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1. Bradley, Stephen P., Arnoldo C. Hax, and Thomas L. Magnanti. 
Applied mathematical programming. Addison-Wesley (1977). 
Chapter 11: Dynamic Programming. [URL]

Readings
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https://web.mit.edu/15.053/www/AppliedMathematicalProgramming.pdf


Wu

Outline
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1. Shortest path problems

2. Optimal capacity expansion problem
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Recall: the characters*
5

EnvironmentAgent

* pun intended

Action

Observation and reward

State

Transition

Improve

§ Interaction loop

Goal: maximize reward over time (returns, cumulative reward)

𝜋

𝑜! , 𝑟!

𝜋" ← 𝜋

𝑎!

𝑓, 𝑃

𝑠!

ℳMarkov Decision Process (MDP) 
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Optimization Problem

Definition (Optimal policy and optimal value function)
The solution to an MDP is an optimal policy 𝜋∗ satisfying

𝜋∗ ∈ argmax
"∈$

𝑉"

where Π is some policy set of interest.

The corresponding value function is the optimal value function
𝑉∗ = 𝑉"∗

§ Our goal: solve the MDP
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Assume for now: finite horizon problems, i.e. 𝑇 < ∞

11



Wu

Deterministic vs stochastic sequential problems
§ A deterministic policy is a special case of a stochastic policy when 
𝜋 𝑎 𝑠  is a unit spike at 𝑎 = 𝜋 𝑠  for all 𝑠 ∈ 𝒮 (and 0 otherwise).

§ A deterministic transition is a special case of a stochastic transition 
when 𝑝 𝑠+ 𝑠, 𝑎) is a unit spike at s+ = 	f, s, a  for all 𝑠 ∈ 𝒮, 𝑎 ∈ 𝐴 
(and 0 otherwise).

That is, a deterministic sequential decision problem is a special case of 
a stochastic sequential problem. It can still be modeled within the MDP 
framework.
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Example: Shortest Path Problem

Sequential decision problem 
§ Start state s0: city 2
§ Action a0: take link between city 2 and city 3 
§ State s1: city 3
§ Action a1: take link between city 3 and city 5
§ State s2: city 5
§ …

1

2 3

4

6

0.5

1

32

5 52

Destination  
5

7 5

Destination is node 5.
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Solving Shortest Path

Naive approach: enumerate all possibilities.
• From a starting city s0, choose any remaining city 

(N	- 1 choices). Choose any next remaining city 
(N	- 2 choices). ...
Until there is only 1 option remaining.

• Add up the edge costs.
• Select the best sequence (lowest total cost).
• O(N!).

1

2 3

4

6

0.5

1

32

5 52

Destination  
5

7 5

Destination is node 5.
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Assumption: all cycles have non-negative length.
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Solving Shortest Path

Issue: repeated calculations of subsequences.

• Dynamic programming: divide-and-conquer, or 
the principle of optimality.

• Overall problem would be much easier to solve if a 
part of the problem were already solved.

• Break a problem down into subproblems.

1

2 3

4
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32

5 52

Destination  
5

7 5

Destination is node 5.
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Solving Shortest Path

State s

1

2

3

4

0 1 2 3 4 Stage t

5
Destination

Origin

1
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4

6

0.5

1

32

5 52
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7 5

Destination is node 5.
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Solving Shortest Path

State s

1

2

3

4

0 1 2 3 4 Stage t

5

??
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Solving Shortest Path

State s
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0 1 2 3 4 Stage t
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Solving Shortest Path

State s

1

2

3

4

0 1 2 3 4 Stage t

5
??

??

??

min ??
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Solving Shortest Path

State s
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Solving Shortest Path

State s
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0 1 2 3 4 Stage t
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Solving Shortest Path

State s
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Solving Shortest Path

State s

1

2

3

4

0 1 2 3 4 Stage t

5

shortest path
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Solving Shortest Path

State s
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Solving Shortest Path

State s
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Solving Shortest Path

State s
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Solving Shortest Path

State s

1
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4

0 1 2 3 4 Stage t

5
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Solving Shortest Path

State s
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Solving Shortest Path

State s
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Bellman’s Principle of optimality (1957)

30

“An  optimal policy has the property that, whatever the initial state and 
the initial decision are, the remaining decisions must constitute an 

optimal policy with regard to the state resulting from the first decision.”

