Dynamic programming

Solving deterministic finite horizon MDPs

Cathy Wu
1.041/1.200 Transportation: Foundations and Methods

Readings

1. Bradley, Stephen P., Arnoldo C. Hax, and Thomas L. Magnanti. Applied mathematical programming. Addison-Wesley (1977). Chapter 11: Dynamic Programming. [URL]

Outline

1. Shortest path problems
2. Optimal capacity expansion problem

Recall: the characters*

Markov Decision Process (MDP) \mathcal{M}

Goal: maximize reward over time (returns, cumulative reward)

Optimization Problem

- Our goal: solve the MDP

Definition (Optimal policy and optimal value function)

The solution to an MDP is an optimal policy π^{*} satisfying

$$
\pi^{*} \in \arg \max _{\pi \in \Pi} V^{\pi}
$$

where Π is some policy set of interest.
The corresponding value function is the optimal value function

$$
V^{*}=V^{\pi^{*}}
$$

Assume for now: finite horizon problems, i.e. $T<\infty$

Deterministic vs stochastic sequential problems

- A deterministic policy is a special case of a stochastic policy when $\pi(a \mid s)$ is a unit spike at $a=\pi(s)$ for all $s \in \mathcal{S}$ (and 0 otherwise).
- A deterministic transition is a special case of a stochastic transition when $p\left(s^{\prime} \mid s, a\right)$ is a unit spike at $\mathrm{s}^{\prime}=\mathrm{f}_{\mathrm{t}}(\mathrm{s}, \mathrm{a})$ for all $s \in \mathcal{S}, a \in A$ (and 0 otherwise).

That is, a deterministic sequential decision problem is a special case of a stochastic sequential problem. It can still be modeled within the MDP framework.

Example: Shortest Path Problem

Sequential decision problem

- Start state so: city 2
- Action ao: take link between city 2 and city 3
- State s : : city 3
- Action aı: take link between city 3 and city 5
- State s2: city 5

Destination is node 5.

Solving Shortest Path

Assumption: all cycles have non-negative length.

Destination

Destination is node 5.

- Naive approach: enumerate all possibilities.
- From a starting city so, choose any remaining city ($\mathrm{N}-1$ choices). Choose any next remaining city ($\mathrm{N}-2$ choices). ...
Until there is only 1 option remaining.
- Add up the edge costs.
- Select the best sequence (lowest total cost).
- O (N !).

Solving Shortest Path

- Issue: repeated calculations of subsequences.
- Dynamic programming: divide-and-conquer, or the principle of optimality.
- Overall problem would be much easier to solve if a part of the problem were already solved.
- Break a problem down into subproblems.

Destination is node 5.

Solving Shortest Path

Destination is node 5.

Solving Shortest Path

Destination is node 5 .

Solving Shortest Path

Destination is node 5.

Solving Shortest Path

Destination is node 5 .

Solving Shortest Path

Destination is node 5.

Solving Shortest Path

Destination is node 5.

Solving Shortest Path

Destination is node 5.

Bellman's Principle of optimality (1957)

"An optimal policy has the property that, whatever the initial state and the initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision."

Principle of optimality (Bellman, 1957)

Principle (Optimality)

Let $\left\{a_{0}^{*}, \ldots, a_{T-1}^{*}\right\}$ be an optimal action sequence, which together with s_{0} and $\left\{\epsilon_{0}, \ldots, \epsilon_{T-1}\right\}$ determines the corresponding state sequence $\left\{s_{1}^{*}, \ldots, s_{T}^{*}\right\}$ via the state transition function. Consider the subproblem whereby we start at s_{t}^{*} at time t and wish to maximize the value function from time t to time T,

$$
r_{t}\left(s_{t}^{*}\right)+\sum^{T-1} r_{\tau}\left(s_{\tau}, a_{\tau}\right)+r_{T}\left(s_{T}\right)
$$

over $\left\{a_{t}, \ldots, a_{T-1}\right\}$ with $a_{\tau} \in A_{\tau}\left(s_{\tau}\right)^{\tau}, \bar{\tau}^{t \pm 1} t, \ldots, T-1$. Then, the truncated optimal action sequence $\left\{a_{t}^{*}, \ldots, a_{T-1}^{*}\right\}$ is optimal for this subproblem.

