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Traffic light optimization with low penetration rate 
vehicle trajectory data (Nature Communication, 2024)
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§ Overall result: Decreased the delay and number of stops at 
signalized intersections by up to 20% and 30% with data from as low 
as 6% vehicle penetration.

X. Wang et al., “Traffic light optimization with low penetration rate vehicle trajectory data,” Nat Commun, vol. 15, no. 1, Art. no. 1, Feb. 2024, doi: 10.1038/s41467-024-45427-4.

https://doi.org/10.1038/s41467-024-45427-4
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Ideas from Unit 1+2
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§ Time-space diagram
§ Newell’s car following model
§ Stochastic arrival process
• Bernoulli distribution!

X. Wang et al., “Traffic light optimization with low penetration rate vehicle trajectory data,” Nat Commun, vol. 15, no. 1, Art. no. 1, Feb. 2024, doi: 10.1038/s41467-024-45427-4.

§ Discrete event simulation
§ G/D/1 queue
à Probabilistic time-space (PTS) 
diagram

https://doi.org/10.1038/s41467-024-45427-4
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Outline

1. Introduction to simulation

2. Discrete event simulation

3. Transient analysis

4. Mixed continuous and discrete event simulation
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Outline

1. Introduction to simulation
a. Urban traffic simulation
b. Simulation pro's and con’s

2. Discrete event simulation

3. Transient analysis

4. Mixed continuous and discrete event simulation
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Traffic simulation

§ Source: "Scale and Complexity Tradeoffs In Surface Transportation Modeling",  Karl E. Wunderlich.

Metro  
Reglon

Urban
Corridor

Freeway  
Segment

Single
Interchange

Liquid
Flow

Particle  

Flow

Car
Followlng

Intra-vehicle
Dynamics

Macro

Meso

Micro

Nano

9



Wu

Stochastic simulation models
§ Def. Simulation: Modeling approach, the aim of which is to 

approximate (i.e.  simulate) the systems' behaviour with the help of 
models that:
• are computer-based models that try to imitate the behavior of a physical  

system
• account for uncertainty: computationally mimic randomness, i.e.  simulate 

random events
§ Why simulate?
• Simple simulations enable further understanding the concepts of random 

variables, their distributions and realizations
• Understanding the main underlying concepts of a simulation model enables: 

understanding the complexity and need for a rigorous validation of 
simulation models and statistical analysis of outputs
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Simulation pro's and con’s
§ Advantages

• May be suitable for problems that are not analytically tractable
• Greater level of modeling detail (does not necessarily mean increased realism)
• Allows for simulated experiments of otherwise costly (e.g. high risk) or  infeasible 

field experiments
• What-if analysis: trial and error procedure
• Useful to test the validity of mathematical assumptions (e.g. to validate  analytical 

models)
§ Disadvantages

• What-if analysis: difficult to develop causal relationships
• Computationally expensive mathematical tool (need for many replications)
• Proper statistical analysis of the outputs is complex
• Detailed model requires very detailed data to be formulated and calibrated
• Data quality, "garbage-in, garbage-out"
• Difficult to use to perform optimization (simulation-based optimization)

§ Just as analytical models, simulation models are based on numerous 
assumptions  and approximations, use it with caution and keep in mind that 
it's a simplification of reality, i.e. a MODEL!
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Stochastic simulation models
§ How to simulate a simple queue?
§ How to advance time?
§ Need to mimic randomness in a computer, i.e. simulate random 

events
• How to generate random numbers?
• How to generate random observations from a probability distribution?
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Outline

1. Introduction to simulation

2. Discrete event simulation
a. Simulation of an 𝑀/𝑀/1 queueing system
b. Random number generation
c. Replications

3. Transient analysis

4. Mixed continuous and discrete event simulation
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Simulation models for queuing systems
Discrete-event simulation (DES)
§ Continuous-time: event driven simulation
§ The system is modeled by a set of discrete states
§ The system can change states when an event occurs
§ Between events the system does not change states
§ Identify the events that lead to state changes
§ For each event, describe:
• the new state
• changes in the system attributes
• triggered events

