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The simplex method
6

§ A systematic procedure for solving linear programs
§ Proceeds by moving from one feasible solution to another, at each 

step improving the value of the objective function.
§ Terminates after a finite number of such transitions.

Images: Wikipedia – Simplex Algorithm

A generalization of geometric solutions (L20) to high dimensions.
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The simplex method
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§ Two important characteristics of the simplex method:
• The method is robust.

§ It solves any linear program;
§ It detects redundant constraints in the problem formulation;
§ It identifies instances when the objective value is unbounded over the feasible region;

and
§ It solves problems with one or more optimal solutions.
§ The method is also self-initiating.

• It uses itself either to generate an appropriate feasible solution, as required, to start the  
method, or to show that the problem has no feasible solution.

• The simplex method provides much more than just optimal solutions.
§ Recall L20: It indicates how the optimal solution varies as a function of the problem data 

(cost coefficients, constraint coefficients, and righthand-side data).
§ Information intimately related to a linear program called the "dual" to the given 

problem: the simplex method automatically solves this dual problem along with the 
given problem.



The canonical form
Maximize 𝑧 = 0𝑥! + 0𝑥" − 3𝑥# − 𝑥$ + 20,
subject to: 

𝑥! − 3𝑥# + 3𝑥$ = 6
𝑥" − 8𝑥# + 4𝑥$ = 4

𝑥% ≥ 0 𝑗 = 1, 2, 3, 4

1. All decision variables are constrained to be nonnegative.
2. All constraints, except for the nonnegativity of decision variables, are 

stated as equalities.
3. The righthand-side coefficients are all nonnegative.
4. One decision variable is isolated in each constraint with a +1 coefficient

(𝑥! in constraint (1) and 𝑥" in constraint (2)). The variable isolated in a given 
constraint does not appear in any other constraint and appears with a zero 
coefficient in the objective function.

(1)

(2)Any linear programming problem  
can be transformed so
that it is in canonical form!
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Standard 
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Discussion

§ Given any values for 𝑥# and 𝑥$, the values of 𝑥! and 𝑥" are 
determined uniquely by the equalities.
• In fact, setting 𝑥! = 𝑥" = 0 immediately gives a feasible solution with 𝑥# = 6

and 𝑥$ = 4.
• Solutions such as these will play a central role in the simplex method and are 

referred to as basic feasible solutions.
§ In general, given a canonical form for any linear  program, a basic 

feasible solution is given by setting the variable isolated in constraint 
𝑗, called the 𝑗th basic-variable, equal to the righthand side of the 𝑗th
constraint and by setting the remaining variables, called nonbasic, all 
to zero.

§ Collectively the basic variables are termed a basis.

Maximize 𝑧 = 0𝑥! + 0𝑥" − 3𝑥# − 𝑥$ + 20,
subject to: 

𝑥! − 3𝑥# + 3𝑥$ = 6
𝑥" − 8𝑥# + 4𝑥$ = 4

𝑥% ≥ 0 𝑗 = 1, 2, 3, 4
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Discussion

§ In the example above, the basic feasible solution
𝑥! = 6, 𝑥" = 4, 𝑥# = 0, 𝑥$ = 0 is optimal.
• For any other feasible solution, 𝑥! and 𝑥" must remain nonnegative.
• Since their coefficients in the objective function are negative, if either 𝑥! or 
𝑥" is positive, 𝑧 will be less than 20.
• Thus, the maximum value for 𝑧 is obtained when 𝑥! = 𝑥" = 0.

Maximize 𝑧 = 0𝑥! + 0𝑥" − 3𝑥# − 𝑥$ + 20,
subject to: 

𝑥! − 3𝑥# + 3𝑥$ = 6
𝑥" − 8𝑥# + 4𝑥$ = 4

𝑥% ≥ 0 𝑗 = 1, 2, 3, 4

10



Op5mality Criterion

§ Suppose that, in a maximization problem, every nonbasic variable 
has a nonpositive coefficient in the objective function of a canonical 
form.

§ Then the basic feasible solution given by the canonical form 
maximizes the objective function over the feasible region.

