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Queueing models
§ Customers requiring service are generated over time by an input 

source
§ These customers enter the queueing system and join a queue
§ At certain times, a member of the queue is selected for service by 

some rule known as the queue discipline.
§ The required service is then performed for the customer by the 

service mechanism, after which the customer leaves the queueing 
system.
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Queueing models
§ Parameters that characterize a queue
• Number of parallel servers, 𝑐
• Capacity, 𝐾 (equal to buffer + servers, may be infinite)
• Arrival rate, 𝜆
• Service rate of one server, 𝜇
• Transition probabilities, 𝑝𝑖𝑗

§ Arrival distribution
§ Queue discipline
§ Service distribution

µ DeparturesArrivals λ

c

K



Wu

Complete Kendall notation
𝐴 / 𝑆 / 𝑐 / 𝐾 / 𝑃 / 𝑄𝐷

§ 𝐴: inter-arrival time distribution
§ 𝑆: service time distribution
§ 𝑐: number of servers
§ 𝐾: total system size (∞)
§ 𝑃: population size (∞)
§ 𝑄𝐷: Queue discipline (FIFO)
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Kendall notation
𝐴 / 𝑆 / 𝑐 / 𝐾 / 𝑃 / 𝑄𝐷

§ Arrival (𝐴) / Service (𝑆) Process
• Assumption: i.i.d

§ Some standard code letters for 𝐴 and 𝑆:
• 𝑀: Exponential (𝑀 stands for memoryless/Markovian)
• 𝐷: Deterministic
• 𝐸# : kth-order Erlang distribution
• 𝐺: General distribution

§ Examples:
• 𝐷/𝐷/1, lends itself to a graphical analysis (Unit 1)
• 𝑀/𝑀/𝑐
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Number of servers
§ Single server
• One server for all queued customers

§ Multiple server
• Finite number of “identical” servers operating in a parallel configuration

§ Infinite-server
• A server for every customer
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Kendall notation
𝐴 / 𝑆 / 𝑐 / 𝐾 / 𝑃 / 𝑄𝐷

§ 𝐾: total system size, i.e. buffer size + number of servers
§ Referred to as “capacity” in queueing theory
§ 𝐾 < ∞: finite capacity queues
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Queue discipline
§ Refers to the order in which members of the queue are selected for service
§ FIFO: first-in first-out (a.k.a. FCFS)

• first customer to arrive is first to depart, no passing
• Single road lane, airport check-in counters

§ LIFO: last-in first-out
• last customer into queue is first to leave
• Unboarding cars from a ferry, unboarding a bus from behind

§ Priority
• Customers get served in order of priority (highest to lowest)
• Flight departures along a runway, priority seating when boarding flights
• Yields / intersections: priority between approaches

§ SIRO: service in random order
§ PS: processor sharing
§ FIFO is the most common discipline for most transportation applications
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Queueing theory - keep in mind
§ Queueing theory can provide insights and approximation of the 

main system performance measures.
• Can enable identification of the location of bottlenecks in networks,
• Give indications on how to improve the system’s performance.

§ Most closed-form results involve stationary regime (steady-state) 
and low-order moments (mean, variance) of the inter-arrival and 
service time distributions

§ Trade-off: realistic model (few available results) vs. tractability 
(assumptions are questionable)
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Stationary analysis
§ State of system: number 𝑛 of 

customers in the system
§ Steady state condition: system is 

independent of initial state and has 
reached its long-term equilibrium 
characteristics
• A.k.a. steady state regime, stationary 

regime
§ Given:

• 𝜆 = arrival
• 𝜇 = service rate per server
• 𝑐 = number of servers 

(parallel service channels)

§ Quantities of interest:
• $𝑁: expected number of users in 

queueing system ($𝑁 = 𝐸 𝑁 )
• $𝑁! : expected number of users in 

queue ($𝑁! = 𝐸 𝑁! )
• (𝑇 : expected time in queueing system 

per user ((𝑇 = 𝐸[𝑇])
• (𝑇! = expected waiting time in queue 

per user ((𝑇! = 𝐸 𝑇! )
§ 4 unknowns ⟹ we need 4 

equations
§ Also of interest: (𝑃!): stationary 

queue length distribution
• ∑"#$% 𝑃" = 1
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Stability
• A system is said to be stable if its long run averages (𝑁, 𝑇) exist and 

are finite
• Consider an infinite capacity queue:
• Traffic intensity (also called utilization factor):

𝜌 =
𝜆
𝑐𝜇

• 𝑐𝜇: queue service rate.
• The queue is stable if and only if 𝜌 < 1
• If a system is unstable, its long run measures are meaningless
• Note:

• This is necessary only for infinite capacity queues
• Finite capacity queues have bounded queue lengths, and are therefore always stable
• Stable systems → a steady state condition exists
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Little’s law
§ John Little, MIT Institute Professor
§ Proof in: “A proof for the queuing 

formula: 𝐿 = 𝜆𝑊” (1961), 
Operations Research

§ Little’s Law as viewed on its 50th 
Anniversary (INFORMS)

§ (𝑁 = 𝜆*𝑇
• $𝑁: expected number of vehicles in 

the system
• 𝜆: system arrival rate
• (𝑇: expected time in the system

§ Assumption: The system is in a 
stationary regime

§ No assumptions/restrictions on the:
• inter-arrival and service time 

distributions
• queue discipline
• number of servers

§ For several classes/categories of 
users, Little’s law applies to each 
category

§ If you consider a finite time horizon 
(i.e. 𝜏 < ∞) then stationarity is not 
required.