0 t T

st Tail Subproblem
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Principle of optimality (Bellman, 1957)
33

Principle (Optimality)
Let {𝑎!∗ , … , 𝑎#$%∗ } be an optimal action sequence, which together with 𝑠! and 
{𝜖!, … , 𝜖#$%} determines the corresponding state sequence {𝑠%∗, … , 𝑠#∗ }	via the state 
transition function. Consider the subproblem whereby we start at 𝑠&∗ at time 𝑡 and wish 
to maximize the value function from time 𝑡 to time 𝑇 ,

over {𝑎& , … , 𝑎#$%} with 𝑎' ∈ 𝐴' 𝑠' , 𝜏 = 𝑡,… , 𝑇 − 1. Then, the truncated optimal 
action sequence  {𝑎&∗ , … , 𝑎#$%∗ } is optimal for this subproblem.

0 t T

st Tail Subproblem

<latexit sha1_base64="4um86o0glLsBlw4n3bKWCrkHyS8=">AAACb3icbVFNb9QwEHXCR8vytZQDhyJksSB1KaySSgguSJUQEsci7baVNmnkeCe7Vh0ntcdIKytXfiA3/gMX/gF2uofSMpLlpzdvZjzPZSuFwST5FcW3bt+5u7V9b3D/wcNHj4dPdo5NYzWHGW9ko09LZkAKBTMUKOG01cDqUsJJef455E++gzaiUVNct5DXbKlEJThDTxXDH1kJS6EcXNie6QZZzXBVlu5LRzMJFc6pLhx2e6bAszdjuk8zY+vCZcjsJ4f7adeduem7tPOywFEvDPdbyvo7VPgG09BgOqaZFssV5oMM1OLK0GI4SiZJH/QmSDdgRDZxVAx/ZouG2xoUcsmMmadJi7ljGgWX4LewBlrGz9kS5h4qVoPJXe9XR197ZkGrRvujkPbs1QrHamPWdemVwQxzPRfI/+XmFquPuROqtQiKXw6qrKTY0GA+XQgNHOXaA8a18G+lfMU04+i/KJiQXl/5Jjg+mKTvJ8m3g9Hhq40d22SXvCR7JCUfyCH5So7IjHDyO9qJdqPn0Z/4WfwippfSONrUPCX/RDz+C+bCuvM=</latexit>

E
"
rt(s

⇤
t ) +

T�1X

⌧=t+1

r⌧ (s⌧ , a⌧ ) + rT (sT )

#
(1)
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Dynamic programming algorithm 34

𝑉! 𝑠! = 𝑟! 𝑠!  State s

4

3

2

1

0 1 2 3 4 Stage

5
r	 (s		)  = 0T T
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Dynamic programming algorithm

State s

4

3

2

1

0 1 2 3 4 Stage

5
r	 (s		)  = 0T T

𝑉! 𝑠! = 𝑟! 𝑠!  
for 𝑡 = 𝑇 − 1,… , 0 do
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Dynamic programming algorithm 36

State s

1

2

3

4

0 1 2 3 4 Stage

5
VT - 1 (sT - 1 )

VT - 1 (sT - 1 )

VT - 1 (sT - 1 )

VT - 1 (sT - 1 )

𝑉! 𝑠! = 𝑟! 𝑠!  
for 𝑡 = 𝑇 − 1,… , 0 do
    for 𝑠" ∈ 𝒮" do
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Dynamic programming algorithm 37

State s

4

3

2

1

0 1 2 3 4 Stage

5

𝑉! 𝑠! = 𝑟! 𝑠!  
for 𝑡 = 𝑇 − 1,… , 0 do
    for 𝑠" ∈ 𝒮" do
        𝑉" 𝑠" = max

#!∈𝒜! &!
𝑟" 𝑠", 𝑎" + 𝑉"'( 𝑠"'(  where 𝑠"'( = 𝑓 𝑠", 𝑎"

end for
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Dynamic programming algorithm 38

State s
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0 1 2 3 4 Stage

5

𝑉! 𝑠! = 𝑟! 𝑠!  
for 𝑡 = 𝑇 − 1,… , 0 do
    for 𝑠" ∈ 𝒮" do
        𝑉" 𝑠" = max

#!∈𝒜! &!
𝑟" 𝑠", 𝑎" + 𝑉"'( 𝑠"'(  where 𝑠"'( = 𝑓 𝑠", 𝑎"

end for
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Dynamic programming algorithm 39

