Spring 2023

Queuing models

Stochastic throughput

Cathy Wu

1.041/1.200 Transportation: Foundations and Methods

References

- 1. Readings: Chapter 4 of Larson and Odoni (2007), Urban Operations Research.
- 2. John Little, Little's Law as Viewed on its 50th Anniversary. Operations Research, vol 59. 2011. [https://www.informs.org/Blogs/Operations-Research-](https://www.informs.org/Blogs/Operations-Research-Forum/Little-s-Law-as-Viewed-on-its-50th-Anniversary)[Forum/Little-s-Law-as-Viewed-on-its-50th-Anniversary](https://www.informs.org/Blogs/Operations-Research-Forum/Little-s-Law-as-Viewed-on-its-50th-Anniversary)
- 3. Slides adapted from Carolina Osorio

Outline

- 1. Fundamental queueing models
- 2. Stationary analysis and Little's law
- 3. M/M/1: Detailed analysis
- 4. More queues

Outline

1. Fundamental queueing models

- 2. Stationary analysis and Little's law
- 3. M/M/1: Detailed analysis
- 4. More queues

Queueing models

- § Customers requiring service are generated over time by an input source
- § These customers enter the *queueing system* and join a queue
- At certain times, a member of the queue is selected for service by some rule known as the *queue discipline*.
- The required service is then performed for the customer by the *service mechanism*, after which the customer leaves the queueing system.

Queueing models

- § Parameters that characterize a queue
	- Number of parallel servers, c
	- Capacity, K (equal to buffer + servers, may be infinite)
	- Arrival rate, λ
	- Service rate of one server, μ
	- Transition probabilities, p_{ii}
- § Arrival distribution
- § Queue discipline
- § Service distribution

Complete Kendall notation

 $A / S / c / K / P / QD$

- \blacksquare A: inter-arrival time distribution
- \blacksquare S: service time distribution
- \blacksquare \ulcorner c: number of servers
- K: total system size (∞)
- P: population size (∞)
- QD: Queue discipline (FIFO)

Kendall notation

$A / S / c / K / P / QD$

- Arrival (A) / Service (S) Process
	- Assumption: i.i.d
- Some standard code letters for A and S :
	- M : Exponential (*M* stands for memoryless/Markovian)
	- \bullet D: Deterministic
	- E_k : kth-order Erlang distribution
	- \cdot G: General distribution
- § Examples:
	- $D/D/1$, lends itself to a graphical analysis (Unit 1)
	- $M/M/c$

Number of servers

- Single server
	- One server for all queued customers
- **Multiple server**
	- Finite number of "identical" servers operating in a parallel configuration
- **•** Infinite-server
	- A server for every customer

Kendall notation

$A / S / c / K / P / QD$

- \blacksquare K: total system size, i.e. buffer size + number of servers
- Referred to as "capacity" in queueing theory
- $K < \infty$: finite capacity queues

Queue discipline

- Refers to the order in which members of the queue are selected for service
- § FIFO: first-in first-out (a.k.a. FCFS)
	- first customer to arrive is first to depart, no passing
	- Single road lane, airport check-in counters
- LIFO: last-in first-out
	- last customer into queue is first to leave
	- Unboarding cars from a ferry, unboarding a bus from behind
- § Priority
	- Customers get served in order of priority (highest to lowest)
	- Flight departures along a runway, priority seating when boarding flights
	- Yields / intersections: priority between approaches
- SIRO: service in random order
- § PS: processor sharing
- § FIFO is the most common discipline for most transportation applications

Queueing theory - keep in mind

- § Queueing theory can provide **insights** and approximation of the main system performance measures.
	- Can enable identification of the location of bottlenecks in networks,
	- Give indications on how to improve the system's performance.
- Most closed-form results involve stationary regime (steady-state) and low-order moments (mean, variance) of the inter-arrival and service time distributions
- **Trade-off: realistic model (few available results) vs. tractability** (assumptions are questionable)

Outline

- 1. Fundamental queueing models
- **2. Stationary analysis and Little's law**
- 3. M/M/1: Detailed analysis
- 4. More queues

