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Abstract

Aircraft conict detection and resolution is currently attracting the interest of many

air transportation service providers and is concerned with the following question: Given

a set of airborne aircraft and their intended trajectories, what control strategy should

be followed by the pilots and the air tra�c service provider to prevent the aircraft

from coming too close to each other? This paper addresses this problem by present-

ing a distributed air-ground architecture, whereby each aircraft proposes its desired

heading while a centralized air tra�c control architecture resolves any conict arising

between the aircraft involved in the conict, while minimizing the deviation between

desired and conict-free heading for each aircraft. The resolution architecture relies

on a combination of convex programming and randomized searches: It is shown that

a version of the planar, multi-aircraft conict resolution problem that accounts for all

possible crossing patterns among aircraft might be recast as a nonconvex, quadrati-

cally constrained quadratic program. For this type of problem, there exist e�cient

numerical relaxations, based on semide�nite programming, that provide lower bounds

on the best achievable objective. These relaxations also lead to a random search tech-

nique to compute feasible, locally optimal and conict-free strategies. This approach

is demonstrated on numerical examples and discussed.

�Research Assistant, Laboratory for Information and Decision Systems, Department of Aeronautics and

Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139.
yResearch Assistant, Laboratory for Information and Decision Systems, Department of Aeronautics and

Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139.
zPost-doctoral Associate, Department of Mechanical Engineering, Massachusetts institute of Technology,

Cambridge MA 02139
xAssociate Professor, Senior Member AIAA, Laboratory for Information and Decision Systems, Interna-

tional Center for Air Transportation, Department of Aeronautics and Astronautics, Massachusetts Institute

of Technology, Cambridge MA 02139. Author to whom all correspondence should be sent. feron@mit.edu.

Paper submitted to the AIAA J. Guidance, Control and Dynamics. Also appeared as a Technical Report,

International Center for Air Transportation, MIT, MIT-ICAT 99-5.

1



1 Introduction

The air transportation system is currently the object of extensive research, following the

sustained growth of air tra�c over the past many years. The current enroute air tra�c

control system consists of the following elements:

� A geographical network whose nodes are navigation beacons (VHF Omnidirectional

Range (VOR) and Distance Measuring Equipment systems (DME)), and whose links

are air routes. The aircraft are allowed to y only along these routes (with possible

exceptions at those altitudes where air tra�c density is very low). Flying on segments

connecting two navigation beacons makes the problem of aircraft navigation and auto-

mated guidance particularly easy, although recent accidents seem to have been caused

by apparent ambiguities about the identity of navigation beacons.

� Approximately 1500 enroute air tra�c controllers who regulate the aircraft ow across

this network and make sure no hazardous situation develops, whereby two aircraft

might collide with each other (aircraft conicts). The network structure of the aircraft

routing system allows to set a priori guarantees on aircraft conict geometries and

their location during nominal operations: Conicts are usually located at the nodes

of the network. Knowing the conict location a priori enables the decomposition

of the airspace into sectors, managed by individual air tra�c controllers, and whose

boundaries are located away from the network nodes and therefore away from the most

common conict locations.

Many decades of working experience have demonstrated that this network-based archi-

tecture architecture is safe. However, it su�ers from strong perceived drawbacks, such as

systematic indirect routing between origin and destination, and in general a perceived lack of

freedom for the aircraft pilots. The advent of a new generation of Global Navigation Satellite

System (GNSS), in particular GPS, has removed in principle the limitations of the ground-

based navigation infrastructure. In particular, it is now very easy to obtain precise aircraft
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position anywhere over the United States and not only on a pre-determined set of routes

