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1. Morales, Miguel. Grokking deep reinforcement learning. 
2020. Chapter 2: Mathematical Foundations of Reinforcement 
Learning. [URL]

2. (Optional) Morales, Miguel. Grokking deep reinforcement 
learning. 2020. Chapter 1: Introduction to Deep 
Reinforcement Learning. [URL]

Readings
2

https://www.manning.com/books/grokking-deep-reinforcement-learning
https://www.manning.com/books/grokking-deep-reinforcement-learning
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Unit 3: Machine learning for traffic control
3

LAB 4: Solve the traveling 
salesman problem 

LAB 3: Build an AI agent 
to optimize traffic 
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Markov decision 
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Integer 
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Time-space 
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LAB 1: Build your 
own traffic jam

Sequential 
decision 

problems

LAB 2: Build a queuing 
model for Seattle transit 

Facility dynamics

Discrete event 
simulation

Markov chains
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Traffic flow 
theory

Simplex method
Vehicle 

dynamics
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Outline

1. Reinforcement learning for transportation

2. Markov Decision Process (MDP)

3. The optimization problem

4. Emergency medical service (EMS) vehicle problem

5



Wu

Outline

1. Reinforcement learning for transportation
a. For real-time decision making (online)
b. For modeling system behavior (offline)

2. Markov Decision Process (MDP)

3. The optimization problem

4. Emergency medical service (EMS) vehicle problem

6
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RL for real-time transportation decision making
7

B. Han, H. Lee, and S. Martin, “Real-Time Rideshare Driver Supply Values Using Online Reinforcement Learning,” in ACM SIGKDD Conference on Knowledge Discovery and Data Mining, in KDD ’22. Aug. 2022. doi: 10.1145/3534678.3539141.
X. Azagirre et al., “A Better Match for Drivers and Riders: Reinforcement Learning at Lyft.” INFORMS Journal on Applied Analytics, 2023. doi: 10.48550/arXiv.2310.13810.

https://doi.org/10.1145/3534678.3539141
https://doi.org/10.48550/arXiv.2310.13810
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Real-time ridesharing optimization modules

X. Azagirre et al., “A Better Match for Drivers and Riders: Reinforcement Learning at Lyft.” INFORMS Journal on Applied Analytics, 2023. doi: 10.48550/arXiv.2310.13810.

Figure 1. The Graphic Illustrates the Interconnected Optimization Modules that Power a Ridesharing Network

The optimizing occurs not once, but repeatedly over time!

https://doi.org/10.48550/arXiv.2310.13810
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9Real-time rideshare: Non-sequential vs sequential 
decision making

X. Azagirre et al., “A Better Match for Drivers and Riders: Reinforcement Learning at Lyft.” INFORMS Journal on Applied Analytics, 2023. doi: 10.48550/arXiv.2310.13810.

Figure 3. On the Left, the Graphic Illustrates a Stylized Example of a Ridesharing Matching 
Batch with Two Riders (1 and 2) and Two Available Drivers (A and B); on the Right, It Illustrates 
How Lyft Solves the Online Matching Problem as a Sequence of Batch Matching Decisions

https://doi.org/10.48550/arXiv.2310.13810
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Supply Value Dispatch

Instead, want the match to 
capture long-term value! 

10

Real-time rideshare matching

B. Han, H. Lee, and S. Martin, “Real-Time Rideshare Driver Supply Values Using Online Reinforcement Learning,” in ACM SIGKDD Conference on Knowledge Discovery and Data Mining, in KDD ’22. Aug. 2022. doi: 10.1145/3534678.3539141.

Bipartite Matching

Driver 𝑖 ∈ {1, … ,m}
Request 𝑗 ∈ {1, … , n}
Assignment 𝑎!" ∈ {0,1}
Immediate reward 𝑟!"
Probability of cancellation 𝑝!"