Maximize 𝑧 = 0𝑥! + 0𝑥" − 3𝑥# − 𝑥$ + 20,
subject to: 

𝑥! − 3𝑥# + 3𝑥$ = 6
𝑥" − 8𝑥# + 4𝑥$ = 4

𝑥% ≥ 0 𝑗 = 1, 2, 3, 4

11



Unbounded Objective Value

§ Since 𝑥# now has a positive coefficient in the objective function, it 
appears promising to increase the value of 𝑥# as much as possible.

§ Let us maintain 𝑥$ = 0, increase 𝑥# to a value 𝑡 to be determined, 
and update 𝑥! and 𝑥" to preserve feasibility.

Maximize 𝑧 = 0𝑥! + 0𝑥" + 3𝑥# − 𝑥$ + 20,
subject to: 

𝑥! − 3𝑥# + 3𝑥$ = 6
𝑥" − 8𝑥# + 4𝑥$ = 4

𝑥% ≥ 0 𝑗 = 1, 2, 3, 4

(1)

(2)
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Discussion

§ No matter how large 𝑡 becomes, 𝑥! and 𝑥" remain nonnegative.  In 
fact, as 𝑡 approaches +∞, 𝑧 approaches +∞.

§ In this case, the objective function is unbounded over the feasible 
region.

Maximize 𝑧 = 0𝑥! + 0𝑥" + 3𝑥# − 𝑥$ + 20,
subject to: 

𝑥! − 3𝑥# + 3𝑥$ = 6
𝑥" − 8𝑥# + 4𝑥$ = 4

𝑥% ≥ 0 𝑗 = 1, 2, 3, 4

𝑥! − 3𝑥# + 3𝑥$ = 6
𝑥" − 8𝑥# + 4𝑥$ = 4

𝑧 = 0𝑥! + 0𝑥" + 3𝑥# − 𝑥$ + 20

𝑥! = 6 + 3𝑡
𝑥" = 4 + 8𝑡
𝑧 = 20 + 3𝑡
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Unboundedness Criterion

§ Suppose that, in a maximization problem, some nonbasic variable 
has a positive coefficient in the objective function of a canonical 
form.

§ If that variable has negative or zero coefficients in all constraints, 
then the objective function is unbounded from above over the 
feasible region.

14
Maximize 𝑧 = 0𝑥! + 0𝑥" + 3𝑥# − 𝑥$ + 20,
subject to: 

𝑥! − 3𝑥# + 3𝑥$ = 6
𝑥" − 8𝑥# + 4𝑥$ = 4

𝑥% ≥ 0 𝑗 = 1, 2, 3, 4



Improving a Nonoptimal Solution

§ As 𝑥$ increases, 𝑧 increases.
§ Maintaining 𝑥# = 0, let us increase 𝑥$ to a value 𝑡, and update 𝑥!

and 𝑥" to preserve feasibility.

Maximize 𝑧 = 0𝑥! + 0𝑥" − 3𝑥# + 𝑥$ + 20,
subject to: 

𝑥! − 3𝑥# + 3𝑥$ = 6
𝑥" − 8𝑥# + 4𝑥$ = 4

𝑥% ≥ 0 𝑗 = 1, 2, 3, 4
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Discussion

§ If 𝑥! and 𝑥" are to remain nonnegative, we require:
6 − 3𝑡 ≥ 0, that is, 𝑡 ≤ &

#
= 2

and
4 − 4𝑡 ≥ 0, that is, 𝑡 ≤ $

$
= 1

§ Therefore, the largest value for 𝑡 that maintains a feasible solution is 𝑡 = 1.
§ When 𝑡 = 1, the new solution becomes 𝑥! = 3, 𝑥" = 0, 𝑥# = 0, 𝑥$ = 1, 

which has an associated value of 𝑧 = 21 in the objective function.

𝑥! − 3𝑥# + 3𝑥$ = 6
𝑥" − 8𝑥# + 4𝑥$ = 4

𝑧 = 0𝑥! + 0𝑥" − 3𝑥# + 𝑥$ + 20

𝑥! = 6 − 3𝑡
𝑥" = 4 − 4𝑡
𝑧 = 20 + 𝑡

Maximize 𝑧 = 0𝑥! + 0𝑥" − 3𝑥# + 𝑥$ + 20,
subject to: 

𝑥! − 3𝑥# + 3𝑥$ = 6
𝑥" − 8𝑥# + 4𝑥$ = 4

𝑥% ≥ 0 𝑗 = 1, 2, 3, 4
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Discussion

§ Note that, in the new solution, 𝑥$ has a positive value and 𝑥" has 
become zero.