(although this idea, also named Area Navigation, has been demonstrated to be feasible for

many years,1 using the conventional navigation infrastructure, at the expense of new aircraft

computational equipment). As a consequence, operational concepts such as "Free Flight"2

have been proposed by airlines and the Federal Aviation Administration (FAA) to remove

the routing constraints imposed by the conventional, �xed-route system. Under Free Flight,

each aircraft would be able to optimize its trajectory according to several factors such as per-

ceived safety, weather, direct operating costs and coordination with other ights.3 However,

the safety of a new concept of operations that sharply departs from the current, network-

based architecture remains to be proved. In particular, the lack of predictability of conict

location under Free Flight seems to increase the apparent complexity of conict detection

and resolution for the human operator. This issue is currently under study. In addition, the

set of standards over which operational concepts are evaluated has evolved from empirical

evaluation decades ago to a sophisticated and very di�cult certi�cation process, which makes

proving the safety of any new concept of operations very challenging to implement. Thus,

Free Flight o�ers a wide array of new challenges to the research community.

This paper considers the problem of resolving conicts arising between airborne aircraft,

while accounting for aircraft preferences. Conicts involving several (more than two) aircraft

will be considered for the following reasons: First, conicts involving a pair of aircraft have

been the object of numerous studies already.4{8 Second, conicts involving more than two

aircraft have been shown to occur in high-density sectors:9,10 While more than two aircraft

are rarely directly in conict with each other, indirect conict is a distinct possibility, whereby

the solution to the conict involving one pair of aircraft generates a secondary conict with

a third, neighboring aircraft. Several other approaches consider conicts involving multiple

aircraft include.11{13 A comprehensive review has recently appeared.14

The current air tra�c control operations are based on conict avoidance rules and con-

troller experience. Rule-based approaches might work for the case involving two aircraft,5

but may require a prohibitive number of rules to handle all situations arising when more than
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two aircraft are involved. The present paper concentrates on optimization-based approaches,

which avoid the explicit elicitation of rules. This computational approach follows the spirit

of previous authors: Niedringhaus15 proposes linear programming as a convenient modeling

framework to formulate and solve e�ciently conicts arising among several aircraft. Du-

rand, Alliot and Chansou9 consider the same problem and propose to use genetic algorithms

and linear programming to determine optimal maneuvers to solve conicts arising among

multiple aircraft. While both approaches emphasize (but are not limited to) planar conict

problems, the latter approach di�ers from the former in that it also optimizes the conict

resolution maneuver over possible crossing patterns, whereas the former approach requires a

priori knowledge of the crossing pattern among aircraft.

In this paper, we will present an approach to the problem that is both computationally ef-

�cient and solidly rooted in recent advances in convex optimization to solve highly nonconvex,

possibly combinatorial optimization problems:16{19 We formulate the planar conict resolu-

tion problem as a nonconvex, quadratically constrained quadratic program. This problem is

then approximated by a convex, semide�nite program, for which very e�cient solutions exist.

The optimal solution to this convex program is then used to randomly generate feasible and

locally optimal conict resolution maneuvers. Based on this algorithm, we then propose a

distributed conict management architecture whereby individual aircraft are able to express

their preferences at regular time intervals and are always given conict-free, straight paths.

It is shown that the ability to optimize conict resolution over all crossing patterns not only

leads to better solutions, but also allows us to identify crossing pattern rules that may be

used as rules later on.

The paper is organized as follows: First, a simple model of air tra�c is introduced; the

basic conict avoidance problem is then formulated using that model and an initial control

architecture is proposed. Second, the combinatorial aspects of the conict avoidance problem

are discussed. The problem is formulated as a nonconvex, quadratically constrained program;

an approximate method to solve this program is introduced, based on a combination of convex

programming with randomization schemes. Last, numerical examples and comparisons are
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presented and discussed: A symmetric conict involving eight aircraft is �rst introduced,

and it is shown that the best solution to that problem is not symmetrical (roundabout-type

conict resolution pattern). Then a conict involving two streams of aircraft is discussed

and solved. The resulting conict resolution strategies are compared with those proposed in

the existing literature.

2 Air tra�c models and problem formulation

2.1 General considerations

Like many problems of automatic control and operations research, the most challenging issue

when dealing with problems in air tra�c control appears during the modeling phase,20 that

is, the boundaries of the system under study are not always very well identi�ed.

