
6.867 Machine Learning Nov 12, 2019

Lecture 18: Deep Generative Models
Instructors: David Sontag (Lecturer), Devavrat Shah, Suvrit Sra Scribe: Zhongxia Yan

Note: the lecture notes have not been thoroughly checked for errors and are not at the level of publication.

1 Background

So far we’ve seen probabilistic models for a generative process with relatively simple latent factors, such
as Latent Dirichlet Allocation (LDA). We have also already seen the use of deep autoregressive generative
models for language modeling. In this lecture, we introduce the key ideas behind generative modeling,
revisit autoregressive models and briefly introduce generative adversarial networks, and focus most attention
on variational autoencoders.

2 Generative Modeling

Generative modeling is an unsupervised learning task. We are given finite samples of data vectors

D = {x | x ∼ pdata(x)}

D could be RGB images, spectrograms of music, etc. We would like to find a generative model with likelihood

pmodel(x ; θ) ≈ pdata(x)

To generate high dimensional data, generative models must model the underlying structure of the data. As
Richard Feynman famously said, “What I cannot create, I do not understand.”

Generative processes often describe the underlying generative process in a Bayesian network (directed
graphical model). For example, consider the toy generative process below

toy_gm.png

π(z) = N (0, Idz)

ρ(θ) = N (0, κ2Idθ)

h1 = θ0 + θ1z

h2 = exp(θ2)

p(x | z, θ) = N (h1, h2)

Figure 1: A toy generative process. Figure from ?

In this network, θ is the parameters of the model and z is the latent factor. In many generative processes,
the latent factor(s) z is distributed according to some prior distribution, which represents the underlying
variations in the world. For example, if we would like to generate a picture of a person, one latent factor that
affects generation could be the height of the person, and height in the real world is distributed according to
an approximately Gaussian distribution.

6.867 Machine Learning — Lec18 — 1

david_gm.png

Figure 2: An example generative process

As seen in Figure ??, the relationship between the generation x and the latent factors z may be compli-
cated in general, and is often encoded through a neural network.

Generative modeling is useful in several ways

• A generative model may be able to generate new instances of D. This could be artistic (i.e. if pictures or
paintings are generated). This could also be used to generate additional data for downstream machine
learning procedures, if the given data is insufficient.

• The effects of latent vectors z can be analyzed to see which latent factors are learned. This kind of
analysis may allow us to assign interpretations to each factor in the vector z, and understand which
factors contribute to variations in D.

3 Taxonomy of Generative Models

To approximate pdata(x), generative models maximize likelihood pmodel(x ; θ) for x ∈ D. This is either done
explicitly, i.e. define an explicit equation for pmodel(x ; θ) or implicitly, where the model directly learns to
sample from pmodel(x ; θ) without defining it explicitly.

6.867 Machine Learning — Lec18 — 2

taxonomy.png

Figure 3: Taxonomy of generative models, copied from ?

Here we will focus on the variational autoencoder, and briefly mention autoregressive model and gener-
ative adversarial network. In this course, we do not discuss Markov-chain based methods as well as other
explicit, tractable density models, but you may refer to ? for GSN, ? for Boltzmann machine, ? for NADE,
and ? for MADE.

4 Autoregressive Generative Model

Autoregressive models are generative models for sequential data. Since the data is sequential, the goal is to
learn to model

p(x) = p(x1, · · · , xN)

where x1, · · · , xN are tokens (e.g. words) in a sequence x (e.g. a sentence) of length N .
Autoregressive models factorize p(x) with the chain rule, allowing for explicit, tractable calculation of

p(x)

p(x1, · · · , xN) = p(x1)

N∏
i=2

p(xi | x1, · · · , xi−1)

The model fits p(xi | x1, · · · , xi−1) for any i, which is sufficient to estimate p(x).

6.867 Machine Learning — Lec18 — 3

autoregressive.png

Figure 4: Bayesian network of a sequence, figure from ?

As seen in previous lectures, one common choice of neural network architecture for autoregressive mod-
eling is the LSTM. Here the LSTM learns to model

p(xi | x1, · · · , xi−1) = p(xi | si(si−1, xi))

where si is the LSTM state after seeing xi and si−1.

lstm.png

Figure 5: LSTM autoregressive model, figure from ?