At each round (every 4 seconds), solve:

https://doi.org/10.1145/3534678.3539141
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Sequential decision making
11

§ More generally, sequential decision making is a suitable framework 
for modeling a problem when making decisions based on immediate 
information is expected to be suboptimal.
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Real-time rideshare: Online Supply Value estimates
§ What isn’t accounted for in immediate decision making

§ Reinforcement learning is about learning the long-term value of a decision
B. Han, H. Lee, and S. Martin, “Real-Time Rideshare Driver Supply Values Using Online Reinforcement Learning,” in ACM SIGKDD Conference on Knowledge Discovery and Data Mining, in KDD ’22. Aug. 2022. doi: 10.1145/3534678.3539141.

https://doi.org/10.1145/3534678.3539141
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RL for modeling transportation system behavior
13

§ Traffic flow smoothing with 
automated vehicles

§ What if even one of these 
vehicles is not self-driving?

§ Will we see benefits to the 
system before 100% 
adoption? (2050+)

Wu, et al., “Flow: A Modular Learning Framework for Mixed Autonomy Traffic.” IEEE T-RO, 2021. https://arxiv.org/abs/1710.05465

[Tesla Model S] Waymo

https://arxiv.org/abs/1710.05465
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Sequential decision making
14

§ More generally, sequential decision making is a suitable framework 
for modeling a problem when making decisions based on immediate 
information is expected to be suboptimal.

§ For real-time decision making (online)
§ For understanding system behavior (offline)
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Autonomous mobility as a design space
15

1-20 
vehicles,
1 road

Existing work
Environmental Land use

SafetyEconomic

BENEFITS

Access Behavior drift
Public trust

HUMAN FACTORS

Private vs fleet

Multiple operators
Shared rides

MARKET DESIGN

Multi-modal integration

V2V, V2I communication
Operational design domain

Infrastructure support

TECHNOLOGY DESIGN

Adoption rate
Network topology

Levels of autonomy

NETWORK SCENARIO

Scale

Operation Risks
Incentives

COSTS
Taxes

Technology

• Autonomy enables control and coordination of 
vehicles. To what end? How effectively? At what cost?

• A combinatorial problem space
• Multiple objectives
• Diverse scenarios
• Spectrum of autonomy technologies

• Multi-agent interactions
• Evolving design specifications
• RL provides methods for rapid system analysis.
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RL + traffic LEGO blocks
16

5-30% CAVs à 13-120% improvement 

Yan, Kreidieh, Vinitsky, Bayen, Wu. Unified Automatic Control of Vehicular Systems With Reinforcement Learning. 
IEEE Transactions on Automation Science and Engineering (T-ASE) 2022 and IROS 2022.
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Outline

1. Reinforcement learning for transportation

2. Markov Decision Process (MDP)
a. The interaction loop
b. The modeling framework
c. Real-time ridesharing (2022)
d. Exploration vs exploitation

3. The optimization problem

4. Emergency medical service (EMS) vehicle problem

17
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Introduce the characters*
18

EnvironmentAgent

* pun intended

Action

Observation and reward

State

Transition

Improve

§ Interaction loop

𝜋

𝑜! , 𝑟!

𝜋" ← 𝜋

𝑎!

𝑓, 𝑃

𝑠!

Goal: maximize reward over time (returns, cumulative reward)
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Outline

1. The main characters – the interaction loop

2. Markov Decision Process (MDP)
a. The optimization problem
b. Examples
c. Assumptions
d. Policy

3. Modeling sequential decision problems as MDPs

4. Emergency medical service vehicle problem

19
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Recall: the characters*
20

EnvironmentAgent

* pun intended

Action

Observation and reward

State

Transition

Improve

§ Interaction loop

Goal: maximize reward over time (returns, cumulative reward)

𝜋

𝑜! , 𝑟!

𝜋" ← 𝜋

𝑎!

𝑓, 𝑃

𝑠!

ℳMarkov Decision Process (MDP) 
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Assume for now: finite horizon problems, i.e. 𝑇 < ∞

21

Used when: there is an intrinsic deadline to meet.

