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Readings

Morales, Miguel. Grokking deep reinforcement learning.
2020. Chapter 2: Mathematical Foundations of Reinforcement
Learning. [URL]

(Optional) Morales, Miguel. Grokking deep reinforcement
learning. 2020. Chapter 1: Introduction to Deep
Reinforcement Learning. [URL]


https://www.manning.com/books/grokking-deep-reinforcement-learning
https://www.manning.com/books/grokking-deep-reinforcement-learning
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Reinforcement learning for transportation
Markov Decision Process (MDP)

The optimization problem

HowoNoe

Emergency medical service (EMS) vehicle problem



Outline

1. Reinforcement learning for transportation

a. For real-time decision making (online)
b. For modeling system behavior (offline)

2. Markov Decision Process (MDP)
3. The optimization problem

4. Emergency medical service (EMS) vehicle problem



RL for real-time transportation decision making
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B. Han, H. Lee, and S. Martin, “Real-Time Rideshare Driver Supply Values Using Online Reinforcement Learning,” in ACM SIGKDD Conference on Knowledge Discovery and Data Mining, in KDD ’'22. Aug. 2022. doi: 10.1145/3534678.3539141.
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Real-time ridesharing optimization modules
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Figure 1. The Graphic lllustrates the Interconnected Optimization Modules that Power a Ridesharing Network

X. Azagirre et al., “A Better Match for Drivers and Riders: Reinforcement Learning at Lyft.” INFORMS Journal on Applied Analytics, 2023. doi: 10.48550/arXiv.2310.13810. Wu
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Real-time rideshare
decision making

: Non-sequential vs sequential
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Figure 3. On the Left, the Graphic lllustrates a Stylized Example of a Ridesharing Matching
Batch with Two Riders (1 and 2) and Two Available Drivers (A and B); on the Right, It lllustrates
How Lyft Solves the Online Matching Problem as a Sequence of Batch Matching Decisions

X. Azagirre et al., “A Better Match for Drivers and Riders: Reinforcement Learning at Lyft.” INFORMS Journal on Applied Analytics, 2023. doi: 10.48550/arXiv.2310.13810. Wu
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Driveri € {1, ..., m} 10
Real-time rideshare matching jusm g
Immediate reward 7;;

At each round (every 4 seconds), solve:
( y ) Probability of cancellation p;;

Bipartite Matching Supply Value Dispatch
m n m n
argmax Z Z rijaij argmax y: ;‘1 Ajjlai; Instead, want the match to
ai;j =1 = aij =1 j=1 capture long-term value!
m m
subject tOZaij <1, j=123..,n subject toz agifsl; = 523
i=1 i=1
n n
Yaij<1, i=1,23..m Daij=1 i=1,23..m
j:l j:]
ajj € {0,1}, V(i j) ajj € {0,1}, V(i)

B. Han, H. Lee, and S. Martin, “Real-Time Rideshare Driver Supply Values Using Online Reinforcement Learning,” in ACM SIGKDD Conference on Knowledge Discovery and Data Mining, in KDD ’22. Aug. 2022. doi: 10.1145/3534678.3539141.



https://doi.org/10.1145/3534678.3539141

Sequential decision making

More generally, sequential decision making is a suitable framework
for a problem when based on
is expected to be suboptimal.
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Real-time rideshare: Online Supply Value estimates

= What isn’t accounted for in immediate decision making
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(a) Driver return estimates during weekday morning commute hour. (b) Driver return estimates during weekend late night hours.

Figure 1: Online Supply Value estimates vary in space, time, and vehicle type (red is higher value).

= Reinforcement learning is about learning the long-term value of a decision

B. Han, H. Lee, and S. Martin, “Real-Time Rideshare Driver Supply Values Using Online Reinforcement Learning,” in ACM SIGKDD Conference on Knowledge Discovery and Data Mining, in KDD ’22. Aug. 2022. doi: 10.1145/3534678.3539141.



https://doi.org/10.1145/3534678.3539141
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RL for modeling transportation system behavior

= Traffic flow smoothing with
automated vehicles

= What if even one of these
vehicles is not self-driving?