§ This is a fundamental part of “pivoting” from corner of the solution 
polyhedron to another.

§ Since nonbasic variables were previously given zero values before, it 
appears that 𝑥$ has replaced 𝑥" as a basic variable.

§ In fact, it is fairly simple to manipulate Eqs. (1) and (2) algebraically 
to produce a new canonical form, where 𝑥! and 𝑥$ become the basic  
variables.

Maximize 𝑧 = 0𝑥! + 0𝑥" − 3𝑥# + 𝑥$ + 20,
subject to: 

𝑥! − 3𝑥# + 3𝑥$ = 6
𝑥" − 8𝑥# + 4𝑥$ = 4

𝑥% ≥ 0 𝑗 = 1, 2, 3, 4
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Discussion
§ If 𝑥$ is to become a basic variable, it should appear with coefficient 

+1 in Eq. (2), and with zero coefficients in Eq. (1) and in the objective  
function.

§ To obtain a +1 coefficient in Eq. (2), we divide that equation by 4.

(1)

(2)

𝑥! − 3𝑥# + 3𝑥$ = 6
𝑥" − 8𝑥# + 4𝑥$ = 4

𝑥! − 3𝑥# + 3𝑥$ = 6
1
4𝑥" − 2𝑥# + 𝑥$ = 1
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𝑥! − 3𝑥# + 3𝑥$ = 6
1
4𝑥" − 2𝑥# + 𝑥$ = 1

Discussion
§ To eliminate 𝑥$ from the first constraint, we may multiply Eq. (2’) by 

3 and subtract it from constraint (1).

§ We may rearrange the objective function and write it as:
−𝑧 − 3𝑥# + 𝑥$ = −20

and use the same technique to eliminate 𝑥$; that is, multiply (2’) by 
1 and subtract it from the above:

−𝑧 −
1
4
𝑥" − 𝑥# = −21

(1)

(2') 𝑥! −
3
4
𝑥" + 3𝑥# = 3
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The new global system becomes

§ Now the problem is in canonical form with 𝑥! and 𝑥$ as basic variables, and 
𝑧 has increased from 20 to 21.

§ Consequently, we are in a position to reapply the arguments of this section, 
beginning with this improved solution.

§ However, in this case, the new canonical form satisfies the optimality 
criterion since all nonbasic variables have nonpositive coefficients in the 
objective function, and thus the basic feasible solution 𝑥! = 3, 𝑥" = 0, 𝑥# =
0, 𝑥$ = 1, is optimal.

Maximize 𝑧 = 0𝑥# −
#
"
𝑥$ − 𝑥! + 0𝑥" + 21,

subject to: 

𝑥# −
3
4𝑥$ − 3𝑥! = 3
1
4 𝑥$ − 2𝑥! + 𝑥" = 1

𝑥% ≥ 0 𝑗 = 1, 2, 3, 4
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Improvement Criterion
§ Suppose that, in a maximization problem, some nonbasic variable 

has a positive coefficient in the objective function of a canonical 
form.

§ If that variable has a positive coefficient in some constraint, then a 
new basic feasible solution may be obtained by pivoting.

21



Discussion

§ Recall that we chose the constraint to pivot in (and consequently the 
variable to drop from the basis) by determining which basic variable  
first goes to zero as we increase the nonbasic variable 𝑥$.

§ The constraint is selected by taking the ratio of the righthand-side 
coefficients to the coefficients of 𝑥$ in the constraints, i.e., by  
performing the ratio test:

min
6
3
,
4
4

𝑥! − 3𝑥# + 3𝑥$ = 6
𝑥" − 8𝑥# + 4𝑥$ = 4

𝑧 = 0𝑥! + 0𝑥" − 3𝑥# + 𝑥$ + 20
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Discussion
§ Note, however, that if the coefficient of 𝑥$ in the second constraint 

were −4 instead of +4, the values for 𝑥! and 𝑥" would be given by:

so that as 𝑥$ = 𝑡 increases from 0, 𝑥" never becomes zero. In this 
case, we would increase 𝑥$ to 𝑡 = &

#
= 2.

§ This observation applies in general for any number of constraints, so 
that we need never compute ratios for nonpositive coefficients of 
the variable that is coming into the basis.