In this paper, we are interested in solving conicts arising among several aircraft. For

that purpose, we assume that a �nite set of aircraft has been isolated from the rest of the air

transportation system. Several criteria can be used to detect those aircraft simultaneously

involved in the same conict.4,7,9

Although designing and analyzing systems for aircraft conict detection and resolution

needs to account for the three dimensions, this paper will investigate air tra�c evolving in

two dimensions (planar conict resolution): All aircraft are assumed to evolve in the plane.

This paper can be extended to three dimensions, at the expense of more notations. However,

while vertical maneuvers appear to be most e�cient for tactical conict resolution (such as

in the case of TCAS (Tra�c Alert and Collision Avoidance System)), horizontal maneuvers

might be more adapted for the "strategic" conict resolution context considered in this paper,

because they induce less passenger discomfort, do not require ight level changes and thus

may not perturb the vertically strati�ed tra�c structure as it exists today in the enroute

airspace.

Following a model �rst introduced and justi�ed by Andrews,21 we assume the state of

each aircraft to be described by its position and its speed. For a given conictual situation,
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conict resolution maneuvers consist of simultaneous and instantaneous speed and bearing

changes for all aircraft involved in the conict. In the proposed architecture, the conict

resolution is centralized. However, the pilots are free to indicate their desired headings.

Thus the overall conict resolution is a mix of centralized decision making structure for

safety and decentralized preferences for e�ciency. Roughly speaking, this architecture is the

one currently adopted in Collaborative Decision Making structures in air transportation.

2.2 Notations

Let n be the number of aircraft involved in one conict and let each aircraft be identi�ed

by its index i 2 f1; : : : ; ng. Denote the initial position of aircraft i by pi;0 and its initial

velocity by vi;0. Denote its position at any time t by pi(t) (or the shorthand pi). Denote

the commanded velocity changes by ui. We will use a double-index notation for aircraft

relative positions and velocities. Thus, the relative position pij is de�ned by pij = pi � pj;

the relative speed vij is de�ned as vij = vi � vj and the relative velocity changes will be

noted uij = ui � uj.

2.3 Collision avoidance constraints

Conict resolution constraints can be expressed in many ways. While expressing collision

avoidance constraints in terms of a given minimum miss distance appears to be the most at-

tractive option from a geometrical standpoint, it may be better substituted for a time-based

separation criterion, especially when considering tactical conict resolution. The present

context is concerned with strategic conict resolution. In this case, a distance-based crite-

rion is acceptable, because the main factor for this separation requirement is radar resolution.

Assume then (i) a minimum safety distance ds, (ii) no initial conict between aircraft, and

(iii) that aircraft follow straight trajectories at constant speed. The conict avoidance con-

straint is then shown graphically in Fig. 1 for a given aircraft pair (i; j) and can be written

as

pT0ij(v0ij + uij) + jjv0ij + uijjj

q
jjp0ijjj2 � d2s � 0; (1)
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for each aircraft pair (i; j), where jj � jj is the Euclidean norm. As may be seen from Fig. 1,

the conict avoidance condition may be seen as the union of the half planes de�ned by the

two linear constraints

(v0ij + uij)
Tn1ij � 0 (2)

and

(v0ij + uij)
Tn2ij � 0; (3)

where n1ij and n2ij are shown in Fig. 1.

2.4 Maneuvering constraints

The maneuvering constraints of an enroute aircraft are signi�cant. In particular, while

enroute at high altitude, the speed range of an aircraft is narrow. Aircraft bearing is usually

not limited over the time scales under consideration. However, passenger comfort as well

as trajectory smoothness preference might result in constraints on the bearing changes as

well. In this paper, we will follow the formulation proposed by Niedringhaus,15 where speed

changes are constrained to stay within a given set around the current aircraft speed: The

set of possible changes is the convex set of possible speed commands shown in Fig. 1 (right),

and is mathematically described by the following quadratic and linear constraints:

jjv0i + uijj � vmax; (v0i + ui)
Tv0i=jjv0ijj � vmin: (4)

Usually, (vmax�vmin)=vmax � 0:1 for most commercial jet aircraft at high altitudes. At lower

speeds, the aircraft encounters stall bu�eting. At higher speeds, the aircraft encounters

Mach bu�eting. At lower altitudes, the speed range can increase considerably.