= Will we see benefits to the
system before 100%
adoption? (2050+)

[Tesla Model S]

Wu, et al., “Flow: A Modular Learning Framework for Mixed Autonomy Traffic.” IEEE T-RO, 2021. https://arxiv.org/abs/1710.05465 Wu



https://arxiv.org/abs/1710.05465

Sequential decision making

More generally, sequential decision making is a suitable framework
for a problem when based on
is expected to be suboptimal.

For real-time decision making (online)
For understanding system behavior (offline)



Autonomous mobility as a d

& 1-20
vehicles,
1 road

@ Existing work

2]

sign space

Autonomy enables control and coordination of
vehicles. To what end? How effectively? At what cost?

A combinatorial problem space

* Multiple objectives

* Diverse scenarios

* Spectrum of autonomy technologies
Multi-agent interactions

Evolving design specifications

RL provides methods for rapid system analysis.
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Yan, Kreidieh, Vinitsky, Bayen, Wu. Unified Automatic Control of Vehicular Systems With Reinforcemen
IEEE Transactions on Automation Science and Engineering (T-ASE) 2022 and IROS 2022.




Outline

1. Reinforcement learning for transportation

2. Markov Decision Process (MDP)

a. The interaction loop
b. The modeling framework

c. Real-time ridesharing (2022)
d. Exploration vs exploitation

3. The optimization problem

4. Emergency medical service (EMS) vehicle problem

17
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Introduce the characters™

" |Interaction loop Ot Tt
Observation and reward S
t

State
Improve
Transition
Agent Environment f,P
n Action
at

Goal: maximize reward over time (returns, cumulative reward)
* pun intended Wu



Outline

1. The main characters — the interaction loop

2. Markov Decision Process (MDP)

a. The optimization problem
b. Examples

c. Assumptions
d. Policy

3. Modeling sequential decision problems as MDPs

4. Emergency medical service vehicle problem

19



Recall: the characters™

= Interaction loop

Improve

Markov Decision Process (MDP) M

g

Agent \

T

O, 1t

ObserI/ation and reward

\—/ Environment

Action

At

State

Transition

f,P

Goal: maximize reward over time (returns, cumulative reward)

* pun intended



Assume for now: finite horizon problems, i.e. T < o

Used when: there is an intrinsic deadline to meet.

Later: infinite horizon

21



Example: The Amazing Goods Company Example

Stock at month ¢

D¢ Demand at month t

Amazing
\\/7

St

i

Reward of month ¢

Inventory Stock at month ¢ +1
"I System >

T Stock Ordered at month ¢

A

at

22



Example: The Amazing Goods Company Example

Description. At each month t, a warehouse contains s, items
of a specific goods and the demand for that goods is D

(stochastic). At the end of each month the manager of the A maz | ng
warehouse can order a, more items from the supplier.

The cost of maintaining an inventory of s is h(s).

The cost to order a items is C(a).

The income for selling g items if f(q).

If the demand d~D is bigger than the available

inventory s, customers that cannot be served leave.

® The value of the remaining inventory at the end of the
year is g(s).

= Constraint: the store has a maximum capacity C.

23



Recall: Markov Chains

Definition (Markov chain)

Let the be a subset of the Euclidean space, the discrete-time dynamic
system (s¢),, € S is a Markov chain if it satisfies the
P(st + 1 = s|st,5t —1,...,50) = P(st +1 = s|st),

Given an initial state s, € S, a Markov chain is defined by the p

p(s'|s) = P(st + 1 = S|st = 5).



Markov Decision Process

Definition (Markov decision process)

A Markov decision process (MDP) is defined asa tuple V/ = (S, A, P or f,r, H) where
= S isthe state space,

Example: The Amazing Goods Company
= State space: s e S ={0,1,...,C}.