Later: infinite horizon
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22

Example: The Amazing Goods Company Example

Inventory  
Systemst

Stock at month t

Reward of month t

D t  Demand at month t

Stock at month t +1

Stock Ordered at month t  
at
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Example: The Amazing Goods Company Example
§ Description. At each month 𝑡, a warehouse contains 𝑠! items 

of a  specific goods and the demand for that goods is 𝐷	
(stochastic). At the end of each month the manager of the 
warehouse can order  𝑎! more items from the supplier.

§ The cost of maintaining an inventory of 𝑠 is ℎ(𝑠).
§ The cost to order 𝑎 items is 𝐶(𝑎).
§ The income for selling 𝑞 items if 𝑓(𝑞).
§ If the demand 𝑑~𝐷 is bigger than the available 

inventory 𝑠, customers that cannot be served leave.
§ The value of the remaining inventory at the end of the 

year is 𝑔 𝑠 .
§ Constraint: the store has a maximum capacity 𝐶.

23
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Recall: Markov Chains

Definition (Markov chain)
Let the state space S be a subset of the Euclidean space, the discrete-time dynamic  
system 𝑠𝑡 !∈ℕ

∈ 𝑆 is a Markov chain if it satisfies the Markov property
𝑃(𝑠𝑡 + 1 = 	𝑠	|	𝑠𝑡, 𝑠𝑡 − 1, . . . , 𝑠0) = 	𝑃(𝑠𝑡 + 1 = 	𝑠	|	𝑠𝑡),

Given an initial state 𝑠" ∈ 𝑆, a Markov chain is defined by the transition probability p  

𝑝(𝑠′|𝑠) = 	𝑃(𝑠𝑡 + 1 = 𝑠′|𝑠𝑡	 = 	𝑠).

6 24
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝐻) where
§ 𝑆  is the state space,

Example: The Amazing Goods Company
§ State space: 𝑠 ∈ 𝑆 = {0, 1,… , 𝐶}.

25
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝐻) where
§ 𝑆  is the state space,
§ A	 is the action space,

Example: The Amazing Goods Company
§ Action space: it is not possible to order more items than the capacity of the 

store, so the action space should depend on the current state.  Formally, at 
state 𝑠, 𝑎 ∈ 𝐴 𝑠 = {0, 1,… , 𝐶 − 𝑠}.

26
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝐻) where
§ 𝑆  is the state space,
§ A	 is the action space,
§ 𝑃(𝑠#|𝑠,𝑎) is the transition probability with 

𝑃 𝑠# 𝑠,𝑎 = 	ℙ(𝑠!$% = 𝑠#|𝑠! = 𝑠,𝑎! = 𝑎)

Example: The Amazing Goods Company
§ Dynamics: 𝑠!$% = 𝑠! + 𝑎! − 𝑑! $.
§ The demand 𝑑! is stochastic and time-independent.  Formally, 𝑑!	 ~

&.&.(.	 𝐷.

often simplified to finite

27

𝑠# = 𝑓! 𝑠, 𝑎, 𝑤!
where 𝑤!~	𝑊!

transition equation
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝐻) where
§ 𝑆  is the state space,
§ A	 is the action space,
§ 𝑃(𝑠#|𝑠,𝑎) is the transition probability with 

𝑃 𝑠# 𝑠,𝑎 = 	ℙ(𝑠!$% = 𝑠#|𝑠! = 𝑠,𝑎! = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠#) is the immediate reward

at state 𝑠 upon taking action 𝑎,

Example: The Amazing Goods Company
§ Reward: 𝑟! = −𝐶 𝑎! − ℎ 𝑠! + 𝑎! + 𝑓( 𝑠! + 𝑎! − 𝑠!$% $).  This corresponds to 

a purchasing cost, a cost for excess stock (storage, maintenance), and a 
reward for fulfilling orders.

often simplified to finite

sometimes simply 𝑟 𝑠 , 
assumed to be bounded 

28
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝐻) where
§ 𝑆  is the state space,
§ A	 is the action space,
§ 𝑃(𝑠#|𝑠,𝑎) is the transition probability with 

𝑃 𝑠# 𝑠,𝑎 = 	ℙ(𝑠!$% = 𝑠#|𝑠! = 𝑠,𝑎! = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠#) is the immediate reward

at state 𝑠 upon taking action 𝑎,
§ 𝐻 is the horizon.

