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Queueing models

Customers requiring service are generated over time by an input
source

These customers enter the and join a queue

At certain times, a member of the queue is selected for service by
some rule known as the

The required service is then performed for the customer by the
, after which the customer leaves the queueing

Arrivals A —— ‘ ‘ ‘ H @—/: Departures

K

system.




Queueing models

Parameters that characterize a queue
Number of parallel servers, ¢
Capacity, K (equal to buffer + servers, may be infinite)
Arrival rate, A
Service rate of one server, u
Transition probabilities, p;;

Arrival distribution
Queue discipline Arrivals A < Departures
Service distribution

C
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Complete Kendall notation
A/S/c/K/P/QD

A: inter-arrival time distribution
S: service time distribution

c: number of servers

K: total system size (o)

P: population size (o)

QD: Queue discipline (FIFO)



Kendall notation
A/S/c/K/P/QD

Arrival (A) / Service (S) Process
Assumption: i.i.d

Some standard code letters for A and S:
M: Exponential (M stands for memoryless/Markovian)
D: Deterministic
E,. : kth-order Erlang distribution
G: General distribution

Examples:
D/D/1, lends itself to a graphical analysis (Unit 1)
M/M/c



Number of servers

Single server
One server for all queued customers

Multiple server
Finite number of “identica

III

servers operating in a parallel configuration

Infinite-server
A server for every customer



Kendall notation
A/S/c/K/P/QD

K total system size, i.e. buffer size + number of servers
Referred to as “ ”'in queueing theory

K < oo: finite capacity queues



Queue discipline

Refers to the order in which members of the queue are selected for service

FIFO: first-in first-out (a.k.a. FCFS)
first customer to arrive is first to depart, no passing
Single road lane, airport check-in counters

LIFO: last-in first-out

last customer into queue is first to leave
Unboarding cars from a ferry, unboarding a bus from behind

Priority
Customers get served in order of priority (highest to lowest)
Flight departures along a runway, priority seating when boarding flights
Yields / intersections: priority between approaches

SIRO: service in random order
PS: processor sharing



Queueing theory - keep in mind

Queueing theory can provide insights and approximation of the

main system performance measures.
Can enable identification of the location of bottlenecks in networks,

Give indications on how to improve the system’s performance.

Most closed-form results involve (steady-state)
and (mean, variance) of the inter-arrival and

service time distributions
Trade-off: realistic model (few available results) vs. tractability
(assumptions are questionable)
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Stationary analysis

: number n of
customers in the system

: system is
independent of initial state and has
reached its long-term equilibrium
characteristics

A.k.a. steady state regime, stationary
regime
Given:
A = arrival
U= service rate per server

¢ = number of servers
(parallel service channels)

Quantities of interest:

N: expected number of users in
queueing system (N = E[N])
Nq expected number of users in
queue (N, = E[N,])

T: expected time in queueing system
per user (T = E[T])

Tq = expected waiting time in queue
per user (T, = E|T,])

4 unknowns = we need 4
equations

Also of interest: (P,):

YizoPi =1



Stability

A system is said to be stable if its long run averages (N, T) exist and
are finite

Consider an infinite capacity queue:

Traffic intensity (also called utilization factor):
A

P=a

CU: queue service rate.
The queue is stable ifand only if p < 1

If a system is unstable, its long run measures are meaningless

Note:

This is necessary only for infinite capacity queues
Finite capacity queues have bounded queue lengths, and are therefore always stable
Stable systems — a steady state condition exists



Little’s law

John Little, MIT Institute Professor

Proof in: “A proof for the queuing
formula: L = AW” (1961),
Operations Research

Little’s Law as viewed on its 50th
Anniversary (INFORMS)

(1)

N: expected number of vehicles in
the system

A: system arrival rate
T: expected time in the system

Assumption: The systemiisin a
stationary regime

No assumptions/restrictions on the:

inter-arrival and service time
distributions

queue discipline
number of servers

For several classes/categories of
users, Little’s law applies to each
category

If you consider a finite time horizon
(i.e. T < o0) then stationarity is not
required.
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Little’s Law (1961) [from Lecture 3]

Beauty is in its simplicity: Preview: Little’s Law is independent of:
B Arrival process distribution
Q = Aw Service distribution
avg queue length = (avg arrival rate) x (avg Service order
waiting time) Structure of queue(s)
Previous slide: deterministic proof. Number of servers
Etc.
Applications:

Also holds for probabilistic settings. Highway traffic, transit, airports
We'll revisit in Unit 2, Shops

Manufacturing plants

_ Bank tellers
Assumptions:

System stability

Emergency rooms
Operations management

Computer architecture (webserver requests,
1961, John Little CPU, DRAM, RAM, HDD)

MIT Institute Professor
See: “Little’s Law as Viewed on its 50th Anniversary” (INFORMS) Wu



Little’s law
N = AT

N: expected number of vehicles in the system
A: system arrival rate
T: expected time in the system

Nq = /1Tq
IVq: expected number of vehicles in the buffer
A: system arrival rate

T,: expected time in the buffer

(2)



Relationships between N, N, T, and T,

Little’s law:
N =T (1)
N — 1T 2
N, = 2T, (2)
T:@+l 3)
U

A = arrival rate (Hz) = expected

. ) . 1
inter-arrival time = y

N - N, =~ (form/m/1)

which represents the expected
number of vehicles under service
(in steady-state)

Obtain one of the performance
measures, the other three can
then be deduced

Let’s try to obtain N.

