1 Problems from last week

1. Let \(p \) be a prime number. Prove that \((p-1)! \equiv -1 \pmod{p}\).

2. If \(a \) and \(b \) are positive integers with \(a \equiv b \pmod{n} \), show that \(a^n \equiv b^n \pmod{n^2} \).

3. Prove that for all positive integers \(a > 1 \) and \(n \), \(n \) is a divisor of \(\varphi(a^n - 1) \).

2 Divisibility

The divisibility relation \(| \), defined on the integers, is given by \(a | b \) if \(b = ka \) for some integer \(k \). Before we try to solve any difficult number theory problem, it is important to become acquainted with some of the basic properties of divisibility:

- On the positive integers, the divisibility relation is reflexive \((a | a)\), antisymmetric \((a | b \text{ and } b | a \implies a = b)\), and transitive \((a | b \text{ and } b | c \implies a | c)\).
- If \(a | b \) and \(a | c \), \(a | ab + \beta c \) for any \(\alpha, \beta \).
- If \(a \) and \(b \) are positive and \(a | b \), then \(a \leq b \).

These are all trivial properties, and being able to apply them effortlessly will greatly improve your ability to solve any problem relating to divisibility.

3 Factoring

Factoring is pretty useful in divisibility problems. If \(P(n) \) can be factored into \(Q(n)R(n) \) (where \(Q, R \) are polynomials with integer coefficients), then \(Q(n) | P(n) \) for all \(n \). In particular, \(a - 1 | a^n - 1 \) for all positive integers \(a, n \) with \(a \neq 1 \), and \(a + 1 | a^n + 1 \) for all positive integers \(a, n \) with \(a \neq 1 \) and \(n \) odd.

4 Greatest Common Divisors

Let \(a, b \) be integers. Then the greatest common divisor of \(a \) and \(b \), written as \(\gcd(a, b) \), is the largest integer which is a divisor of both \(a \) and \(b \). Bzout’s identity states that for all \(a, b \), there are integers \(\alpha, \beta \) with \(\alpha a + \beta b = \gcd(a, b) \). (Note, in particular, that an integer can be written in the form \(\alpha a + \beta b \) for some integers \(\alpha, \beta \) iff it is a multiple of \(\gcd(a, b) \).) Additionally, \(\gcd(a, b) = a \) iff \(a | b \).

5 A Criterion

Let \(v_p(n) \), where \(p \) is a prime, be the \(p \)-adic valuation of \(n \); that is, the exponent of \(p \) in the prime factorization of \(n \). Then, \(m | n \) if and only if \(v_p(m) \leq v_p(n) \) for all primes \(p \). Additionally, \(v_p(mn) = v_p(m) + v_p(n) \) for all \(p, m, n \) with \(p \) prime.
6 Problems

1. Prove that \(v_p(\gcd(m, n)) = \min\{v_p(m), v_p(n)\} \) for all \(m, n, p \) with \(p \) prime.

2. Prove that if \(a|m \) and \(a|n \), then \(a|\gcd(m, n) \).

3. Prove that if \(S \) is a nonempty set of integers such that

 - for any \(a \) in \(S \), \(-a\) is in \(S \)
 - for any \(a, b \) (not necessarily distinct) in \(S \), \(a + b \) is in \(S \)

 then there is some integer \(n \) such that \(S \) is the set of all multiples of \(n \).

4. Let \(n \) have the prime factorization \(p_1^{e_1}p_2^{e_2} \cdots p_n^{e_n} \). How many divisors does \(n \) have? What is their sum?

5. An multiplicative number-theoretic function \(f \) is a function taking positive integers to positive integers which satisfies \(f(mn) = f(m)f(n) \) for all \(m, n \) with \(\gcd(m, n) = 1 \). Prove that if \(f(n) \) is a multiplicative function, then the function \(g(n) = \sum_{d|n} f(d) \) is multiplicative.

7 More Problems

Modular arithmetic, in addition to the properties of divisibility outlined in this handout, will be useful in solving these problems.

6. Let \(n \) be a positive integer. Prove that the fraction \(\frac{21n + 4}{14n + 3} \) cannot be reduced.

7. Find the largest positive integer \(n \) such that \(n^3 + 100 \) is divisible by \(n + 10 \).

8. Let \(a \) and \(b \) be relatively prime. Prove that \(ab - a - b \) is the largest integer which cannot be expressed as \(ax + by \) where \(x \) and \(y \) are nonnegative integers.

9. Let \(n \) be a positive integer, and let \(a_1, a_2, \ldots, a_k \) be positive integers, all less than \(n \), such that \(\text{lcm}(a_i, a_j) > m \) for all distinct \(i, j \). Prove that

\[
\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_k} < 2.
\]

10. Prove that for every positive integer \(n \geq 2 \), there is a set \(S \) of \(n \) integers such that \((a - b)^2|ab\) for all distinct \(a, b \) in \(S \).