25



Markov Decision Process

Definition (Markov decision process)

A Markov decision process (MDP) is defined asa tuple V/ = (S, A, P or f,r, H) where
= S isthe state space,
= A isthe action space,

Example: The Amazing Goods Company
= Action space: it is not possible to order more items than the capacity of the
store, so the action space should depend on the current state. Formally, at
state s, a € A(s) ={0,1, ...,C — s}.

26



Markov Decision Process

Definition (Markov decision process)

A Markov decision process (MDP) is defined asa tuple V/ = (S, A, P or f,r, H) where
= S isthe state space,
= A isthe action space,

= P(s'|s,a) is the transition probability with transition equation
P(s'|s,a) = P(sp41 = S'|s; = s,a; = a) s' = fi(s,a,wy)
where We~ Wt

> often simplified to finite

Example: The Amazing Goods Company
= Dynamics: sgpq = [s¢ + ay — d¢]™.

* The demand d; is stochastic and time-independent. Formally, d; Hd p.

27



Markov Decision Process

Definition (Markov decision process)

A Markov decision process (MDP) is defined asa tuple V/ = (S, A, P or f,r, H) where
= S isthe state space,
= A isthe action space,
= P(s'|s,a) is the transition probability with
P(s'ls,a) = P(st41 =5S'Ist = s,0c = @)

= 1(s,a,s") is the immediate reward

at state s upon taking action q, sometimes simply 7 (s),
assumed to be bounded

> often simplified to finite

Example: The Amazing Goods Company
= Reward: r; = —=C(a;) — h(st + a;) + f([st + a; — s¢+1]1™). This corresponds to
a purchasing cost, a cost for excess stock (storage, maintenance), and a
reward for fulfilling orders.

28



Markov Decision Process

Definition (Markov decision process)

A Markov decision process (MDP) is defined asa tuple V/ = (S, A, P or f,r, H) where
= S isthe state space,
A is the action space,

= P(s'|s, a) is the transition probability with
P(s'ls,a) = P(st41 =S'Ist = s,0c = @)

= 1(s,a,s") is the immediate reward _ _
at state s upon taking action q, >{> sometimes simply r (s)

= Histhe horizon.

> often simplified to finite

Example: The Amazing Goods Company
= The horizon of the problem is 12 (12 months in 1 year).

29
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Markov Decision Process (infinite horizon preview)

Definition (Markov decision process)

A Markov decision process (MDP) is defined asa tuple V/ = (S, A, P or f,r, H) where
= S isthe state space,
A is the action space,

= P(s'|s, a) is the transition probability with
P(s'ls,a) = P(st41 =S'Ist = s,0c = @)

= 1(s,a,s") is the immediate reward _ _
at state s upon taking action q, >{> sometimes simply r (s)

= y € [0,1) is the discount factor.

> often simplified to finite

Example: The Amazing Goods Company
= Discount: y = 0.91667. A dollar today is worth more than a dollar tomorrow.

= The effective horizon of the problem is 12 (12 months in 1 year), i.e. H = ﬁ

Wu



Markov Decision Process

Definition (Markov decision process)

A Markov decision process (MDP) is defined asa tuple V/ = (S, A, P or f,r, H) where
= S isthe state space,
A is the action space,

= P(s'|s, a) is the transition probability with
P(s'ls,a) = P(st41 =S'Ist = s,0c = @)

= 1(s,a,s") is the immediate reward _ _
at state s upon taking action q, >{> sometimes simply r (s)

= Histhe horizon.

> often simplified to finite

Example: The Amazing Goods Company
= Objective: V(sg; ag, ...) = XHgtre + ry, where rq, = g(sq2). This corresponds
to the cumulative reward, including the value of the remaining inventory at
“the end.”

31



Markov Decision Process

Definition (Markov decision process)

A Markov decision process (MDP) is defined asa tuple V/ = (S, A, P or f,r, H) where
= S isthe state space,
A is the action space,

= P(s'|s,a) is the transition probability with
P(s'ls,a) = P(sp41 =5S'Ist = s,0c = @)

= 1(s,a,s") is the immediate reward _ _
at state s upon taking action q, >{> sometimes simply r (s)

= Histhe horizon.