The determination of N may be
hard or easy depending on the type
of queueing model at hand

It is easy for M/M /1 and quite easy
forM/M /s and for M/G /1

In general: , Where
P, is the probability that there
are n customers in the system
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Analysis of queueing models

Closed-form expressions for the main performance measures
typically involve:

stationary regime (i.e. steady state analysis)

specific distributional assumptions

Computational techniques allow to numerically evaluate
performance measures for more general queues, and also for
transient regime (i.e. dynamic analysis)

M /M /1 queueing system: “simple” to analyze

General strategy:
Compute steady state probabilities P,
Compute N = Y2 nbB,
Obtain N, T, and T,



Detailed analysis of M/M /1 queueing system

Inter-arrival times:
_/’u- 1 2 1
fx() =2e7 t20; E[X]=—; of =53
Service times:
_ut 1 5 1
fs(t) = pe™ t 2 0; E|S] = %=

From the properties of exponential r.vs, the probabilities of transitions in
the next At:

Time: t Time: t + At

n + 1 users

A At
1—-(A+p) At

n users

n users

n -1 users



State transition diagram for M/M /1
States (nb of “customers” in the system):
© ® ® NS ® )

The probability of observing a transition from state i to state j
during the next At with the system in steady-state:

P AAt PAAt P, AAt P _,AAt P, _AAt P, AAt B ARE

o 3L H -

R puAr PuAt - BuAt B uAt P uAt P_uht  DopAt



State transition diagram for M/M/l

P/A’ P/Af P,AAt P,_, At /Ar P/Ar P ANt
P/(Ar B ,uAr P At _1/1Ar p o, P ,uAr P L HUAL

Another way to represent this State transition diagram:
Nodes: states
Arcs: possible state transitions

A A A A A A A
/—b
u H H H 7 7 H



Observing the diagram from two points

At a state: AP, = uP, (A+u)P.= AP+ pP, (A+m)P, =P +uP,
A A A y A A A
H H Z Iz H H #
Between states: PP PP, P =P,

A

U

The two sets of equations yield the same solutions



M/M /1. deriving Py and P,

P, = %PO, P, = (4)2 Py, .., P, = (ﬁ)n P,

K %
0 0 AN\ 1
Yn=obn =1, :>P02n=0(_) =1 =P =—"m=
u Zoo_ _)
e's) 1
For |x| < 1, anoxnzE
. A
D D ==
efine: p p
P ! 1
0= 0] — _p
n=0P"



M/M/1: deriving N,Ng, T, and T,

S CF a1
n=0 % T=——=———=—
=(1—p)2np” A ,Ll—/l A ,Ll_l
=@=pp ) 1 11 p
nd=0OO Tq:T-—:———:
=(—p)pd—pzp" wo ou—212 p opu—2a)
n=01
= (1_’0)pd_(1—p) /12
1 — —
=(1-p) _ N, = AT, =
pp(%‘”) T TRy
p 1 A
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M/D /1 queue

Has been used to model vehicles on a lane at signalized urban
intersections

Exponentially distributed inter-arrival times
Deterministic service distribution

One server

Recall the traffic intensity: p = %

p: traffic intensity
A: arrival rate [veh/unit time]
U: service rate [veh/unit time]



M/D /1 queue
For a stable queue (p < 1):
Expected number of vehicles in the buffzer [veh]:
N =_ P
21 -p)
Expected waiting time in the buffer (per veh)

T. =
T 2u(1-p)

Expected time in the system: sum of the expected waiting time and the expected
service time:

2 —
T = P
2u(1—p)
Note: traffic intensity: p < 1, then:

the D/D /1 queue predicts no queue formation,

models with probabilistic arrivals/departures (e.g. M /D /1) predict queue
formations under such conditions.




M/M/c queue

Arrivals at this system constitute a Poisson process, i.e., successive demand
inter-arrival times are independent and have an exponential pdf given by:
fx(x) = 2e™* (x = 0)
where X is the length of the inter-arrival time (i.e. the time between
successive arrivals of demands at the queueing system).
Thus, the expected time between successive demand arrivals is equal to E[X] =

The expected number of demand arrivals per unit of time (“arrival rate”) is equal
to A.
Service times at this system are mutually independent and have an
exponential pdf given by:
fs(s) =ue™™ (s =20)
where S is the length of the service time.

Thus, the expected service time is equal to E[S] =



M/M/c queue

This model is a reasonable assumption at toll booths on turnpikes or at toll
bridges where there is often more than one toll booth open.

Traffic intensity / utilization factor: p = i
Stability: = < 1

cu
Stationary dbn:

( k
A
(2"‘) P, k=12 .,c—1
Pk: )
(A/1)"
\ c!ck‘CPO' k=cc+1,..

c—1
| a/we (A/w)"
PO_[C!(l—p)+k=0 k! ‘

Expected queue length (in the buffer)?



M/M/c queue

) , _ _ &
thtlesformula.Tq =3
1
T=T,+-
T pu
To obtain N:

Little’s formula: N = AT
N =N, +2
u