Stationary analysis

- State of system: number n of customers in the system
- Steady state condition: system is independent of initial state and has reached its long-term equilibrium characteristics
	- A.k.a. steady state regime, stationary regime
- § Given:
	- λ = arrival
	- μ = service rate per server
	- $c =$ number of servers (parallel service channels)
- Quantities of interest:
	- \bullet N: expected number of users in queueing system $(\overline{N} = E[N])$
	- \overline{N}_q : expected number of users in queue $(\bar{N}_a = E[N_a])$
	- \overline{T} : expected time in queueing system per user $(\overline{T} = E[T])$
	- \bar{T}_q = expected waiting time in queue per user ($\bar{T}_q = E\big[T_q\big]$)
- **•** 4 unknowns \Rightarrow we need 4 equations
- Also of interest: (P_n) : stationary queue length distribution

• $\sum_{i=0}^{\infty} P_i = 1$

Stability

- A system is said to be **stable** if its long run averages (N, T) exist and are finite
- Consider an infinite capacity queue:
	- Traffic intensity (also called utilization factor):

$$
\rho = \frac{\lambda}{c\mu}
$$

- $cu:$ queue service rate.
- The queue is stable if and only if $\rho < 1$
- If a system is unstable, its long run measures are meaningless
- Note:
	- This is necessary only for infinite capacity queues
	- Finite capacity queues have bounded queue lengths, and are therefore always stable
	- Stable systems \rightarrow a steady state condition exists

Little's law

- John Little, MIT Institute Professor
- § Proof in: "A proof for the queuing formula: $L = \lambda W''$ (1961), Operations Research
- § [Little's Law as viewed on its 50th](https://www.informs.org/Blogs/Operations-Research-Forum/Little-s-Law-as-Viewed-on-its-50th-Anniversary) [Anniversary](https://www.informs.org/Blogs/Operations-Research-Forum/Little-s-Law-as-Viewed-on-its-50th-Anniversary) (INFORMS)
- $\overline{N} = \lambda \overline{T}$ (1)
	- \overline{N} : expected number of vehicles in the system
	- λ : system arrival rate
	- \bar{T} : expected time in the system
- § Assumption: The system is in a stationary regime
- No assumptions/restrictions on the:
	- inter-arrival and service time distributions
	- queue discipline
	- number of servers
- For several classes/categories of users, Little's law applies to each category
- § If you consider a finite time horizon (i.e. $\tau < \infty$) then stationarity is not required.

Little's Law (1961) [from Lecture 3]

Beauty is in its simplicity:

 $\overline{O} = \lambda \overline{w}$

- avg queue length = (avg arrival rate) x (avg waiting time)
- § Previous slide: deterministic proof.
- § Also holds for probabilistic settings. We'll revisit in Unit 2.
- § Assumptions:
	- System stability

1961, John Little CPU, DRAM, RAM, HDD) MIT Institute Professor See: "Little's Law as Viewed on its 50th Anniversary" (INFORMS)

- § Preview: Little's Law is independent of:
	- Arrival process distribution
	- Service distribution
	- Service order
	- Structure of queue(s)
	- Number of servers
	- Etc.
- § Applications:
	- Highway traffic, transit, airports
	- Shops
	- Manufacturing plants
	- Bank tellers
	- Emergency rooms
	- Operations management
	- Computer architecture (webserver requests,

Little's law

$$
\overline{N} = \lambda \overline{T} \tag{1}
$$

- \cdot \overline{N} : expected number of vehicles in the system
- \cdot λ : system arrival rate
- \overline{T} : expected time in the system

$$
\overline{N}_q = \lambda \overline{T}_q \tag{2}
$$

- \overline{N}_a : expected number of vehicles in the buffer
- \cdot λ : system arrival rate
- \bar{T}_q : expected time in the buffer

Relationships between \overline{N} , $\overline{N}_{\overline{q}},\, \overline{T},$ and $\overline{T}_{\overline{q}}$

- § Little's law:
	- $\overline{N} = \lambda \overline{T}$ (1)
	- $\overline{N}_q = \lambda \overline{T}_q$ (2)

$$
\overline{T} = \overline{T}_q + \frac{1}{\mu} \tag{3}
$$

• λ = arrival rate (Hz) \implies expected inter-arrival time = $\frac{1}{\lambda}$

•
$$
\overline{N} - \overline{N}_q = \frac{\lambda}{\mu}
$$
 (for M/M/1) (4)

• which represents the expected number of vehicles under service (in steady-state)

Obtain one of the performance measures, the other three can then be deduced

• Let's try to obtain \overline{N} .