§ The simulator keeps an event list of the events that are scheduled to happen 
with their scheduled time
The events are ordered chronologically

§ Once an event is carried out, the simulation dock is advanced to the time the 
next event is scheduled to start
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Discrete event simulation model: M/M/1
§ State of the system: 𝑁 𝑡  = number of customers in the queueing system at 

time 𝑡
§ Events:

• arrival of a new customer
• service completion for the customer currently in service

§ Update system state and record information at time of each event
§ State transition mechanism for event-driven simulation:

𝑁 𝑡 = 	%
𝑁 preceding	event + 1, if	an	arrival	occurs	at	time	𝑡	
𝑁 preceding	event − 1, if	a	service	completion	occurs	at	time	𝑡

§ Simulation end: if the simulation clock exceeds a pre-specified (simulation) 
time or number of customers observed reaches a specified limit

§ How to obtain the time and type of next event?
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Discrete Event Simulation Model: M/M/1
§ 𝐴!: arrival time of customer 𝑛
§ 𝐷!: departure time (service completion time) of customer 𝑛
§ 𝐻!: inter-arrival (arrival headway) time of customer 𝑛
§ 𝑆!: service time of customer 𝑛
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Random number generation
§ Approach

1. Generate "independent" draws from a uniform distribution,
2. Then generate draws from an arbitrary distribution
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Uniform random numbers
§ A “random number” for computer simulation purposes is a random 

observation  from the uniform distribution on the interval [0, 1], i.e., 
sampled from 𝑈 0,1

§ Most software have functions that allow easy generation of random 
numbers.
• Successive random numbers generated by random.random() can be 

considered mutually independent samples from 𝑈 0,1 	
§ In Python: import random; random.random()
§ In Excel: RAND()

• To return a matrix (n-by-m) of observations that can also be considered 
mutually independent samples from 𝑈 0,1 	
§ In Python: import numpy as np; np.random.rand(n, m)
§ In Matlab: rand(n,m)

21
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Uniform random numbers
§ Pseudorandom number generator:

• A deterministic algorithm for generating a sequence of numbers that  
approximates the properties of random numbers

§ Most software use linear-congruential methods which involve modulo 
arithmetic  Recursive algorithm:

𝑟!"# = 𝑘𝑟! + 𝑎 	mod	𝑚
where 𝑘, 𝑎, and 𝑚 are positive integers (𝑘	 < 	𝑚, 𝑎	 < 	𝑚).
Choose 𝑟$, the seed

§ What is a good random number generator?
1. a long (maximum) period between repeat cycles
2. covers unit interval uniformly
3. same for higher dimensional unit-cubes
4. does not show obvious patterns
5. fools statistical tests when used in simulations
6. efficiency of the algorithm
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§ Based on 𝑈 0, 1  variables, generate variables from an arbitrary 
discrete dbn

§ Discrete r.v. 𝑋 has pmf:
𝑃 𝑋 = 𝑥" = 𝑚" , 𝑘 = 1,… , 𝐾	

§ Split the unit interval into 𝐾 subintervals of length 𝑚#, 𝑚$, … ,𝑚%
§ Draw a uniform random number 𝑟 in [0, 1]
§ If 𝑟 falls into the subinterval belonging to 𝑚"  then the r.v. realization 

is 𝑋 = 𝑥"
§ Implementation:

1. Let 𝑟 be a draw from 𝑈 0, 1
2. Initialize 𝑘 = 0, 𝑝 = 0
3.  𝑝 = 𝑝 +𝑚!
4. If 𝑟 < 𝑝, set 𝑋 = 𝑥!  and stop.
5. Otherwise, set 𝑘	 = 	𝑘	 + 	1 and go to step 3.