Since our model fits p(xi | x1, · · · , xi−1), we can easily sample x̂i given x1, · · · , xi−1. Thus to generate
a sequence, we first sample x̂1 from some prior distribution, then sample x̂2 by feeding x̂1 into our model,
then sample x̂3 by feeding x̂1 and x̂2 into our model, and so on. This is why this type of modeling is
“autoregressive”: the model receives its own previous prediction as an input for the next prediction.

5 Generative Adversarial Network (GANs)

Generative Adversarial Networks (GANs) are generative models involving two deep neural networks — the
generator G and the discriminator D — with opposing optimization goals. GANs model the data distribution

6.867 Machine Learning — Lec18 — 4

implicitly and in general cannot compute pmodel(x). Here we discuss using GANs to model images, but GANs
could be used to model arbitrary continuous (or roughly continuous, like pixel values) data.

gan.png

Figure 6: Components of a generative adversarial network

The generator takes in random noise z from some multivariate distribution (e.g. multivariate Gaussian)
and outputs an image G(z) with the same shape as the images in the training set. The discriminator takes
in either an image x from the training set or an image G(z) generated by the discriminator, and then
classifies the image as 1 (real, from training set) or 0 (fake, generated by discriminator). The generator and
discriminator are optimized alternatively.

The generator’s objective is to generate as realistic of an image as possible, i.e. to maximize D(G(z)),
which is the discriminator’s evaluation on how likely the generated image is to belong in the training distri-
bution.

min
G

Ez∼pnoise(z) [log(1−D(G(z)))]

6.867 Machine Learning — Lec18 — 5

The discriminator’s objective is to correctly evaluate whether an image is from the training distribution or
the generator’s output, i.e. to maximize D(x) for x from the training distribution and to minimize D(G(z))
forG(z) from the generator output. According to ?, a good discriminator should be able to identify differences
between the low-/high-order moments of the training distribution and the generated output.

max
D

[
Ex∼pdata(x) [logD(x)] + Ez∼pnoise(z) [log(1−D(G(z)))]

]
GANs are notoriously difficult to optimize, but in theory the optimal generative model is one that

perfectly generates the training distribution given z ∼ p(z). Notice that in this case, the discriminator would
satisfy D(x) = D(G(z)) = 1

2 , since the discriminator wouldn’t be able to distinguish x from the training
distribution and G(z) from the generator output.

GANs have been used to generate amazingly realistic images. We will not go more in detail about GANs
here, and you can refer to ? for further reading if curious.

6 Variational Autoencoders (VAEs)

Variational autoencoders explicitly model the lower bound for the likelihood pmodel(x), rather than modeling
the exact likelihood. VAEs innovate on concepts from autoencoder and variational learning.

6.1 Autoencoders

Let x1, . . . , xN ∈ Rd be some data type (e.g. images) and z ∈ Rm be a much smaller latent vector space
(m << d). In general, autoencoders consists of a pair of encoder and decoder networks. The encoder network
ẑ = E(x) projects the data into latent space Rk while the decoder network x̂ = D(ẑ) projects latent vector
ẑ = E(x) back into data space Rk. The goal for the encoder and decoder pair is to minimize reconstruction
error

N∑
i=1

‖x̂i − xi‖2 =

N∑
i=1

‖D(E(xi))− xi‖2

6.867 Machine Learning — Lec18 — 6

autoenc.png

Figure 7: An autoencoder, figure from ?

For example, principle component analysis (PCA) as seen previously can be considered as a linear autoen-
coder. PCA finds matrix U with shape d×m which minimizes projection error between x and x̂ = UUTx.
Here ẑ = E(x) = UTx and x̂ = D(E(x)) = UUTx.

6.867 Machine Learning — Lec18 — 7

pca.png

Figure 8: PCA as an autoencoder

m << d means that autoencoder perform dimensionality reduction on the data. ẑ = E(x) captures
meaningful factors of variation in x.