State s

1

2

3

4

0 1 2 3 4 Stage

5
V0(s0)

V0(s0)

V0(s0)

V0(s0)

𝑉! 𝑠! = 𝑟! 𝑠!  
for 𝑡 = 𝑇 − 1,… , 0 do
    for 𝑠" ∈ 𝒮" do
        𝑉" 𝑠" = max

#!∈𝒜! &!
𝑟" 𝑠", 𝑎" + 𝑉"'( 𝑠"'(  where 𝑠"'( = 𝑓 𝑠", 𝑎"

end for
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Theorem (Dynamic programming)

For every initial state 𝑠-, the optimal value 𝑉∗(𝑠-) is equal to 𝑉- 𝑠- , 
given above.
Furthermore, if 𝑎/∗ = 𝜋/∗ 𝑠/  maximizes the right side of the above for 
each 𝑠/  and 𝑡, the policy 𝜋∗ = 𝜋-∗ , … , 𝜋012∗  is optimal.

𝑉! 𝑠! = 𝑟! 𝑠!  
for 𝑡 = 𝑇 − 1,… , 0 do
    for 𝑠" ∈ 𝒮" do
        𝑉" 𝑠" = max

#7∈𝒜7 &7
𝑟" 𝑠", 𝑎" + 𝑉"'( 𝑠"'(  where 𝑠"'( = 𝑓 𝑠", 𝑎"

end for

Dynamic programming algorithm
40
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Dynamic programming algorithm

§ Proof: by induction
§ “Efficient”: O(|S||A|T )
§ Equivalent to Bellman-Ford algorithm
§ Strength: Generality
§ Much better than naive approach O(T!)
§ Weakness: ALL the tail subproblems are solved

41

𝑉! 𝑠! = 𝑟! 𝑠!  
for 𝑡 = 𝑇 − 1,… , 0 do
    for 𝑠" ∈ 𝒮" do
        𝑉" 𝑠" = max

#7∈𝒜7 &7
𝑟" 𝑠", 𝑎" + 𝑉"'( 𝑠"'(  where 𝑠"'( = 𝑓 𝑠", 𝑎"

end for
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Proof of the induction step
Let 𝑓&: 𝑆	×𝐴 → 𝑆 denote the transition function.
Denote tail policy from time 𝑡 onward as 𝜋&:#$% = 𝜋&, 𝜋&)%, … , 𝜋#$%
Assume that 𝑉&)% 𝑠&)% = 𝑉&)%∗ 𝑠&)% .  Then:

𝑉&∗ 𝑠& = max
*!,*!"#:%&#

𝑟& 𝑠&, 𝜋& 𝑠& + 𝑟# 𝑠# + 4
,-&)%

#$%

𝑟, 𝑠,, 𝜋, 𝑠, 	

	 =	max
*!

𝑟& 𝑠&, 𝜋& 𝑠& + max
*!"#:%&#

𝑟# 𝑠# + ∑,-&)%#$% 𝑟, 𝑠,, 𝜋, 𝑠,
= max

*!
𝑟& 𝑠&, 𝜋& 𝑠& + 𝑉&)%∗ 𝑓& 𝑠&, 𝜋& 𝑠& 	

= max
*!

𝑟& 𝑠&, 𝜋& 𝑠& + 𝑉&)% 𝑓& 𝑠&, 𝜋& 𝑠& 	

           = max
.!∈𝒜! 1!

𝑟& 𝑠&, 𝑎& + 𝑉&)% 𝑓& 𝑠&, 𝑎&
           = 𝑉& 𝑠&

Interpretation as optimal reward-to-go (cost-to-go) function.

42
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Solving Shortest Path

State s

1

2

3

4

0 1 2 3 4 Stage t

5
3 3 3 3

4 4 4 5

4.5 4.5 5.5 7

2 2 2 2

1

2 3

4

6

0.5

1

32

5 52

Destination
5

7 5

Destination is node 5.
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Sequential decision making as shortest path
For Deterministic Finite-State Problems

Example: Automated vehicle
Applications: 
platooning, eco-driving, 
lane change assist, merge 
assist, parking assist

44

...

...

...

s0Initial
State

Artificial  
d Terminal

Node

Stage 0 Stage 1 Stage 2 Stage T-1 Stage T...

Terminal Arcs  with 
cost equal

to Terminal Reward
...