> often simplified to finite

< In general, a non-Markovian decision process’s transitions could depend on much
more information:
P(s;1q =S'|s; = s,a; = a,St_1, 1, -+, So, Ag),»

32



Markov Decision Process

Definition (Markov decision process)

A Markov decision process (MDP) is defined asa tuple V/ = (S, A, P or f,r, H) where
= S isthe state space,
A is the action space,

= P(s'|s,a) is the transition probability with
P(s'ls,a) = P(sp41 =5S'Ist = s,0c = @)

= 1(s,a,s") is the immediate reward _ _
at state s upon taking action q, >{> sometimes simply r (s)

= Histhe horizon.

> often simplified to finite

@ The process generates trajectories t; = (sg, ag, ---» St—1, At—1, St),
With s¢1~P(: [st, ar)

33
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Example: The Amazing Goods Company Example

D¢ Demand at month t

Amazing

Stock agtmonth t Tnventory Stock at month ¢ +1
"l  System
i Y Se41 = [S¢ + ar — de]*
T Where d, )
Reward of month ¢ Stock Ordered at month t

-C(as) - h(s+ a) |«——— g
+f([s; +a;- DY)

= State space: seS={0,1,...,C}.

Action space: it is not possible to order more items than the capacity of the store, so the action
space should depend on the current state. Formally, at state s, a € A(s) ={0,1,...,C —s}.
Objective: V(sg; ag, ...) = Yot re + ryy, where H = 12 and ry, = g(s4,)
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Modeling real-time rideshare matching as an MDP

For each driver:
= State: Location, time, and vehicle type
of the idle driver - Reaktme matching
= Action: Request destination : .
location/time / \ ‘ —
= Reward: Expected assignment :
earnings or O for idle drivers Coe ) ! / i

feedback:

= Time step: Total trip duration or 4 sec i fees,

for idle drivers leness \ 5

r—

= Transition function: New idle state of oaloee Y
the driver given request
(deterministic) |
= Horizon: |nﬁnite RL agent: online on-policy updates
* Discount factor: y = 0.9992, or a half-
life of roughly one hour using a four Figure 7. The Graphic Depicts the Online RL
second time-step (i.e. y3600/4 = 0.5) (Approximate Value Iterations) Framework

B. Han, H. Lee, and S. Martin, “Real-Time Rideshare Driver Supply Values Using Online Reinforcement Learning,” in ACM SIGKDD Conference on Knowledge Discovery and Data Mining, in KDD ’22. Aug. 2022. doi: 10.1145/3534678.3539141.



https://doi.org/10.1145/3534678.3539141

Key challenge: huge state spaces

State: location, time, and vehicle type
Location is encoded from geohash6 (precise
location) [1,600] and geohash5 (neighborhood)
[50] s
Time encoded from hour-of-week categories SE
[168] e,
Vehicle type: standard, luxury, SUV, or handicap
accessible [4]

1 ~ - Figure 4: Spatial factor weights are weighted and normal-

State S pa Ce IS ~ 1 600X50X 1 68X4 54 IVI ized by the inverse of the distance from the geohash cen-
. . . troid to smoothly interpolate the four closest geohash5 state

FO r refe re n Ce . S F Bay A re a p 0 p U I at I O n I S 8 M factors. A similiar interpolation is applied using the two
nearest hours of the week, yielding a cross-product of eight

N a|ve a p p roac h : WO u I d ne ed eve ryo ne to ta ke spatiotemporal factors and weights. Additional factors also

consider the vehicle type, such as standard, luxury, SUV, or

at least 7 rides to gather enough data handicap accessible.