𝑥! − 3𝑥# + 3𝑥$ = 6
𝑥" − 8𝑥# − 4𝑥$ = 4

𝑥! = 6 − 3𝑡
𝑥" = 4 + 4𝑡
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Ratio and Pivoting Criterion
§ When improving a given canonical form by introducing variable 𝑥'

into the basis, pivot in a constraint that gives the minimum ratio of  
righthand-side coefficient to corresponding 𝑥' coefficient.

§ Compute these ratios only for constraints that have a positive 
coefficient for 𝑥'.

24
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Reduction to Canonical Form
§ To this point we have been solving linear programs posed in 

canonical form with
1. nonnegative variables,
2. equality constraints,
3. nonnegative righthand-side coefficients, and
4. one basic variable isolated in each constraint.

§ We will now show how to transform any linear program to this 
canonical form.

27



Inequality constraints
40𝑥! + 10𝑥" + 6𝑥# ≤ 55.0,
40𝑥! + 10𝑥" + 6𝑥# ≥ 32.5

§ Introduce two new nonnegative variables:
§ 𝑥( measures the amount that the consumption of resource falls 

short of the maximum available, and is called a slack variable;
§ 𝑥& is the amount of product in excess of the minimum requirement 

and is called a surplus variable.
40𝑥! + 10𝑥" + 6𝑥# + 𝑥( = 55.0,
40𝑥! + 10𝑥" + 6𝑥# − 𝑥& = 32.5
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A simple example
§ The owner of a shop producing automobile trailers wishes to 

determine the best mix for his three products: 
• flat-bed trailers
• economy trailers
• luxury trailers. 

§ His shop is limited to working 24 days/month on metalworking and 
60 days/month on woodworking for these products. The following  
table indicates production data for the trailers.
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LP Model
§ Let the decision variables of the problem be:
• 𝑥# = Number of flat-bed trailers produced per month
• 𝑥$ = Number of economy trailers produced per month
• 𝑥! = Number of luxury trailers produced per month

Maximize 𝑧 = 6𝑥! + 14𝑥" + 13𝑥#,
subject to: 

1
2 𝑥! + 2𝑥" + 𝑥# ≤ 24

𝑥! + 2𝑥" + 4𝑥# ≤ 60
𝑥! ≥ 0, 𝑥" ≥ 0, 𝑥# ≥ 0
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Canonical form
Maximize 𝑧 = 6𝑥! + 14𝑥" + 13𝑥#,
subject to: 

1
2
𝑥! + 2𝑥" + 𝑥# + 𝑥$ = 24

𝑥! + 2𝑥" + 4𝑥# + 𝑥( = 60
𝑥% ≥ 0 (𝑗 = 1, 2, 3, 4, 5)
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Iterations
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Iterations
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Minimization problems
§ Enters the basis the nonbasic variable that has a negative coefficient 

in the objective function of a canonical form.
§ The solution is optimal when every nonbasic variable has a 

nonnegative coefficient in the objective function of a canonical 
form.
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Formal Procedure
Simplex Algorithm (Maximization Form)
0.    The problem is initially in canonical form and all 2𝑏' ≥ 0.
1. If ̅𝑐% ≤ 0 for 𝑗 = 1, 2, … , 𝑛, then stop; we are optimal.  If we continue then 

there exists some ̅𝑐% > 0.
2. Choose the column to pivot in (i.e. the variable to introduce into the 

basis) by:
̅𝑐( = max

%
̅𝑐%| ̅𝑐% > 0

If 2𝑎'( ≤ 0 for 𝑖 = 1, 2, … ,𝑚, then stop; the primal problem is unbounded.  
If we continue, then 2𝑎'( > 0 for some 𝑖 = 1, 2, … ,𝑚.

3. Choose row 𝑟 to pivot in (i.e. the variable to drop from the basis) by the 
ratio test: 2𝑏)

2𝑎)(
min
'

2𝑏'
2𝑎'(

2𝑎'( > 0
4. Replace the basic variable in row 𝑟 with variable 𝑠 and reestablish the 

canonical form (i.e. pivot on the coefficient 2𝑎)().
5. Go to step (1).
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STEP (4) Pivoting
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STEP (4) Pivoting
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