(1)

https://www.informs.org/Blogs/Operations-Research-Forum/Little-s-Law-as-Viewed-on-its-50th-Anniversary
https://www.informs.org/Blogs/Operations-Research-Forum/Little-s-Law-as-Viewed-on-its-50th-Anniversary
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Little’s Law (1961) [from Lecture 3]
§ Beauty is in its simplicity:

/𝑄 = 𝜆1𝑤
• avg queue length = (avg arrival rate) x (avg 

waiting time)

§ Previous slide: deterministic proof.

§ Also holds for probabilistic settings.
We’ll revisit in Unit 2.

§ Assumptions:
• System stability

§ Preview: Little’s Law is independent of:
• Arrival process distribution
• Service distribution
• Service order
• Structure of queue(s)
• Number of servers
• Etc.

§ Applications:
• Highway traffic, transit, airports
• Shops
• Manufacturing plants
• Bank tellers
• Emergency rooms
• Operations management
• Computer architecture (webserver requests, 

CPU, DRAM, RAM, HDD)1961, John Little
MIT Institute Professor
See: “Little’s Law as Viewed on its 50th Anniversary” (INFORMS)
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Little’s law
0𝑁 = 𝜆3𝑇

• 1𝑁: expected number of vehicles in the system
• 𝜆: system arrival rate
• /𝑇: expected time in the system

0𝑁$ = 𝜆3𝑇$
• 1𝑁$: expected number of vehicles in the buffer
• 𝜆: system arrival rate
• /𝑇$: expected time in the buffer

(1)

(2)
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Relationships between !𝑁, !𝑁!, $𝑇, and $𝑇!
§ Little’s law:
• 1𝑁 = 𝜆/𝑇
• 1𝑁𝑞 = 𝜆/𝑇𝑞

§ 3𝑇 = 3𝑇𝑞 +
1
𝜇

• 𝜆 = arrival rate (Hz) ⟹ expected 
inter-arrival time = &

'

§ 0𝑁 − 0𝑁𝑞 =
𝜆
𝜇

(for M/M/1)
• which represents the expected 

number of vehicles under service 
(in steady-state)

§ Obtain one of the performance 
measures, the other three can 
then be deduced

§ Let’s try to obtain 0𝑁.
• The determination of 1𝑁 may be 

hard or easy depending on the type 
of queueing  model at hand
• It is easy for 𝑀/𝑀/1 and quite easy 

for 𝑀/𝑀/𝑠 and for 𝑀/𝐺/1
§ In general: 0𝑁 = ∑𝑛=0∞ 𝑛𝑃𝑛, where 
𝑃𝑛 is the probability that there 
are 𝑛 customers in the system

(1)
(2)

(3)

(4)
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Analysis of queueing models
§ Closed-form expressions for the main performance measures 

typically involve:
• stationary regime (i.e. steady state analysis)
• specific distributional assumptions

§ Computational techniques allow to numerically evaluate 
performance measures for more general queues, and also for 
transient regime (i.e. dynamic analysis)

§ 𝑀/𝑀/1 queueing system: “simple” to analyze
§ General strategy:
• Compute steady state probabilities 𝑃(
• Compute 1𝑁 = ∑()*+ 𝑛𝑃(
• Obtain 1𝑁$, /𝑇, and /𝑇$
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Detailed analysis of 𝑀/𝑀/1 queueing system
§ Inter-arrival times:

𝑓" 𝑡 = 𝜆𝑒#$% 𝑡 ≥ 0; 𝐸 𝑋 =
1
𝜆
; 𝜎"& =

1
𝜆&

§ Service times:
𝑓' 𝑡 = 𝜇𝑒#() 𝑡 ≥ 0; 𝐸 𝑆 =

1
𝜇
; 𝜎'& =

1
𝜇&

§ From the properties of exponential r.v.’s, the probabilities of transitions in 
the next Δ𝑡:
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State transition diagram for 𝑀/𝑀/1
§ States (nb of “customers” in the system):

§ The probability of observing a transition from state 𝑖 to state 𝑗
during the next Δ𝑡 with the system in steady-state:
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State transition diagram for 𝑀/𝑀/1

§ Another way to represent this State transition diagram:
• Nodes: states
• Arcs: possible state transitions
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Observing the diagram from two points
1. At a state:

2. Between states:

§ The two sets of equations yield the same solutions
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𝑀/𝑀/1: deriving 𝑃" and 𝑃#
1. 𝑃, =

-
.
𝑃/, 𝑃0 =

-
.