- The determination of \overline{N} may be hard or easy depending on the type of queueing model at hand
- It is easy for $M/M/1$ and quite easy for $M/M/s$ and for $M/G/1$
- **•** In general: $\overline{N} = \sum_{n=0}^{\infty} n P_n$, where P_n is the probability that there are n customers in the system

Outline

- 1. Fundamental queueing models
- 2. Stationary analysis and Little's law
- **3. M/M/1: Detailed analysis**
- 4. More queues

Analysis of queueing models

- § Closed-form expressions for the main performance measures typically involve:
	- stationary regime (i.e. steady state analysis)
	- specific distributional assumptions
- § Computational techniques allow to numerically evaluate performance measures for more general queues, and also for transient regime (i.e. dynamic analysis)
- \blacksquare $M/M/1$ queueing system: "simple" to analyze
- § General strategy:
	- Compute steady state probabilities P_n
	- Compute $\overline{N} = \sum_{n=0}^{\infty} n P_n$
	- Obtain $\bar{N}_q, \, \bar{T}, \,$ and \bar{T}_q

Detailed analysis of $M/M/1$ queueing system

§ Inter-arrival times:

$$
f_X(t) = \lambda e^{-\lambda t} \quad t \ge 0; \quad E[X] = \frac{1}{\lambda}; \quad \sigma_X^2 = \frac{1}{\lambda^2}
$$

§ Service times:

$$
f_S(t) = \mu e^{-\mu t}
$$
 $t \ge 0$; $E[S] = \frac{1}{\mu}$; $\sigma_S^2 = \frac{1}{\mu^2}$

§ From the properties of exponential r.v.'s, the probabilities of transitions in the next Δt :

State transition diagram for $M/M/1$

■ States (nb of "customers" in the system):

 \odot Ω Θ $\left(\frac{1}{2} \right)$ \sim \sim $(r-1)$ $\binom{n}{n}$

The probability of observing a transition from state i to state j during the next Δt with the system in steady-state:

State transition diagram for $M/M/1$

- § Another way to represent this **State transition diagram**:
	- Nodes: states
	- Arcs: possible state transitions

Observing the diagram from two points

1. At a state:

2. Between states:

■ The two sets of equations yield the same solutions

$$
M/M/1: \text{deriving } P_0 \text{ and } P_n
$$
\n1. $P_1 = \frac{\lambda}{\mu} P_0, \quad P_2 = \left(\frac{\lambda}{\mu}\right)^2 P_0, \quad \dots, \quad P_n = \left(\frac{\lambda}{\mu}\right)^n P_0$ \n2. $\sum_{n=0}^{\infty} P_n = 1, \quad \Rightarrow P_0 \sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n = 1, \quad \Rightarrow P_0 = \frac{1}{\sum_{n=0}^{\infty} \left(\frac{\lambda}{\mu}\right)^n}$ \n3. For $|x| < 1, \quad \sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$ \n4. Define: $\rho = \frac{\lambda}{\mu}$ \n
$$
P_0 = \frac{1}{\sum_{n=0}^{\infty} \rho^n} = 1 - \rho
$$
\n
$$
P_n = \rho^n (1 - \rho)
$$

$M/M/1$: deriving \overline{N} , $\overline{N}_{\overline{q}}$, \overline{T} , and $\overline{T}_{\overline{q}}$

$$
\overline{N} = \sum_{n=0}^{\infty} nP_n
$$

=
$$
\sum_{n=0}^{\infty} n\rho^n (1 - \rho)
$$

=
$$
(1 - \rho) \sum_{n=0}^{\infty} n\rho^n
$$

=
$$
(1 - \rho)\rho \sum_{n=0}^{\infty} n\rho^{n-1}
$$

=
$$
(1 - \rho)\rho \frac{d}{d\rho} \sum_{n=0}^{\infty} \rho^n
$$

=
$$
(1 - \rho)\rho \frac{d}{d\rho} \left(\frac{1}{1 - \rho}\right)
$$

=
$$
(1 - \rho)\rho \left(\frac{1}{(1 - \rho)^2}\right)
$$

=
$$
\frac{\rho}{1 - \rho} = \frac{\frac{\lambda}{\mu}}{1 - \frac{\lambda}{\mu}} = \frac{\lambda}{\mu - \lambda}
$$