B. Han, H. Lee, and S. Martin, “Real-Time Rideshare Driver Supply Values Using Online Reinforcement Learning,” in ACM SIGKDD Conference on Knowledge Discovery and Data Mining, in KDD ’22. Aug. 2022. doi: 10.1145/3534678.3539141.



https://doi.org/10.1145/3534678.3539141

Transition function

Driveri € {1, ..., m} 38
Requestj € {1, ...,n}
Assignment a;; € {0,1}
Immediate reward 7;;
Probability of cancellation p;;




Outline

1. Reinforcement learning for transportation
2. Markov Decision Process (MDP)

3. The optimization problem

a. Value function

b. Policy
c. Mixed autonomy traffic (2017)

4. Emergency medical service (EMS) vehicle problem

39



Recall: the characters™

= Interaction loop

Improve

Markov Decision Process (MDP) M

g

Agent \

T

O, 1t

ObserI/ation and reward

\—/ Environment

Action

At

State

Transition

f,P

Goal: maximize reward over time (returns, cumulative reward)

* pun intended



The value function
Given a policy ©

: deadline at time T, the agent focuses
on the sum of the rewards up to T.

T-1
Vi(t,s) = IEI[ r(s;, m(sy)) + R(sp)|s; =s;m
TZ; 7)1St

where R is a value function for the final state.

Shorthand: V*(s) or simply V7



Optimization Problem

Our goal: achieve the best value
Max value-to-go (min cost-to-go)

Definition (Optimal policy and optimal value function)

The solution to an MDP is an satisfying

" € argmax V'
J mell g
where II is some policy set of interest.

The corresponding value function is the
Ve =VE



Expectations

Technical note: the expectations refer to all possible stochastic trajectories.
A (possibly non-stationary stochastic) policy = applied from state s, returns

Where r, = r(s;, a,) and s, .~ p(: |s¢, a; = m.(s,)) are random realizations.

The value function is
T—-1
VT(t,s) = [E(sl,sz,...) [Z r(s, m(sp)) + R(sp)|se = s; TC]
=t
More generally, for stochastic policies:

T-1
Ve(t,s) = Ecqysy,ar,50-) [z r(st, m(s7)) + R(s7)|s; = s; TL"
=t



Driveri € {1, ..., m} 44
Real-time rideshare matching jusm g
Immediate reward 7;;

At each round (every 4 seconds), solve:
( y ) Probability of cancellation p;;

Bipartite Matching Supply Value Dispatch
m n
argmax Z Z rijaij argmax 7 7 Ajjlai; Instead, want the match to
aij i=1 j=1 aij i:f jzf capture long-term value!
m m
subject toz aij <1, j=123,..,n subject toz Gip Bl = L2800
i=1 i=1
n n
Daij<1, i=123..m PITESONE R E S ST
Preview of Unit 3: aij € {0’ 1}’ V(i,j) gy = {O’ 1}’ V(l,_])

Advantage A;; = Q(si, al-j) —V(s;) State-value V(s) = E[XiZo ¥ r:|so = 5]

Action-value Q(s;, a;;) =13 + (1 — pi;)y4V (sy;) + pijyV(sy) RLmethods solve for 1,0, 4,

B. Han, H. Lee, and S. Martin, “Real-Time Rideshare Driver Supply Values Using Online Reinforcement Learning,” in ACM SIGKDD Conference on Knowledge Discovery and Data Mining, in KDD ’22. Aug. 2022. doi: 10.1145/3534678.3539141.



https://doi.org/10.1145/3534678.3539141

Reinforcement learning for real-time ridesharing

Name Description Impact of
RL
Approach

Unavailability Ride requests for which we could not find a driver to -13.0%

match divided by total number of ride requests

Rider cancellation Ride requests canceled by a rider divided by the total -3.0%
number of ride requests

Five-star ratings Completed rides with five-star rating (maximum rating) | +1.0%
divided by the total number of completed rides

Revenue (annualized) | Expected incremental revenue (with respect to the >$30
baseline) summed across the calendar year million

Table 2. The Table Shows the Results We Achieved from Our Experiments on the RL Approach

X. Azagirre et al., “A Better Match for Drivers and Riders: Reinforcement Learning at Lyft.” INFORMS Journal on Applied Analytics, 2023. doi: 10.48550/arXiv.2310.13810. Wu
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Policy

A decision rule d can be
= Deterministic: d:S — A4,
= Stochastic: d: S —» A(4),
= History-dependent: d: H; — A,
= Markov: d:S - A(4),
A policy (strategy, plan) can be
= Stationary: # = (d,d,d,...),
= (More generally) Non-stationary: m = (dy, dq,d>, ...)