Discrete random number generation
23
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§ Most popular method: Inverse transform 
method (a.k.a. inverse function method)
• Draw a uniform number 𝑟 in 0,1
• Set 𝑥 = 𝐹"#$(𝑟)

§ Based on the following property:
• Let 𝑋 be a continuous r.v. with cdf 𝐹% 𝑥
• Let 𝑈 be a r.v. uniformly distributed over 0,1
• Then a new r.v. Y = 𝐹%#$ 𝑈  has 𝐹% as its CDF
• 𝑃 𝐹%#$ 𝑈 ≤ 𝑟 = 𝐹%(𝑟)

§ Note: the cdf is not always available in 
closed-form: e.g. normal dbn

Continuous random number generation
25
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Example: exponential r.v.
sampleSize = 1000;
lambda = 0.5;

r = rand(sampleSize,l);
x = -log(r)/lambda;

r x

histogram(x)

0 01000 1000
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Discrete Event Simulation Model: M/M/1
§ 𝐴!: arrival time of customer 𝑛
§ 𝐷!: departure time (service completion time) of customer 𝑛
§ 𝐻!: inter-arrival (arrival headway) time of customer 𝑛
§ 𝑆!: service time of customer 𝑛

§ &𝐴" = 0	
𝐴! = 𝐴!#" + 𝐻!, 𝑛 = 2, 3, …

§ &
𝐷" = 𝑆"	
𝐷! = 𝑆! +max 𝐴!, 𝐷!#" , 𝑛 = 2, 3, …

where max 𝐴!, 𝐷!#"  represents the time that service starts for customer 𝑛
§ 𝐻! and 𝑆! are generated from two exponential random variables. How can we  generate these?

                            2
𝐻! = − $% &!

' = − $% &(!)()
'

𝑆! = − $% &"
, = − $% &(!)()

,

28
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Replications
31
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Reminder: Central Limit Theorem
Let 𝑋#, 𝑋$, … , 𝑋! be a set of 𝑛 independent and identically distributed 
random variables with mean 𝜇 and a finite variance 𝜎$. Let the sample 
average be defined as

𝑆! ≔
𝑋# +⋯+ 𝑋!

𝑛

As 𝑛 → ∞
𝑆! → 𝒩 𝜇, σ$/n

Regardless of distribution of 𝑋&!

33



Wu

Replications
§ The outputs from a simulation model are random variables
§ Running the simulator provides realizations of these r.v.
§ Replications allow us to:

• Obtain independent observations.
This allows us to apply classical statistical methods to analyze the outputs:
e.g. central limit theorem, confidence intervals

• Estimate system performance measures (e.g. empirical cdf) that enable us to  
understand the "typical" behavior of the system

• Have an idea of the underlying (unknown and often) complex distribution of  the 
output variable

§ How to obtain different replications with a simulation software?
• For a given replication the sequence of random numbers are generated  starting 

with an initial number, called the seed
• Each time you launch the simulation with the same seed, you obtain identical  

results
• Saving/knowing the seed, allows you to reproduce your results
• Launching the simulation with different seeds, yields different realizations
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Statistical issues
§ The statistical analysis of the results of a simulation can be difficult
§ Impact of initial conditions (warm-up period, before reaching a 

steady state)
§ Selection of starting conditions
§ Correlation between successive observations/samples (e.g., waiting 

times of passengers in a system)
§ Number and length of required replications:
• Many replications vs. single long replication (which is then partitioned)

§ Confidence intervals
§ Statistical tests

37



Wu

Simulation project
The bigger picture:
§ Problem definition
§ Model formulation
§ Data collection
§ Model development
§ Verification
§ Validation
§ Experiments (e.g. what-if analysis)
§ Results: analysis and presentation
§ Implementation
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Outline