$$
\overline{T} = \frac{\overline{N}}{\lambda} = \frac{\lambda}{\mu - \lambda} \cdot \frac{1}{\lambda} = \frac{1}{\mu - \lambda}
$$

$$
\overline{T}_q = \overline{T} - \frac{1}{\mu} = \frac{1}{\mu - \lambda} - \frac{1}{\mu} = \frac{\lambda}{\mu(\mu - \lambda)}
$$

$$
\overline{N}_q = \lambda \overline{T}_q = \frac{\lambda^2}{\mu(\mu - \lambda)}
$$

Outline

- 1. Fundamental queueing models
- 2. Stationary analysis and Little's law
- 3. M/M/1: Detailed analysis
- **4. More queues**

$M/D/1$ queue

- § Has been used to model vehicles on a lane at signalized urban intersections
- § Exponentially distributed inter-arrival times
- Deterministic service distribution
- § One server
- Recall the traffic intensity: $\rho = \frac{\lambda}{\mu}$ μ
	- ρ : traffic intensity
	- \cdot λ : arrival rate [veh/unit time]
	- μ : service rate [veh/unit time]

$M/D/1$ queue

- For a stable queue ($\rho < 1$):
	- Expected number of vehicles in the buffer [veh]:

$$
N_q = \frac{\rho^2}{2(1-\rho)}
$$

• Expected waiting time in the buffer (per veh)

$$
T_q = \frac{\rho}{2\mu(1-\rho)}
$$

• Expected time in the system: sum of the expected waiting time and the expected service time:

$$
T = \frac{2 - \rho}{2\mu(1 - \rho)}
$$

- **Note**: traffic intensity: $\rho < 1$, then:
	- the $D/D/1$ queue predicts no queue formation,
	- models with probabilistic arrivals/departures (e.g. $M/D/1$) predict queue formations under such conditions.

$M/M/c$ queue

§ Arrivals at this system constitute a Poisson process, i.e., successive demand inter-arrival times are independent and have an exponential pdf given by:

$$
f_X(x) = \lambda e^{-\lambda x} \quad (x \ge 0)
$$

where X is the length of the inter-arrival time (i.e. the time between successive arrivals of demands at the queueing system).

- Thus, the expected time between successive demand arrivals is equal to $E[X] = \frac{1}{2}$ λ
- The expected number of demand arrivals per unit of time ("arrival rate") is equal to λ .
- § Service times at this system are mutually independent and have an exponential pdf given by:

$$
f_S(s) = \mu e^{-\mu s} \quad (s \ge 0)
$$

where S is the length of the service time.

• Thus, the expected service time is equal to $E[S] = \frac{1}{n}$ μ

$M/M/c$ queue

- This model is a reasonable assumption at toll booths on turnpikes or at toll bridges where there is often more than one toll booth open.
- **Traffic intensity / utilization factor:** $\rho = \frac{\lambda}{\gamma}$ $c\mu$
- Stability: $\frac{\lambda}{c\mu}$ ≤ 1
- **Stationary dbn:**

$$
P_k = \begin{cases} \frac{(\lambda/\mu)^k}{k!} P_0, & k = 1, 2, ..., c - 1\\ \frac{(\lambda/\mu)^k}{c! c^{k-c}} P_0, & k = c, c + 1, ...\\ P_0 = \left[\frac{(\lambda/\mu)^c}{c! (1 - \rho)} + \sum_{k=0}^{c-1} \frac{(\lambda/\mu)^k}{k!} \right]^{-1} \end{cases}
$$

§ Expected queue length (in the buffer)?

$M/M/c$ queue

- Little's formula: $T_q =$ $\frac{Nq}{\lambda}$
- $T = T_q + \frac{1}{\mu}$
- To obtain N :
	- 1. Little's formula: $N = \lambda T$ 2. $N = N_q + \frac{\lambda}{\mu}$