=~ For simplicity, we will typically write = instead of d for stationary policies, and 7,
instead of d, for non-stationary policies.

46



Recall: The Amazing Goods Company Example

Description. At each month ¢, a warehouse contains
s, items of a specific goods and the demand for that
goods is D (stochastic). Atthe end of each month
the manager of the warehouse can order a, more
items from the supplier.

The cost of maintaining an inventory of s is h(s).
The cost to order a items is C(a).

The income for selling q items if f(q).

If the demand d~D is bigger than the available
inventory s, customers that cannot be served

leave.
The value of the remaining inventory at the end

of the year is g(s).

Constraint: the store has a maximum capacity C.

Amazing

47



Recall: The Amazing Goods Company Example

Description. At each month ¢, a warehouse contains
s, items of a specific goods and the demand for that

goods is D (stochastic). Atthe end of each month
the manager of the warehouse can order a, more
items from the supplier.

The cost of maintaining an inventory of s is h(s).
The cost to order a items is C(a).

The income for selling g items if f(q).

If the demand d~D is bigger than the available
inventory s, customers that cannot be served
leave.

The value of the remaining inventory at the end
of the year is g(s).

Constraint: the store has a maximum capacity C.

Amazing

Stationary policy composed of

deterministic Markov decision rules

m(s) = { 0 otherwise

48



49

Recall: The Amazing Goods Company Example

= Description. At each month ¢, a warehouse contains
s, items of a specific goods and the demand for that
goods is D (stochastic). Atthe end of each month

the manager of the warehouse can order a, more A maz i ng

items from the supplier.

The cost of maintaining an inventory of s is h(s).
The cost to order a items is C(a).

The income for selling q items if f(q).
If the demand d~D is bigger than the available

inventory s, customers that cannot be served

Stationary policy composed of stochastic

leave.
= The value of the remaining inventory at theend  history-dependent decision rules

of the year is g(s). U(C —5p_y,C —5Sp_q +10)  ifse <S¢_q/2
= Constraint: the store has a maximum capacity C. n(sy) = 0 otherwise



Traffic flow smoothing

Sugiyama, et al. 2008

Wau, et al. “Flow: A Modular Learning Framework for Mixed Autonomy Traffic.” T-RO, 2021.

50
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Traffic flow smoothing

= Setup
 Circular track. Sufficient to reproduce
traffic waves & jams.
* 1 self-driving car, 21 human drivers
 State: relative velocity & headway
* Action: acceleration
* Reward: average velocity (for all cars)

* Timestep: 0.1 sec K"I "‘I Automated
* Horizon: 5 minutes ]

« Algorithm: TRPO | Observed

Sugiyama, et al. 2008 & Unobserved

Wou, Kreidieh, Parvate, Vinitsky, Bayen. Flow: A Modular Learning Framework for Mixed Autonomy Traffic.
IEEE Transactions on Robotics (T-RO) 2021 and CoRL 2017.




Traffic flow smoothing

5% AVs = 50%
improvement in
velocity for all cars
Near-optimal
Robust
Training time: a few
hours on 1 CPU
Tweaks that made it
work
Partial observation
sufficient = fast
training
“Sufficient”: Control

theory = optimal
performance
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Traffic flow smoothing: model interpretation

Deep neural network

Multilayer perceptron model Linear model Intelligent Driver Model -1.0
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Fig. 6.  Visualization of vehicle control laws. The heatmaps are 2-D slices of the controllers (3-D), and the color depicts the output (acceleration). The x-axis is a
representative range of headways seen by vehicles during training. The y-axis is a representative range of AV speeds. Displayed is the slice of acceleration values
of the model when the leader vehicle speed is fixed at 4.2 m/s (a typical speed for the 250 m track). The single colorbar is shared by all plots. Left: Learned MLP
model, with failsafes disabled. Middle: Learned Linear model, with failsafes enabled. Right: IDM.