Example: The Amazing Goods Company
§ The horizon of the problem is 12 (12 months in 1 year).

often simplified to finite

sometimes simply 𝑟(𝑠)

29
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Markov Decision Process (infinite horizon preview)
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝐻) where
§ 𝑆  is the state space,
§ A	 is the action space,
§ 𝑃(𝑠#|𝑠,𝑎) is the transition probability with 

𝑃 𝑠# 𝑠,𝑎 = 	ℙ(𝑠!$% = 𝑠#|𝑠! = 𝑠,𝑎! = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠#) is the immediate reward

at state 𝑠 upon taking action 𝑎,
§ 𝛾 ∈ [0,1) is the discount factor.

Example: The Amazing Goods Company
§ Discount: 𝛾 = 0.91667.  A dollar today is worth more than a dollar tomorrow.
§ The effective horizon of the problem is 12 (12 months in 1 year), i.e. H ≈ %

%*+.

often simplified to finite

sometimes simply 𝑟(𝑠)

30
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝐻) where
§ 𝑆  is the state space,
§ A	 is the action space,
§ 𝑃(𝑠#|𝑠,𝑎) is the transition probability with 

𝑃 𝑠# 𝑠,𝑎 = 	ℙ(𝑠!$% = 𝑠#|𝑠! = 𝑠,𝑎! = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠#) is the immediate reward

at state 𝑠 upon taking action 𝑎,
§ 𝐻 is the horizon.

Example: The Amazing Goods Company
§ Objective: 𝑉 𝑠"; 𝑎", … = ∑!,"-*% 𝑟! + 𝑟-, where r%. = g s%. .  This corresponds 

to the cumulative reward, including the value of the remaining inventory at 
“the end.”

often simplified to finite

sometimes simply 𝑟(𝑠)

31
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝐻) where
§ 𝑆  is the state space,
§ A	 is the action space,
§ 𝑃(𝑠#|𝑠,𝑎) is the transition probability with 

𝑃 𝑠# 𝑠,𝑎 = 	ℙ(𝑠!$% = 𝑠#|𝑠! = 𝑠,𝑎! = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠#) is the immediate reward

at state 𝑠 upon taking action 𝑎,
§ 𝐻 is the horizon.

F In general, a non-Markovian decision process’s transitions could depend on much 
more information:

ℙ 𝑠!$% = 𝑠# 𝑠! = 𝑠,𝑎! = 𝑎,𝑠!*%,𝑎!*%,…,𝑠",𝑎" ,

often simplified to finite

sometimes simply 𝑟(𝑠)

32
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Markov Decision Process
Definition (Markov decision process)
A Markov decision process (MDP) is defined as a tuple 𝑀 = (𝑆,𝐴,𝑃	𝑜𝑟	𝑓, 𝑟,𝐻) where
§ 𝑆  is the state space,
§ A	 is the action space,
§ 𝑃(𝑠#|𝑠,𝑎) is the transition probability with 

𝑃 𝑠# 𝑠,𝑎 = 	ℙ(𝑠!$% = 𝑠#|𝑠! = 𝑠,𝑎! = 𝑎)
§ 𝑟(𝑠,𝑎,𝑠#) is the immediate reward

at state 𝑠 upon taking action 𝑎,
§ 𝐻 is the horizon.