2.5 Cost function

The cost function is chosen so as to minimize the speed deviations from the desired speed

expressed by each aircraft. It is chosen to be a quadratic function of the speed deviations

J =
nX

i=1

jjui � ui;djj
2; (5)
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which is a measure of the total \energy" necessary for conict avoidance. In this context, ui;d

is the desired speed deviation. Choosing quadratic objective functions is a relatively standard

practice,22 but may be replaced by other convex objective functions.15 The cost function (5)

may incorporate weighting terms to emphasize lateral speed changes over longitudinal speed

changes, for example.

2.6 Target control architecture for conict avoidance

The proposed control architecture will comprise two loops, as shown in Fig. 2. The �rst

loop manages the conict detection and resolution and provides control commands so that

straight aircraft trajectories are conict-free over a given time horizon (in the case of the

aircraft clusters considered in this paper, this horizon is1). In general, it is considered that

20 minutes is an \optimal" horizon that trades o� between deviation cost and uncertainty of

conict prediction.7,9 The second guidance loop provides speed vector preferences at a higher

rate than the chosen conict-free horizon (for example �ve minutes). While the operation

of the �rst loop is done by a centralized algorithm, the second loop may be centralized or

decentralized. In the latter case, each aircraft chooses its preferred course, such as in the

case of Free Flight;3 the pilot may then express route preference according to other safety

or economic criteria, such as weather or expected arrival time (ETA) constraints.

Compared with other strategies, this strategy o�ers the following characteristics: First,

the centralized, conict avoidance loop only computes conict-free, straight trajectories.

While this approach is obviously motivated �rst by computational requirements (as described

later), it also o�ers an attractive option to pilots and controllers alike. Indeed, segmented

trajectories require signi�cant attention on the part of the pilot and the controller if they are

not totally automated, and are therefore subject to pilot lack of attention and possibly pilot

maneuvering delays.23 Thus, while many existing approaches propose segmented, conict

free trajectories with little or no guarantees about what happens if waypoints are missed, the

proposed approach always generates straight, conict-free trajectories over a time horizon

longer than that necessary, and generates segmented trajectories only through updates from
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individual preferences.

3 Conict Resolution Loop: Problem properties and

formulation as a quadratically constrained, quadratic

program

3.1 Problem properties

The main feature of the conict resolution problem presented in the previous paragraphs is

its inherent combinatoriality. The complexity of this problem seems to grow exponentially

with the number of aircraft involved in the conict. This may be seen using the following

intuitive argument: The number of aircraft pairs involved in the solution to one conict

involving n aircraft is n(n � 1)=2. For each aircraft pair the conict resolution algorithm

needs to decide whether each crossing pattern corresponding to each aircraft pair should be

"clockwise" (the vector pij rotates clockwise) or "counter-clockwise" (the vector pij rotates

counter-clockwise). Once the crossing pattern is chosen, then the conict resolution problem

becomes a convex, quadratic optimization problem (other problem formulations have led

to alternative convex optimization problems, such as linear programs9,15). Solving convex,

quadratic programs is particularly simple and their theoretical computational complexity

has recently been shown to be polynomial.16

Thus, much of the complexity in the proposed conict resolution formulation is to �nd an

"optimum" crossing pattern. In this section, we propose to investigate and demonstrate via

numerical examples that quadratically constrained quadratic programming and its semidef-

inite relaxation can be used to achieve that goal.