C. Wu, A. R. Kreidieh, K. Parvate, E. Vinitsky, and A. M. Bayen, “Flow: A modular learning framework for mixed autonomy traffic,” IEEE Transactions on Robotics (T-RO), Jul. 2021, doi: 10.1109/TR0.2021.3087314.



https://doi.org/10.1109/TRO.2021.3087314

RL + tl"afﬁc |LEGO blOCkS 5-30% CAVs = 13-120% improvement
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Yan, Kreidieh, Vinitsky, Bayen, Wu. Unified Automatic Control of Vehicular Systems With Reinforcemen
IEEE Transactions on Automation Science and Engineering (T-ASE) 2022 and IROS 2022.
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Traffic flow smoothing

= Near misses

* Traffic is notoriously difficult to analyze (cascaded
nonlinear dynamics, delayed effects, multi-agent, partially observed)

* Human driving is fairly predictable in aggregate 2>
can simulate data

* Traffic phenomena can be reproduced with
minimal system complexity = cheap simulation

B YA y




Traffic flow smoothijgfy

= Challenge: grid network
* Long-horizon multi-agent
coordination & control

= Result: 10% AVs - 26%
improvement over
human driving baseline

= Tweaks that make it work
* Shared parameter
(homogenous) multi-agent
training
* Restricted observation space
* (Zero-shot) transfer learning

Yan, Z. and Wu, C. In review.



Outline

Reinforcement learning for transportation
Markov Decision Process (MDP)

The optimization problem

BowoN o

Emergency medical service (EMS) vehicle problem
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EMS maneuver under mixed autonomy

= Emergency medical service (EMS) = Motivation: Reduce emergency
vehicle service vehicle (EMS) travel
= Scenario: times to reduce mortality rate
* EMS may stop or travel at low speeds [OBENAUF et al. 2019]
on congested roads (e.g., signalized
intersections)

Mortality Rates vs. Response Time

/

Originated as 1.200 class project!

D. Suo*, V. Jayawardana*, and C. Wu, “Model-free Learning of Corridor Clearance: A Near-term Deployment Perspective,” IEEE Transactions on Intelligent Transportation Systems (T-ITS), 2024, doi: 10.1109/TITS.2023.3344473.



https://doi.org/10.1109/TITS.2023.3344473
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EMS maneuver under mixed autonomy (Suo et al., 2023)

= Problem: How should the AV take
maneuvers to assist EMS in crossing
intersections?

= A specific scenario:

* Right lane (where the EMS currently
locates) fully congested

* An autonomous vehicle can receive
inputs from onboard sensors (e.g.,
lidar, radar, camera)

* The AV can communicate with traffic
infrastructure and EMS for non-line-
of-sight conditions

= The goal of the AV is to assist EMS
maneuvers to reduce its travel time
crossing the intersection

Exercise: Define a Markov Decision Process to model the problem, including the state
space, action space, transitions, reward, and objective function.

Based on: Suo, Jayawardana, Wu. “Model-free Learning of Multi-objective Corridor Clearance in Mixed Autonomy,” 2023. Under review.



EMS maneuver under mixed autonomy

What observations available to the AV?
How to define reward for the AV?

Improve

Agent \/ Environment
M

Actions available to the AV?
at

Based on: Suo, Jayawardana, Wu. “Model-free Learning of Multi-objective Corridor Clearance in Mixed Autonomy,” 2023. Under review.

Transition
P

60



References

Morales, Miguel. Grokking deep reinforcement learning.
2020. Chapter 2: Mathematical Foundations of Reinforcement

Learning.

Morales, Miguel. Grokking deep reinforcement learning.
2020. Chapter 1: Introduction to Deep Reinforcement
Learning.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning:
An introduction. MIT press.

Some slides adapted from Alessandro Lazaric, Matteo Pirotta,
Cameron Hickert.