1. Introduction to simulation

2. Discrete event simulation

3. Transient analysis

4. Mixed continuous and discrete event simulation
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Transient analysis for urban traffic
Dynamic analysis of one link over 1000 s
§ Initially empty link, arrival rate that is 0.3 veh/s for the first 500 s 

and then jumps down to 0.1 veh/s, where it stays for the remaining 
500 s

§ The downstream flow capacity (service rate) of the link is 0.2 veh/s
• Thus the first half of the demand exceeds the link’s bottleneck capacity, 

whereas the second half can be served
§ Dynamic analysis of queue build-up and dissipation

40
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Transient analysis for urban traffic

§ (1) Arrivals, (2) Inflow, (3) Outflow
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Transient analysis for urban traffic

1. Probability that there is no spillback 
2. Probability that a vehicle is ready to leave the link 
3. Relative occupancy (expected number of vehicles divided by 

maximum number of vehicles)
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Transient analysis
§ Relax the assumption of stationarity
§ Analyze the transient (dynamic) behavior of a queue
§ Transition rate (linear) differential equations for a birth-death process:

𝑑𝑃! 𝑡
𝑑𝑡

= − 𝜆! + 𝜇! 𝑃! 𝑡 + 𝜇!"#𝑃!"# 𝑡 + 𝜆!%#𝑃!%# 𝑡 , ∀𝑛 ≥ 1

𝑑𝑃$ 𝑡
𝑑𝑡

= −𝜆$𝑃$ 𝑡 + 𝜇#𝑃# 𝑡 	

§ Can be written as:
𝑑𝑃 𝑡
𝑑𝑡

= 𝑃 𝑡 𝑄
§ This linear system of differential equations has general solution:

𝑃 𝑡 = 𝑃 0 𝑒&'
§ Numerical methods used to evaluate 𝑃 𝑡
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Transient analysis
§ M/M/1/K queue

𝑃! 𝑡 = 𝑠! + 𝜌
!
$D
'(#

%

𝐶' sin
𝑗𝑛𝜋
𝐾 + 1	

− 𝜌 sin
𝑗 𝑛 + 1 𝜋
𝐾 + 1

𝑒)&*

𝜏' = 𝜆 + 𝜇 − 2 𝜆𝜇 cos
𝑗𝜋

𝐾 + 1	

where 𝑠 is the stationary dbn, and the coefficients {𝐶'} are chosen to 
fit the initial values of the transient distribution.

§ There are few closed-form expressions for transient distributions
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Outline

1. Introduction to simulation

2. Discrete event simulation

3. Transient analysis

4. Mixed continuous and discrete event simulation
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(Simple) multi-lane modeling

Stochastic single-lane model

Pdisappear high

Pappear high

Pappear low

Pdisappear low

hi(k)

xi-1(k), vi-1(k)

xi(k), 
vi (k)

Wu, Cathy, Eugene Vinitsky, Aboudy Kreidieh, and Alexandre Bayen. "Multi-lane 
reduction: A stochastic single-lane model for lane changing." IEEE ITSC, 2017.
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Model Calibration - Probabilities
Extract	headways	when	lane	changes	occur
Fit	to	log-normal	distribution

Fit	of	log-normal	distribution	for	the	total	distribution	of	
headways	and	the	conditional	distribution	of	headways	when	a	
vehicle	lane	changes	into	a	lane,	respectively,	computed	for	7:50	
am	on	the	US	101.	

Slide credit: Eugene Vinitsky
Wu, Cathy, Eugene Vinitsky, Aboudy Kreidieh, and Alexandre Bayen. "Multi-lane 
reduction: A stochastic single-lane model for lane changing." IEEE ITSC, 2017.
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Lane change out
Closing the gap

Lane change in
Gap opening

slope = velocity

Wu, Cathy, Eugene Vinitsky, Aboudy Kreidieh, and Alexandre Bayen. "Multi-lane 
reduction: A stochastic single-lane model for lane changing." IEEE ITSC, 2017.

Time-space diagram 48
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