3.2 Nonconvex, quadratically constrained, quadratic programs

The general format for a non-convex, quadratically constrained quadratic optimization prob-

lem is

Minimize zTP0z + 2qT0 z + r0
subject to zTPiz + 2qTi z + ri � 0; i 2 I;

(6)
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where I is a given index set. In this problem, the objective function and the constraints are

quadratic forms. The signature of these quadratic forms is a priori arbitrary. Although this

problem can be shown to be very di�cult to solve in general (it includes all binary integer

problems as special cases24), it has been the focus of recent research attention, because

there exist powerful methods, based on convex optimization, to obtain approximate (but

often very good) solutions, along with very good lower bounds to it. These relaxations to

the Problem (6) can be given a number of interpretations,17,19,24,25 including the following:18

Instead of looking for a speci�c decision variable z that solves Problem (6) optimally, consider

instead the problem of looking for a random variable z with given �rst order moment (denoted

ẑ) and second-order moment denoted Z (that is, E zzT = Z), such that the optimization

problem (6) is solved on average over that distribution. It is easy to see that the relaxed

problem can then be formulated as

Minimize TrP0Z + 2qT0 ẑ + r0
subject to TrPiZ + 2qTi ẑ + ri � 0; i 2 I;"

Z ẑ

ẑT 1

#
� 0:

(7)

The last constraint is added to ensure that the covariance matrix Z� ẑẑT is positive semidef-

inite. In addition to providing lower bounds (which may be interpreted as limits of perfor-

mance to the original, non-convex problem), the random distribution de�ned by ẑ and Z

may also be used to obtain good feasible solutions to the original problem by searching

randomly across such a distribution, thus proposing one form of e�cient randomized algo-

rithm.26 If Z = ẑẑT , then the distribution in fact consists of a unique point, and in this case

this point is then the optimal solution to Problem (6) as well. Cases where this is known to

occur systematically include the case when I contains only one element (presence of a single

quadratic constraint27). Nontrivial cases where this relaxation has been known to work very

well include the work by Goemans and Williamson17 and the work by Karger and Motwani.28

In both cases, the semide�nite relaxation was followed by an algorithm examining several

random draws from the distribution de�ned by (ẑ; Z). An interesting feature of the proposed

relaxation is that, while it appears to approximate the original, non-convex problem very
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well, it also may be solved in polynomial time, thus yielding interesting perspectives for

real-time applications.19,29

Previous applications of this approach include the solution to a variety of problems ap-

pearing in robust control systems analysis,25,30 analysis via Linear Matrix Inequalities,19

actuator placement problems,31 network optimization problems, semiconductor manufactur-

ing and quantum physics, as well as communications.32 It includes in particular all linear

integer programming problems as special cases.

The problem that remains is then to �nd what strategies should be chosen to eventually

�nd good, feasible solutions to the problem. The latter issue has been dealt with in many

di�erent fashions in the past: It often happens that no randomized solution is feasible,

yet custom-designed algorithms have been able to retrieve very good solutions17 from these

initial random solutions. One strategy is the following: Considering the Problem (6), one

can build a conservative approximation of it by keeping all convex constraints unchanged

and linearizing the non-convex constraints in the vicinity of the random sample, a standard

practice in nonlinear optimization theory and practice.16,24

3.3 Formulation of the conict avoidance problem as a quadrati-

cally constrained, quadratic program and solution procedure

Much of the research involved in the solution to the planar conict resolution problem hinges

on the ability to formulate usable quadratic constraints (there is a thorough treatment of this

issue in the case of linear integer programming33). For the current problem, all constraints

are already expressed directly as (convex) linear or quadratic constraints on the aircraft's

speed vectors, except for the conict avoidance constraint (1). This is done most easily by

the following proposition:

Proposition 3.1 The constraint (1) is equivalent to the set of quadratic constraints

pT0ij(v0ij + uij) + wij

q
jjp0ijjj2 � d2s � 0; jjv0ijjj

2
� w2

ij; (8)

where wij � 0 are new slack variables.
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This proposition is trivial to prove.

It is worthy to note that constraints like (1) are traditionally transformed into mixed

integer linear constraints using standard methods.34 The proposed method is an attractive

and e�cient alternative to these traditional approaches.