30mph

35mph

30mph

…
25mph

35mph
… … 30mph

25mph
…
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Sequential decision making as shortest path

For Deterministic Finite-State Problems

...

...

...

s0Initial
State

Artificial  
d Terminal

Node

Stage 0 Stage 1 Stage 2 Stage T-1 Stage T...

Terminal Arcs  with 
cost equal

to Terminal Reward
...

Discuss: If shortest path isn’t hard, why are DP problems still challenging?

47
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Sequential decision making as shortest path
48

X. Azagirre et al., “A Better Match for Drivers and Riders: Reinforcement Learning at Lyft.” INFORMS Journal on Applied Analytics, 2023. doi: 10.48550/arXiv.2310.13810.

For Deterministic Finite-State Problems

Example: Real-time ridesharing

...

...

...

s0Initial
State

Artificial  
d Terminal

Node

Stage 0 Stage 1 Stage 2 Stage T-1 Stage T...

Terminal Arcs  with 
cost equal

to Terminal Reward
...

Each stage may have
𝐴 = 𝑁!

for 𝑁 drivers and 𝑁 riders.

https://doi.org/10.48550/arXiv.2310.13810
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Sequential decision making can get hairy

Example: traveling salesman problem(TSP)
N cities.
Goal: Find the shortest tour (visit every city  
exactly once and return home).
In this case, can’t get around exponential. (why?)
|S| = O(N!) , |A| = N, T		= N, so
O(|S||A|T	)  = O(N!).
(Actually, DP is slightly better: |S| = O(2NN2).)
This is called the curse of dimensionality.

50
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Sequential decision making can get hairy

Example: traveling salesman problem(TSP)
N cities.
Goal: Find the shortest tour (visit every city  
exactly once and return home).
In this case, can’t get around exponential. (why?)
|S| = O(N!) , |A| = N, T		= N, so
O(|S||A|T	)  = O(N!).
(Actually, DP is slightly better: |S| = O(2NN2).)
This is called the curse of dimensionality.
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(Recall) Key challenge: huge state spaces
§ State: location, time, and vehicle type
• Location is encoded from geohash6 (precise 

location) [1,600] and geohash5 (neighborhood) 
[50]
• Time encoded from hour-of-week categories 

[168]
• Vehicle type: standard, luxury, SUV, or handicap 

accessible [4]
§ State space is ≈1600x50x168x4=54M
§ For reference: SF Bay Area population is 8M
• Naïve approach: Would need everyone to take 

at least 7 rides to gather enough data

B. Han, H. Lee, and S. Martin, “Real-Time Rideshare Driver Supply Values Using Online Reinforcement Learning,” in ACM SIGKDD Conference on Knowledge Discovery and Data Mining, in KDD ’22. Aug. 2022. doi: 10.1145/3534678.3539141.

Cannot only explore. Cannot only exploit.
Must trade off exploration and exploitation.

https://doi.org/10.1145/3534678.3539141
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Optimal capacity expansion
A regional automotive company is 
planning a large investment in 
electric vehicle (EV) manufacturing 
plants over the next few years.  

Bradley et al.

§ A total of eight manufacturing plants must be built over the next six years 
because of both increasing demand in the region and the energy crisis, which 
has forced the closing of certain of their antiquated internal combustion 
engine (ICE) vehicle plants.

§ Minimum-demand schedule: Assume that demand for electric vehicles in the 
region is known with certainty (deterministic) and that we must satisfy the 
minimum levels of cumulative demand indicated in Table E11.1. 

§ The demand here has been converted into equivalent numbers of 
manufacturing plants required by the end of each year. 

2025
2026
2027
2028
2029
2030
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Optimal capacity expansion
§ The building of EV manufacturing plants takes approximately one year. 
§ In addition to a cost directly associated with the construction of a plant, 

there is a common cost of $1.5 million incurred when any plants are 
constructed in any year, independent of the number of plants constructed. 
• This common cost results from contract preparation. 

§ In any given year, at most three plants can be constructed.
§ The cost of construction per plant is given in 

Table E11.1 for each year in the planning horizon.
• These costs are currently increasing due to the 

elimination of an investment tax credit designed to 
speed investment in EVs. 

• However, new technology should be available by 
2028, which will tend to bring the costs down, even 
given the elimination of the investment tax credit.

2025
2026
2027
2028
2029
2030
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Travelling Salesman Problem (https://xkcd.com/399/)
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