6.2 Variational Learning

Recall that for a generative model we are provided with data D = {x1, . . . , xN}, and we would like to
maximize the log-likelihood of the data

L(D ; θ) =
∑
xi∈D

log pθ(xi)

Variational learning assumes that the generative process behind the underlying data is factorized into
first generating zi then xi

1. zi ∼ p(z). This states that factors in the latent vector are distributed according to some prior distri-
bution (e.g. Gaussian). For example, height may be a latent factor with Gaussian distribution.

2. xi ∼ p(x | z). This states that, given zi, each xi is sampled from a conditional distribution. For
example, if we are trying to generate an image xi of a person and we are given the height, there is a
distribution of possible candidates to generate, given the height.

bayes_net.png

Figure 9: Bayesian network for a simple generative process

6.867 Machine Learning — Lec18 — 8

We model the above factors with pθ(z) and pθ(x | z), where θ is the parameters for the generation
network. We lower bound the likelihood for each data point

log pθ(xi) ≥ L(xi ; θ, qi) = Eqi(z) [log pθ(xi, z)] +H(qi(z))

where the right-hand side is the evidence lower bound (ELBO) and qi(z) is an approximation for p(z | xi).
We then maximize the lower bound

max
θ,q1,...,qN

N∑
i=1

L(xi ; θ, qi)

which brings qi(z)→ p(z | xi).

6.3 Recognition Network

Variational autoencoder combines applies probabilistic assumptions from variational learning to the autoen-
coder structure. The generation network from variational learning assumes the role of the decoder network.
As explained below, VAE introduces a recognition network (also called inference network) to assume the
role of the encoder network.

Recall that in variational learning, we optimize a qi for each xi in order to maximize the ELBO. On the
other hand, VAE replaces qi(z) with the recognition network output qφ(z | xi), parameterized by φ. The
learning objective becomes

max
θ,φ

N∑
i=1

L(xi ; θ, φ)

L(xi ; θ, φ) = Eqφ(z|xi) [log pθ(xi, z)] +H(qφ(z | xi))
The corresponding plate model is Figure ??. The solid arrows denote the generation process pθ(z) and

pθ(x | z), while the dotted arrows denote the recognition process qφ(z | x).

bayes_net_vae.png

Figure 10: Bayesian network for a VAE

While variational learning has O(N) parameters for q1, . . . , qN , the variational autoencoder has a recog-
nition network whose parameters φ are shared across all the data points and thus O(1).

We show here that using a logistic regression with linear features as qφ(z | x) is sufficient to exactly
represent a Naive Bayes generative process with Bernoulli p(xi | z). We stipulate that x ∈ {0, 1}d and
z ∈ {0, 1}. Suppose that the generative process is

1. Sample a binary latent z ∼ p(z)

2. We choose x ∼ p(x | z). In particular we assume conditional independence (hence Naive Bayes) and

assume p(x | z) =
∏d
i=1 p(xi | z), where p(xi | z) is a Bernoulli distribution

p(xi | z = 0) = αxi(1− α)1−xi

p(xi | z = 1) = βxi(1− β)1−xi

6.867 Machine Learning — Lec18 — 9

Given this formulation of a generative process, we can show that p(z | x) is in the form of a linear feature
logistic regression.

p(z = 0 | x) =
p(x, z = 0)

p(x)

=
p(x, z = 0)

p(x, z = 0) + p(x, z = 1)

=
1

1 + p(x,z=1)
p(x,z=0)

=
1

1 + exp
(
− ln p(x,z=0)

p(x,z=1)

)
= σ

(
ln
p(x, z = 0)

p(x, z = 1)

)
= σ

(
ln
p(z = 0)

∏d
i=1 p(xi | z = 0)

p(z = 1)
∏d
i=1 p(xi | z = 1)

)

= σ

(
ln
p(z = 0)

p(z = 1)
+

d∑
i=1

ln
p(xi | z = 0)

p(xi | z = 1)

)

= σ

(
ln
p(z = 0)

p(z = 1)
+

d∑
i=1

ln
αxi(1− α)1−xi

βxi(1− β)1−xi

)

= σ

(
ln
p(z = 0)

p(z = 1)
+

d∑
i=1

[
xi ln

α

β
+ (1− xi) ln

1− α
1− β

])

= σ

(
d+ ln

p(z = 0)

p(z = 1)
+

d∑
i=1

xi

[
ln
α

β
− ln

1− α
1− β

])

= σ

((
d+ ln

p(z = 0)

p(z = 1)

)
+

d∑
i=1

xi ln
α(1− β)

β(1− α)

)

= σ(b+

d∑
i=1

xiwi)

= σ(b+ wTx)

Therefore, we can exactly represent p(z | x) with a linear-feature logistic regression qφ(z | x). We next
discuss how to compute the ELBO and its gradient in order to maximize the ELBO.