It is readily seen that the above constraints and cost function form a non-convex quadratic

program of the form (6), with z := [u1; u2 : : : ; un; w12; : : : ; w(n�1);n]
T .

If the optimal solution Z to the semi-de�nite relaxation has unit rank, then ẑ is the so-

lution to the original problem. Otherwise, the following randomization procedure is applied:

Considering the Gaussian distribution with mean ẑ and covariance Z � ẑẑT , pick samples

~z according to that distribution. The "linearization" procedure is then to pick the crossing

pattern for each aircraft pair by computing

C = sign(p0ij � (v0ij + ~uij));

where ~uij = ~ui� ~uj is computed from ~z and � is the usual outer product between two planar

vectors. The crossing pattern is then chosen to be counter-clockwise if C = 1 (the linear

constraint (2) is chosen) and clockwise if C = �1 (the linear constraint (3) is chosen). By

convention, we will assume that the crossing pattern is clockwise in the very unlikely case

when C = 0.

Once the crossing pattern is chosen, the corresponding convex optimization problem may

be solved using using recently introduced optimization methods16 or otherwise.

4 Numerical examples

The proposed approach is now illustrated on a number of numerical experiments. First, a

"Free-ight"-like scenario is presented and solved using the proposed numerical approach.

Then, an irrealistic but geometrically elegant symmetric conict involving eight aircraft is

considered. It is shown that the optimal solution to this problem is not a symmetric "turn

around". Then, an example where two aircraft streams y "miles-in-trail" is considered. It

is shown that the proposed approach works better than approaches that do not optimize
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over crossing patterns. Branch-and-bound tests reveal the proposed procedure produces ex-

cellent solutions (close to optimal) for these two examples. In addition, it is shown how

the optimization algorithm automatically generates conict avoidance maneuvers by "pla-

tooning" aircraft together. The optimization software SDPPACK35 was used for the numerical

experiments.

4.1 Random encounter pattern

A set of 10 aircraft ying at a nominal, desired speed of 200 knots was positioned and

oriented at random, as shown in Figure 3. This initial con�guration generates 8 conicts

among those aircraft. The conicts need to be solved simultaneously due to the generally

convergent nature of the aircraft ow. In this example, only one maneuver is issued to all

aircraft. The maximum speed for all aircraft is vmax = 220 knots and the minimum speed

is vmin = 180 knots. The minimum miss distance between aircraft was chosen to be ds = 5

Nm in this case. In Figure 3 and later, the circles surrounding the aircraft have a diameter

the size of the minimum miss distance between aircraft.

The combination of convex programming and randomized search led to a set of solutions

whose best element scored a cost of 663 knt2. The semide�nite programming relaxation

yielded a lower bound on the best possible cost of 603 knt2. Thus, the gap between the

best obtained cost and the best possible cost is less than 10% in this case. To get an

idea of the performance of the proposed algorithm in this case, we ran a simulation in

which 500 random solutions were generated using the proposed approach and examined:

The randomized algorithm found a feasible solution for 100% of all the generated samples.

A normalized histogram of the performance obtained for each random trial is shown in Fig. 3.

It shows that one out of three random trials yields the best found performance.

4.2 Symmetric encounter pattern

A set of 8 aircraft is shown in Fig. 4. These aircraft converge to the same point at the

same speed (200 knots), and it is desired to �nd optimal aircraft deviations so that conicts
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are avoided. In this example as in the previous one, only one resolution command is issued

to examine the performance of the proposed optimization algorithm. The maximum speed

vmax is 220 knots and the minimum speed vmin is 180 knots. An intuitive optimal solution

would follow a \roundabout" pattern,13 whereby every aircraft deviates its course by the

same angle. The randomization algorithm found that a better solution exists, which is not

symmetric and rather counter-intuitive: This solution requires two airplanes to y straight

through the center (one accelerates, the other decelerates), and the others to deviate from

their original course following a roundabout pattern, as shown in Fig. 4. In this �gure,

the circles surrounding the aircraft have a diameter the size of the minimum miss distance

between aircraft (5 Nm).