F The process generates trajectories 𝜏! = (𝑠", 𝑎",… , 𝑠!*%, 𝑎!*%, 𝑠!), 
with 𝑠!$%~𝑃(⋅ |𝑠!, 𝑎!)

often simplified to finite

sometimes simply 𝑟(𝑠)

33
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Example: The Amazing Goods Company Example

§ State space: s ∈ S = {0, 1, … , C}.
§ Action space: it is not possible to order more items than the capacity of the store, so the action 

space should depend on the current state.  Formally, at state s, a ∈ A s = {0, 1, … , C − s}.
§ Objective: V s#; a#, … = ∑$%#&'( r$ + r&, where H = 12 and r() = g s()

Inventory  
Systemst

Stock at month t

Reward of month t
t t t-C (a  ) - h(s + a )
t t t+ f ([s + a - D ]+)

D t  Demand at month t

Stock at month t +1

Stock Ordered at month t  
at

𝑠*+( = 𝑠* + 𝑎* − 𝑑* +

Where 𝑑* 	 ~
,.,...	 𝐷
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Modeling real-time rideshare matching as an MDP
For each driver:
§ State: Location, time, and vehicle type 

of the idle driver
§ Action: Request destination 

location/time
§ Reward: Expected assignment 

earnings or 0 for idle drivers
§ Time step: Total trip duration or 4 sec 

for idle drivers
§ Transition function: New idle state of 

the driver given request 
(deterministic)

§ Horizon: Infinite
• Discount factor: 𝛾 = 0.9992, or a half-

life of roughly one hour using a four 
second time-step (i.e. 𝛾3600/4 ≈ 0.5)

B. Han, H. Lee, and S. Martin, “Real-Time Rideshare Driver Supply Values Using Online Reinforcement Learning,” in ACM SIGKDD Conference on Knowledge Discovery and Data Mining, in KDD ’22. Aug. 2022. doi: 10.1145/3534678.3539141.

Figure 7. The Graphic Depicts the Online RL 
(Approximate Value Iterations) Framework

https://doi.org/10.1145/3534678.3539141
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Key challenge: huge state spaces
§ State: location, time, and vehicle type
• Location is encoded from geohash6 (precise 

location) [1,600] and geohash5 (neighborhood) 
[50]
• Time encoded from hour-of-week categories 

[168]
• Vehicle type: standard, luxury, SUV, or handicap 

accessible [4]
§ State space is ≈1600x50x168x4=54M
§ For reference: SF Bay Area population is 8M
• Naïve approach: Would need everyone to take 

at least 7 rides to gather enough data

B. Han, H. Lee, and S. Martin, “Real-Time Rideshare Driver Supply Values Using Online Reinforcement Learning,” in ACM SIGKDD Conference on Knowledge Discovery and Data Mining, in KDD ’22. Aug. 2022. doi: 10.1145/3534678.3539141.

Cannot only explore. Cannot only exploit.
Must trade off exploration and exploitation.

https://doi.org/10.1145/3534678.3539141
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Transition function
Driver 𝑖 ∈ {1, … ,m}
Request 𝑗 ∈ {1, … , n}
Assignment 𝑎!" ∈ {0,1}
Immediate reward 𝑟!"
Probability of cancellation 𝑝!"
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Outline

1. Reinforcement learning for transportation

2. Markov Decision Process (MDP)

3. The optimization problem
a. Value function
b. Policy
c. Mixed autonomy traffic (2017)

4. Emergency medical service (EMS) vehicle problem

39
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Recall: the characters*
40

EnvironmentAgent

* pun intended

Action

Observation and reward

State

Transition

Improve

§ Interaction loop

Goal: maximize reward over time (returns, cumulative reward)

𝜋

𝑜! , 𝑟!

𝜋" ← 𝜋

𝑎!

𝑓, 𝑃

𝑠!

ℳMarkov Decision Process (MDP) 
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The value function
Given a policy 𝜋 (deterministic to simplify notation)

§ Finite time horizon 𝑇: deadline at time 𝑇, the agent focuses 
on the sum of the rewards up to 𝑇.

𝑉Q 𝑡, 𝑠 = 	𝔼 *
RST

UVW

𝑟 𝑠R, 𝜋(𝑠R) + 𝑅 𝑠U |𝑠T = 𝑠; 𝜋

where 𝑅 is a value function for the final state.

