Vacuous Binding**
 a. *the man such that Mary is famous.
 b. *the man who Mary is famous.

6 **Nested Relatives**

(13) the man such that Mary reviewed the book which he wrote

Problem: illegal capture of he by $which$

Solution: co-indexing and assignment functions

(14) the man such, that Mary reviewed the book which he wrote

(15) *A variable assignment* is a partial function from N into D.

(16) **Traces and Pronoun Rule**
 If α is a pronoun or a trace, α is an assignment function and $i \in \text{dom}(\alpha)$, then $[\alpha]^i = \alpha(i)$.

Handling pronouns:

(17) She$_i$ likes him$_i$.

5 6
7 Assignment Functions

Modifying assignment functions:

(18) Let α be an assignment function, $i \in N$, and $x \in D$.

$$\alpha^{x,i} = (\alpha \text{ extended/modified to assign } x \text{ to index } i.)$$

(i) $\text{dom}(\alpha^{x,i}) = \text{dom}(\alpha) \cup \{i\}$

(extend the domain of α to cover index i)

(ii) $\alpha^{x,i}(i) = x$.

(assign index i to x)

(iii) for every $j \in \text{dom}(\alpha^{x,i})$ such that $j \neq i$: $\alpha^{x,i}(j) = \alpha(j)$

(leave everything else untouched)

(19) **Predicate Abstraction:**

If α is a branching node, with β, and γ as daughters, where β is a relative pronoun or such, and $i \in N$, then for any variable assignments α, then

$$[\alpha]^n = \lambda x \in D_{\gamma}\beta[\alpha]^{n/x}.$$