6.4 Algorithm

We are ready to state the algorithm for training a variational autoencoder for a dataset D with doubly
stochastic gradient ascent.

On input dataset D:

1. Sample x ∼ D

2. Sample z1, . . . , zK ∼ qφ(z | x)

3. Estimate ELBO

6.867 Machine Learning — Lec18 — 10

Eqφ(z|xi) [log pθ(xi, z)] ≈ 1
K

∑K
k=1 log pθ(xi, zk)

H(qφ(z | xi)) can often be calculated analytically

4. Estimate gradients. We discuss how to estimate ∇θL(x ; θ, φ) and ∇φL(x ; θ, φ) below

5. Update θ and φ with stochastic gradient ascent

θ ← θ + ηθ∇θL(x ; θ, φ)

φ← φ+ ηφ∇φL(x ; θ, φ)

6. Go to step 1

6.4.1 Estimating Gradients

We would like to compute ∇θL(x ; θ, φ) and ∇φL(x ; θ, φ) so we can perform gradient ascent.

∇θL(x ; θ, φ) = ∇θ
[
Eqφ(z|x) [log pθ(x, z)] +H(qφ(z | x))

]
= ∇θEqφ(z|x) [log pθ(x, z)] since second term has no θ

= Eqφ(z|x) [∇θ log pθ(x, z)] since expectation does not involve θ

≈ 1

K

K∑
k=1

∇θ log pθ(x, zk)

Thus we can calculate an estimation for ∇θL(x ; θ, φ) with a sample xi ∼ D and samples z1, . . . , zK ∼ qφ(z |
xi).

We derive a trick that we will use shortly for calculating ∇φL(xi ; θ, φ)

∇φ log(qφ(z | x)) =
1

qφ(z | x)
∇φqφ(z | x)

∇φqφ(z | x) = qφ(z | x)∇φ log qφ(z | x) after rearranging

We define g(z, φ) = log pθ(x, z)− log qφ(z | x)

We start from an equivalent equation for L

L(x ; θ, φ) = Eqφ(z|x)
[

log pθ(x, z)

qφ(z | x)

]
= Eqφ(z|x) [g(z, φ)]

∇φL(x ; θ, φ) = ∇φEqφ(z|x) [g(z, φ)]

= ∇φ
∫
qφ(z | x)g(z, φ)dz

=

∫
∇φ [qφ(z | x)g(z, φ)] dz

=

∫
g(z, φ)∇φqφ(z | x) + qφ(z | x)∇φg(z, φ)dz

=

∫
g(z, φ)qφ(z | x)∇φ log qφ(z | x) + qφ(z | x)∇φg(z, φ)dz using above trick

= Eqφ(z|x) [g(z, φ)∇φ log qφ(z | x) +∇φg(z, φ)]

= Eqφ(z|x) [g(z, φ)∇φ log qφ(z | x)] + Eqφ(z|x) [∇φg(z, φ)]

6.867 Machine Learning — Lec18 — 11

We simplify the second term

Eqφ(z|x) [∇φg(z, φ)] = Eqφ(z|x) [∇φ (log pθ(x, z)− log qφ(z | x))]

= −Eqφ(z|x) [∇φ log qφ(z | x)] since first term doesn’t depend on φ

= −Eqφ(z|x)
[

1

qφ(z | x)
∇φqφ(z | x)

]
using above trick

= −
∫
∇φqφ(z | x)dz

= −∇φ
∫
qφ(z | x)dz

= −∇φ1 since q is a normalized distribution

= 0

Thus we have

∇φL(x ; θ, φ) = Eqφ(z|x) [g(z, φ)∇φ log qφ(z | x)]

= Eqφ(z|x) [(log pθ(x, z)− log qφ(z | x))∇φ log qφ(z | x)]

≈ 1

K

K∑
k=1

(log pθ(x, zk)− log qφ(zk | x))∇φ log qφ(zk | x)

Thus we can calculate an estimation for ∇φL(x ; θ, φ) with a sample xi ∼ D and samples z1, . . . , zK ∼ qφ(z |
xi).