The best cost found is 3801.7 knt2. The optimal cost provided by the semide�nite re-

laxation (and thus a lower bound on the best achievable cost) is 1100 knt2. Thus there is a

signi�cant di�erence between upper and lower bounds in this case. However, the best round-

about solution corresponds to a cost of 5486 knt2 and thus the best found solution represents

a 40% improvement compared with the roundabout solution. Any rotation or ip to that

solution remains valid as well. Again, we ran a simulation in which a large number of trial

solutions were generated and examined: The randomized algorithm found a feasible solution

for about 68% of all the generated samples, and the distribution of solutions according to

performance is very skewed towards the best cost found, as may be seen in Fig. 4. Thus, it

usually takes only a few random trials to generate a good solution. We also compared the

performance of the proposed algorithm with that of a purely random scheme to generate

crossing patterns : Less than 0.5% of the generated crossing patterns yielded feasible solu-

tions and the generated solutions were always considerably worse in terms of performance

than those generated via the proposed approach.

This algorithm did not provide a convincing proof that the solutions are indeed optimal or

close to optimal, because the gap between upper and lower bounds is large. To obtain more

information about the optimality of the proposed solution, a straightforward branch-and-

bound algorithm was implemented, whereby branching consists of choosing crossing patterns
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for each aircraft pair in ascending order (the aircraft pairs are assumed to have been organized

in an ordered list) and bounding consists of applying the proposed semide�nite relaxation

algorithm (which provides lower bounds) and the randomization procedure (which provides

upper bounds) to the non-branched crossing patterns for the remaining aircraft pairs. Details

about branch-and-bound algorithms may be found in most optimization textbooks.34 While

considerably more time consuming, branch-and-bound procedures are global optimization

methods. In this case the branch-and-bound procedure showed that the global optimum

value for this problem is 3673 knt2, thus within 4% of the value found with the initial

relaxation approach.

4.3 Crossing aircraft streams

This example illustrates the possible e�ciency of the proposed algorithm to handle the

intersection between two aircraft streams. Indeed, a "classical" solution to that problem

would rely on �xed aircraft routing and aircraft staging at the intersection, which would

result in larger than necessary separation between aircraft in the same stream. This example

was inspired from the article by Niedringhaus.15 In that article, the author used a linear

programming approach to solve this problem, and used a �xed and pre-determined crossing

pattern. The example below shows that some improvements and insight may be obtained

by considering the option to also optimize over the crossing patterns as well. Considering

�rst the case when the aircraft are allowed to perform one and only one simultaneous and

instantaneous turn, this section then considers the case when the aircraft are allowed to

perform many turns, to recover their initial course.

4.3.1 Single turn pattern

Two strings of four aircraft spaced 25 miles-in-trail are converging towards each other as

shown in Fig. 5. The aircraft's speeds are 200 knots, vmin = 180 knots and vmax = 220

knots. The minimum miss distance was chosen arbitrarily to be 20 Nm. As a result, it is

impossible to resolve conicts arising between these two aircraft streams by using staging
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without path deviations: The distance between two consecutive aircraft in one stream does

not allow the controller to insert an aircraft from the other stream between them without

creating a conict. The results of the proposed approach are illustrated in Fig 5. Again, the

outcome of the semide�nite relaxation generates a probability distribution which is skewed

to the left. About 80% of the randomly generated solutions are feasible, whereas a pure

randomization algorithm did generate only 1% feasible crossing patterns. The best feasible

solution found generated a cost of 4968.3 knt2, whereas the semide�nite relaxation provided

a lower bound value of 3888.6 knt2. A subsequent, costlier branch-and-bound optimization

revealed that the optimum value for this problem is 4959 knt2. Thus the best solution value

found with the proposed procedure is within less than 0.2% of optimality. Compared with

the published solutions,15 the proposed optimization procedure results in smaller trajectory

deviations, because it optimizes over the crossing patterns as well.