0
𝑃/, … , 𝑃1 =

-
.

1
𝑃/

2. ∑12/3 𝑃1 = 1, ⇒ 𝑃/ ∑12/3 -
.

1
= 1, ⇒ 𝑃/ =

,

∑,-./ 0
1

,

3. For 𝑥 < 1, ∑12/3 𝑥1 = ,
,56

4. Define: 𝜌 = -
.

𝑃/ =
1

∑12/3 𝜌1 = 1 − 𝜌

𝑃1 = 𝜌1 1 − 𝜌
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𝑀/𝑀/1: deriving !𝑁, !𝑁!, $𝑇, and $𝑇!
&𝑁 = )

!"#

$

𝑛𝑃!

= )
!"#

$

𝑛𝜌! 1 − 𝜌

= 1 − 𝜌 )
!"#

$

𝑛𝜌!

= 1 − 𝜌 𝜌)
!"#

$

𝑛𝜌!%&

= 1 − 𝜌 𝜌
𝑑
𝑑𝜌)

!"#

$

𝜌!

= 1 − 𝜌 𝜌
𝑑
𝑑𝜌

1
1 − 𝜌

= 1 − 𝜌 𝜌
1

1 − 𝜌 '

=
𝜌

1 − 𝜌 =

𝜆
𝜇

1 − 𝜆
𝜇
=

𝜆
𝜇 − 𝜆

3𝑇 =
0𝑁
𝜆
=

𝜆
𝜇 − 𝜆

⋅
1
𝜆
=

1
𝜇 − 𝜆

3𝑇$ = 3𝑇 −
1
𝜇 =

1
𝜇 − 𝜆 −

1
𝜇 =

𝜆
𝜇 𝜇 − 𝜆

0𝑁$ = 𝜆3𝑇$ =
𝜆0

𝜇 𝜇 − 𝜆
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𝑀/𝐷/1 queue
§ Has been used to model vehicles on a lane at signalized urban 

intersections
§ Exponentially distributed inter-arrival times
§ Deterministic service distribution
§ One server

§ Recall the traffic intensity: 𝜌 = -
.

• 𝜌: traffic intensity
• 𝜆: arrival rate [veh/unit time]
• 𝜇: service rate [veh/unit time]
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𝑀/𝐷/1 queue
§ For a stable queue (𝜌 < 1):

• Expected number of vehicles in the buffer [veh]:

𝑁! =
𝜌2

2 1 − 𝜌
• Expected waiting time in the buffer (per veh)

𝑇! =
𝜌

2𝜇 1 − 𝜌
• Expected time in the system: sum of the expected waiting time and the  expected 

service time:

𝑇 =
2 − 𝜌

2𝜇 1 − 𝜌
§ Note: traffic intensity: 𝜌 < 1, then:

• the 𝐷/𝐷/1 queue predicts no queue formation,
• models with probabilistic arrivals/departures (e.g. 𝑀/𝐷/1) predict queue  

formations under such conditions.
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𝑀/𝑀/𝑐 queue
§ Arrivals at this system constitute a Poisson process, i.e., successive demand 

inter-arrival times are independent and have an exponential pdf given by:
𝑓" 𝑥 = 𝜆𝑒#$* 𝑥 ≥ 0

where X is the length of the inter-arrival time (i.e. the time between 
successive arrivals of demands at the queueing system).

• Thus, the expected time between successive demand arrivals is equal to 𝐸 𝑋 = 3
4

• The expected number of demand arrivals per unit of time (“arrival rate”) is equal 
to 𝜆.

§ Service times at this system are mutually independent and have an 
exponential pdf given by:

𝑓' 𝑠 = 𝜇𝑒#(+ 𝑠 ≥ 0
where 𝑆 is the length of the service time.

• Thus, the expected service time is equal to 𝐸 𝑆 = 3
5
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𝑀/𝑀/𝑐 queue
§ This model is a reasonable assumption at toll booths on turnpikes or at toll 

bridges where there is often more than one toll booth open.
§ Traffic intensity / utilization factor: 𝜌 = '

23

§ Stability: '
23
< 1

§ Stationary dbn:

𝑃# =

𝜆/𝜇 #

𝑘!
𝑃*, 𝑘 = 1, 2, … , 𝑐 − 1

𝜆/𝜇 #

𝑐! 𝑐#42 𝑃*, 𝑘 = 𝑐, 𝑐 + 1,…

𝑃* =
𝜆/𝜇 2

𝑐! 1 − 𝜌
+A

#)*

24&
𝜆/𝜇 #

𝑘!

4&

§ Expected queue length (in the buffer)?
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𝑀/𝑀/𝑐 queue
§ Little’s formula: 𝑇$ =

75
-

§ 𝑇 = 𝑇$ +
,
.

§ To obtain 𝑁:
1. Little’s formula: 𝑁 = 𝜆𝑇
2. 𝑁 = 𝑁$ +

'
3