§ Shorthand: 𝑉TQ 𝑠  or simply 𝑉TQ (think: vector of size |𝑆|)

41
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Optimization Problem

Definition (Optimal policy and optimal value function)
The solution to an MDP is an optimal policy 𝜋∗ satisfying

𝜋∗ ∈ argmax
"∈$

𝑉%"

where Π is some policy set of interest.

The corresponding value function is the optimal value function

𝑉∗ = 𝑉%"
∗

§ Our goal: achieve the best value
• Max value-to-go (min cost-to-go)

42
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Expectations
§ Technical note: the expectations refer to all possible stochastic trajectories.
§ A (possibly non-stationary stochastic) policy 𝜋 applied from state 𝑠" returns

𝑠", 𝑟", 𝑠%, 𝑟%, 𝑠., 𝑟., …
§ Where 𝑟! = 𝑟 𝑠! , 𝑎!  and 𝑠!$%~	𝑝 ⋅ 𝑠! , 𝑎! = 𝜋!(𝑠!)  are random realizations.

§ The value function is

𝑉/ 𝑡, 𝑠 = 𝔼(10,11,… ) ?
5,!

6*%

𝑟 𝑠5 , 𝜋(𝑠5) + 𝑅 𝑠6 |𝑠! = 𝑠; 𝜋

§ More generally, for stochastic policies:

𝑉/ 𝑡, 𝑠 = 𝔼(72,10,70,11,… ) ?
5,!

6*%

𝑟 𝑠5 , 𝜋(𝑠5) + 𝑅 𝑠6 |𝑠! = 𝑠; 𝜋

43
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Supply Value Dispatch

Instead, want the match to 
capture long-term value! 

44

Real-time rideshare matching

B. Han, H. Lee, and S. Martin, “Real-Time Rideshare Driver Supply Values Using Online Reinforcement Learning,” in ACM SIGKDD Conference on Knowledge Discovery and Data Mining, in KDD ’22. Aug. 2022. doi: 10.1145/3534678.3539141.

Bipartite Matching

Driver 𝑖 ∈ {1, … ,m}
Request 𝑗 ∈ {1, … , n}
Assignment 𝑎!" ∈ {0,1}
Immediate reward 𝑟!"
Probability of cancellation 𝑝!"

At each round (every 4 seconds), solve:

Advantage Δ)* = 𝑄 𝑠) , 𝑎)* − 𝑉(𝑠))

Action-value 𝑄 𝑠) , 𝑎)* = 𝑟)* + 1 − 𝑝)* 𝛾+&'𝑉 𝑠)* + 𝑝)*𝛾𝑉(𝑠))

State-value 𝑉 𝑠 = 𝔼 ∑!,-. 𝛾!𝑟! |𝑠- = 𝑠

RL methods solve for 𝑉, 𝑄, 𝛥!"  

Preview of Unit 3:

https://doi.org/10.1145/3534678.3539141
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Reinforcement learning for real-time ridesharing
45

X. Azagirre et al., “A Better Match for Drivers and Riders: Reinforcement Learning at Lyft.” INFORMS Journal on Applied Analytics, 2023. doi: 10.48550/arXiv.2310.13810.

Table 2. The Table Shows the Results We Achieved from Our Experiments on the RL Approach

https://doi.org/10.48550/arXiv.2310.13810
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Policy
Definition (Policy)
A decision rule 𝑑 can be
§ Deterministic: 𝑑: 𝑆 → 𝐴,
§ Stochastic: 𝑑: 𝑆 → Δ(𝐴),
§ History-dependent: 𝑑:𝐻! → 𝐴,
§ Markov: 𝑑: 𝑆 → Δ(𝐴),

A policy (strategy, plan) can be
§ Stationary: 𝜋 = 𝑑, 𝑑, 𝑑,… ,
§ (More generally) Non-stationary: 𝜋 = (𝑑", 𝑑%, 𝑑., … )

FFor simplicity, we will typically write 𝜋 instead of 𝑑 for stationary policies, and 𝜋! 
instead of 𝑑! for non-stationary policies.
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Recall: The Amazing Goods Company Example
§ Description. At each month 𝑡, a warehouse contains 

𝑠! items of a  specific goods and the demand for that 
goods is 𝐷	 (stochastic).   At the end of each month 
the manager of the warehouse can order  𝑎! more 
items from the supplier.