The gradient ∇φL is known as the likelihood ratio or REINFORCE gradient, while this method also has
the name of score-function estimator.

• Advantage: fully general and applies to any diffentiable density involving continuous or discrete random
variables

• Advantage: unbiased estimator for ∇φL

• Disadvantage: can have high variance

6.4.2 Pathwise Gradient Estimators (Reparameterization Trick)

The pathwise gradient estimator, also known as reparameterization trick, offers a low-variance alternative to
the score-function estimator for ∇φL for certain distributions (e.g. Gaussian).

Notice how earlier we could not move the ∇φ into the expectation

∇φL(x ; θ, φ) = ∇φEqφ(z|x) [g(z, φ)]

because the expectation operator Eqφ(z|x) is over qφ(z | x).
Instead of taking the expectation over z ∼ qφ(z | x), we may be able to replace this with an expectation

over ε ∼ p(ε) if we can find differentiable hφ such that z = hφ(x, ε). Essentially, this isolates the randomness

6.867 Machine Learning — Lec18 — 12

in the qφ(z | x) distribution into a p(ε) distribution which does not depend on φ. Then we can substitute

Ez∼qφ(z|x) [g(z, φ)] = Eε∼p(ε) [g(h(x, ε), φ)]

∇φEz∼qφ(z|x) [g(z, φ)] = ∇φEε∼p(ε) [g(h(x, ε), φ)]

= Eε∼p(ε) [∇φg(h(x, ε), φ)]

= Eε∼p(ε) [∇φ (log pθ(x, h(x, ε))− log qφ(h(x, ε) | x))]

= −Eε∼p(ε) [∇φ log qφ(h(x, ε) | x)] the first term does not depend on φ

≈ 1

K

K∑
k=1

∇φ log qφ(h(x, εk) | x)

Thus the ∇φL can easily be approximated over a sample xi and samples ε1, . . . , εK .

• Advantage: lower variance than score-function estimator

• Disadvantage: does not work for all distributions

6.5 Application: Latent Gaussian Models

In this setup, we stipulate a generative process for D = {x1, . . . , xN}

• z ∼ N (0, I) is a sample from the prior latent vector distribution

• x ∼ N (fθ(z), I) is a sample from the conditional distribution of the generative network

We define a Gaussian recognition network q(z | x)

• z ∼ N (fφ(x), I) is a sample from the posterior latent vector distribution

We can run the VAE algorithm stated above on example.

1. Sample x ∼ D

2. Sample z1, . . . , zk ∼ N (fφ(x), I)

3. Estimate ELBO

Eqφ(z|xi) [log pθ(xi, z)] ≈ 1
K

∑K
k=1 log pθ(zk)pθ(x | zk). Both terms can be evaluated easily

H(qφ(z | xi)) sole depends on the covariance, which is constant and can be derived

4. Estimate gradients.

∇θL(x ; θ, φ) ≈ 1
K

∑K
k=1∇θ log pθ(x, zk). This can be calculated through backpropagation

∇φL(x ; θ, φ) ≈ 1
K

∑K
k=1∇φ log p(εk). This can easily be calculated, see below for derivation

5. Update θ and φ with stochastic gradient ascent

θ ← θ + ηθ∇θL(x ; θ, φ)

φ← φ+ ηφ∇φL(x ; θ, φ)

6. Go to step 1

We derive ∇φL using the pathwise gradient estimator. We can reparameterize

z = h(x, ε) = fφ(x) + ε

where ε ∼ N (0, I). Thus
qφ(h(x, εk) | x) = qφ(fφ(x) + ε | x) = p(ε)

6.867 Machine Learning — Lec18 — 13