4.3.2 Multiple turn simulation

Two strings of �ve aircraft each are converging towards each other. In this section, the

proposed resolution procedure was used every �ve minutes to update the aircraft trajectories

and possibly allow the aircraft to recover their nominal ight paths. Thus, every �ve minutes,

a new, conict-free rectilinear trajectory is generated according to the scheme shown in

Figure 2, and this trajectory is conict free for the aircraft set under consideration. The

guidance law that drives the preference of each aircraft is a simple proportional guidance

law, whereby the desired speed vector is proportional to the lateral deviation of the aircraft

from its intended (rectilinear) course. In this case, the guidance law is chosen so that, if an

aircraft is granted its desired speed vector, it returns to its desired course within one time

step (5 minutes). The characteristics and maneuverability of all aircraft are the same as in

the previous examples.

Fig. 6 shows the trajectories followed by the ten aircraft, along with four snapshots

taken at t = 0 min, 27 min, 54 min, and 80 min. In this case the chosen strategy is

platooning: Because the spacing between aircraft does not allow the two aircraft streams
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to cross by staging airrcaft without generating conicts, the proposed algorithm groups

aircraft in pairs. Interestingly enough, platooning has been proposed as a viable, although

heuristic option in many intelligent, hierarchical transportation systems.36 After the conict

is resolved, the aircraft recover their positions and trail each other again. This example shows

another interesting aspect of the proposed optimization-based approach to solve conict

arising among aircraft: It allows the engineer to �nd and/or justify speci�c hierarchical

structures meant to reduce the complexity of systems involving many interacting vehicles.36

4.3.3 Multi-segmented simulation with aircraft passing

Next, the following scenario was simulated: Considering again two intersecting aircraft

streams, it is assumed that one aircraft wants to y faster than the other aircraft. Initially,

all aircraft y at the same speed (200 knots); however, the accelerating aircraft progressively

indicates a faster desired speed (up to 300 knots). Fig. 7 shows a simulation of the aircraft

ow at t = 0 min, t = 24 min, t = 48 min, t = 72 min, t = 96 min and t = 120 min. Again

it may be seen in Fig. 7 that all conicts are avoided, while the faster aircaft is allowed to

pass the preceding aircraft.

5 Conclusion

In this paper, the problem of resolving conicts arising among several aircraft has been

considered. A conict resolution architecture combining decentralized aircraft preferences

with centralized conict resolution while minimizing path deviations from the desired paths is

proposed. The centralized conict resolution system is based on the formulation of a related

nonconvex quadratic programming problem and its solution via semide�nite programming

combined with a randomization scheme. Numerical simulations have indicated that the

proposed approach may be used to �nd nontrivial solutions to complex conicts involving

multiple aircraft. They also indicate speci�c patterns (such as aircraft platooning) that may

be used in future, rule-based conict resolution systems.
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Figure 1: Constraints on aircraft maneuvers. Left: Conict avoidance constraints. Right:
Maneuvering constraints
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Figure 2: Mixed centralized/decentralized air tra�c control scheme
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Figure 3: Test case for multi-aircraft conict resolution algorithm. Left: Ten converging
aircraft. Right: Distribution of results from randomized algorithm. Dashed lines: Initial
con�guration. Continuous: Con�guration after conict resolution.
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Figure 4: Test case for multi-aircraft conict resolution algorithm. Left: Eight converging
aircraft. Right: Distribution of results from randomized algorithm. Dashed lines: Initial
con�guration. Continuous: Con�guration after conict resolution.
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Figure 5: Test case for multi-aircraft conict resolution algorithm. Left: Two converging
lines of four aircraft. Right: Distribution of results from randomized algorithm. Dashed
lines: Initial con�guration. Continuous: Con�guration after conict resolution
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Figure 6: Two crossing aircraft strings; platooning is the resulting behavior to solve the
conicts arising between the two aircraft strings.
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Figure 7: Two crossing aircraft strings; the last aircraft from the vertical string ies faster
and passes its predecessors with simultaneous conict resolution.
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