§ The cost of maintaining an inventory of 𝑠 is ℎ(𝑠).
§ The cost to order 𝑎 items is 𝐶(𝑎).
§ The income for selling 𝑞 items if 𝑓(𝑞).
§ If the demand 𝑑~𝐷 is bigger than the available 

inventory 𝑠, customers that cannot be served 
leave.

§ The value of the remaining inventory at the end 
of the year is 𝑔 𝑠 .

§ Constraint: the store has a maximum capacity 𝐶.
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Recall: The Amazing Goods Company Example
§ Description. At each month 𝑡, a warehouse contains 

𝑠! items of a  specific goods and the demand for that 
goods is 𝐷	 (stochastic).   At the end of each month 
the manager of the warehouse can order  𝑎! more 
items from the supplier.

§ The cost of maintaining an inventory of 𝑠 is ℎ(𝑠).
§ The cost to order 𝑎 items is 𝐶(𝑎).
§ The income for selling 𝑞 items if 𝑓(𝑞).
§ If the demand 𝑑~𝐷 is bigger than the available 

inventory 𝑠, customers that cannot be served 
leave.

§ The value of the remaining inventory at the end 
of the year is 𝑔 𝑠 .

§ Constraint: the store has a maximum capacity 𝐶.

Stationary policy composed of 
deterministic Markov decision rules

𝜋 𝑠 =	:𝐶 − 𝑠0	
if	𝑠 < 𝑀/4
otherwise
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Recall: The Amazing Goods Company Example
§ Description. At each month 𝑡, a warehouse contains 

𝑠! items of a  specific goods and the demand for that 
goods is 𝐷	 (stochastic).   At the end of each month 
the manager of the warehouse can order  𝑎! more 
items from the supplier.

§ The cost of maintaining an inventory of 𝑠 is ℎ(𝑠).
§ The cost to order 𝑎 items is 𝐶(𝑎).
§ The income for selling 𝑞 items if 𝑓(𝑞).
§ If the demand 𝑑~𝐷 is bigger than the available 

inventory 𝑠, customers that cannot be served 
leave.

§ The value of the remaining inventory at the end 
of the year is 𝑔 𝑠 .

§ Constraint: the store has a maximum capacity 𝐶.

Stationary policy composed of stochastic 
history-dependent decision rules
𝜋 𝑠* =	G𝑈(𝐶	 − 𝑠*'(, 𝐶 − 𝑠*'( +10)

0	
if	𝑠* < 𝑠*'(/2
otherwise
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Traffic flow smoothing
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Wu, et al. “Flow: A Modular Learning Framework for Mixed Autonomy Traffic.” T-RO, 2021.

Sugiyama, et al. 2008
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Sugiyama, et al. 2008

Traffic flow smoothing
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§ Setup
• Circular track. Sufficient to reproduce 

traffic waves & jams.
• 1 self-driving car, 21 human drivers
• State: relative velocity & headway
• Action: acceleration
• Reward: average velocity (for all cars)
• Timestep: 0.1 sec
• Horizon: 5 minutes
• Algorithm: TRPO

AV offAV on
Automated

Observed

Unobserved

Wu, Kreidieh, Parvate, Vinitsky, Bayen. Flow: A Modular Learning Framework for Mixed Autonomy Traffic.
IEEE Transactions on Robotics (T-RO) 2021 and CoRL 2017.
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Traffic flow smoothing
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§ 5% AVs à 50% 
improvement in 
velocity for all cars

§ Near-optimal
§ Robust
§ Training time: a few 

hours on 1 CPU
§ Tweaks that made it 

work
• Partial observation 

sufficient à fast 
training

• “Sufficient”: Control 
theory à optimal 
performance

A
ve

ra
ge

 v
el

o
ci

ty
 (m

/s
)

Vehicle density (veh/m)

Average velocity vs traffic density

Optimal
(unstable)

Traffic jams
(stable)

State of the art

This work

TrainTest Test
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Traffic flow smoothing: model interpretation

C. Wu, A. R. Kreidieh, K. Parvate, E. Vinitsky, and A. M. Bayen, “Flow: A modular learning framework for mixed autonomy traffic,” IEEE Transactions on Robotics (T-RO), Jul. 2021, doi: 10.1109/TRO.2021.3087314.

Deep neural network

https://doi.org/10.1109/TRO.2021.3087314
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RL + traffic LEGO blocks
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5-30% CAVs à 13-120% improvement 

Yan, Kreidieh, Vinitsky, Bayen, Wu. Unified Automatic Control of Vehicular Systems With Reinforcement Learning. 
IEEE Transactions on Automation Science and Engineering (T-ASE) 2022 and IROS 2022.
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Traffic flow smoothing
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§ Near misses
• Traffic is notoriously difficult to analyze (cascaded 

nonlinear dynamics, delayed effects, multi-agent, partially observed)
• Human driving is fairly predictable in aggregate à 

can simulate data
• Traffic phenomena can be reproduced with 

minimal system complexity à cheap simulation
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§ Challenge: grid network
• Long-horizon multi-agent 

coordination & control
§ Result: 10% AVs à 26% 

improvement over 
human driving baseline

§ Tweaks that make it work
• Shared parameter 

(homogenous) multi-agent 
training

• Restricted observation space
• (Zero-shot) transfer learning

Yan, Z. and Wu, C. In review.

Traffic flow smoothing
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Outline

1. Reinforcement learning for transportation

2. Markov Decision Process (MDP)

3. The optimization problem

4. Emergency medical service (EMS) vehicle problem
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§ Motivation: Reduce emergency 
service vehicle (EMS) travel 
times to reduce mortality rate 
[OBENAUF et al. 2019]

EMS maneuver under mixed autonomy
58

§ Emergency medical service (EMS) 
vehicle

§ Scenario: 
• EMS may stop or travel at low speeds 

on congested roads (e.g., signalized 
intersections)

D. Suo*, V. Jayawardana*, and C. Wu, “Model-free Learning of Corridor Clearance: A Near-term Deployment Perspective,” IEEE Transactions on Intelligent Transportation Systems (T-ITS), 2024, doi: 10.1109/TITS.2023.3344473.

Originated as 1.200 class project!

https://doi.org/10.1109/TITS.2023.3344473
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EMS maneuver under mixed autonomy  (Suo et al., 2023)
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§ Problem: How should the AV take 
maneuvers to assist EMS in crossing 
intersections?

§ A specific scenario: 
• Right lane (where the EMS currently 

locates) fully congested
• An autonomous vehicle can receive 

inputs from onboard sensors (e.g., 
lidar, radar, camera)

• The AV can communicate with traffic 
infrastructure and EMS for non-line-
of-sight conditions

§ The goal of the AV is to assist EMS 
maneuvers to reduce its travel time 
crossing the intersection

Based on: Suo, Jayawardana, Wu. “Model-free Learning of Multi-objective Corridor Clearance in Mixed Autonomy,” 2023. Under review.

Exercise: Define a Markov Decision Process to model the problem, including the state 
space, action space, transitions, reward, and objective function.
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EnvironmentAgent

Actions available to the AV?

What observations available to the AV?
How to define reward for the AV?

State? 

Transition

Improve

𝜋

𝑜! , 𝑟!

𝜋" ← 𝜋

𝑎!

ℳ
𝑃

𝑠!

Based on: Suo, Jayawardana, Wu. “Model-free Learning of Multi-objective Corridor Clearance in Mixed Autonomy,” 2023. Under review.
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