Dynamic programming algorithm

Dynamic programming algorithm

Dynamic programming algorithm

```
V
for t=T-1,\ldots.0 do
    for }\mp@subsup{s}{t}{}\in\mp@subsup{\mathcal{S}}{t}{}\mathrm{ do
```

State s

Dynamic programming algorithm

```
\(V_{T}\left(s_{T}\right)=r_{T}\left(s_{T}\right)\)
for \(t=T-1, \ldots, 0\) do
    for \(s_{t} \in \mathcal{S}_{t}\) do
        \(V_{t}\left(s_{t}\right)=\max _{a_{t} \in \mathcal{A}_{t}\left(s_{t}\right)} r_{t}\left(s_{t}, a_{t}\right)+V_{t+1}\left(s_{t+1}\right)\) where \(s_{t+1}=f\left(s_{t}, a_{t}\right)\)
end for
```


Dynamic programming algorithm

$$
\begin{aligned}
& V_{T}\left(s_{T}\right)=r_{T}\left(s_{T}\right) \\
& \text { for } t=T-1, \ldots, 0 \text { do } \\
& \quad \text { for } s_{t} \in \mathcal{S}_{t} \text { do } \\
& \quad V_{t}\left(s_{t}\right)=\max _{a_{t} \in \mathcal{A}_{t}\left(s_{t}\right)} r_{t}\left(s_{t}, a_{t}\right)+V_{t+1}\left(s_{t+1}\right) \text { where } s_{t+1}=f\left(s_{t}, a_{t}\right) \\
& \text { end for }
\end{aligned}
$$

Dynamic programming algorithm

```
\(V_{T}\left(s_{T}\right)=r_{T}\left(s_{T}\right)\)
for \(t=T-1, \ldots, 0\) do
    for \(s_{t} \in \mathcal{S}_{t}\) do
        \(V_{t}\left(s_{t}\right)=\max _{a_{t} \in \mathcal{A}_{t}\left(s_{t}\right)} r_{t}\left(s_{t}, a_{t}\right)+V_{t+1}\left(s_{t+1}\right)\) where \(s_{t+1}=f\left(s_{t}, a_{t}\right)\)
end for
```


Dynamic programming algorithm

$$
\begin{aligned}
& V_{T}\left(s_{T}\right)=r_{T}\left(s_{T}\right) \\
& \text { for } t=T-1, \ldots, 0 \text { do } \\
& \quad \text { for } s_{t} \in \mathcal{S}_{t} \text { do } \\
& \quad V_{t}\left(s_{t}\right)=\max _{a_{t} \in \mathcal{A}_{t}\left(s_{t}\right)} r_{t}\left(s_{t}, a_{t}\right)+V_{t+1}\left(s_{t+1}\right) \text { where } s_{t+1}=f\left(s_{t}, a_{t}\right) \\
& \text { end for }
\end{aligned}
$$

Theorem (Dynamic programming)

For every initial state s_{0}, the optimal value $V^{*}\left(s_{0}\right)$ is equal to $V_{0}\left(S_{0}\right)$, given above.
Furthermore, if $a_{t}^{*}=\pi_{t}^{*}\left(s_{t}\right)$ maximizes the right side of the above for each s_{t} and t, the policy $\pi^{*}=\left(\pi_{0}^{*}, \ldots, \pi_{T-1}^{*}\right)$ is optimal.

Dynamic programming algorithm

$$
\begin{aligned}
& V_{T}\left(s_{T}\right)=r_{T}\left(s_{T}\right) \\
& \text { for } t=T-1, \ldots, 0 \text { do } \\
& \quad \text { for } s_{t} \in \mathcal{S}_{t} \text { do } \\
& \quad V_{t}\left(s_{t}\right)=\max _{a_{t} \in \mathcal{A}_{t}\left(s_{t}\right)} r_{t}\left(s_{t}, a_{t}\right)+V_{t+1}\left(s_{t+1}\right) \text { where } s_{t+1}=f\left(s_{t}, a_{t}\right) \\
& \text { end for }
\end{aligned}
$$

- Proof: by induction
- "Efficient": O(|S||A|T)
- Equivalent to Bellman-Ford algorithm
- Strength: Generality
- Much better than naive approach O(T!)
- Weakness: ALL the tail subproblems are solved

Proof of the induction step

Let $f_{t}: S \times A \rightarrow S$ denote the transition function.
Denote tail policy from time t onward as $\pi_{t: T-1}=\left\{\pi_{t}, \pi_{t+1}, \ldots, \pi_{T-1}\right\}$
Assume that $V_{t+1}\left(s_{t+1}\right)=V_{t+1}^{*}\left(s_{t+1}\right)$. Then:

$$
\begin{aligned}
& V_{t}^{*}\left(s_{t}\right)=\max _{\left(\pi_{t}, \pi_{t+1: T-1}\right)} r_{t}\left(s_{t}, \pi_{t}\left(s_{t}\right)\right)+r_{T}\left(s_{T}\right)+\sum_{i=t+1}^{T-1} r_{i}\left(s_{i}, \pi_{i}\left(s_{i}\right)\right) \\
& \quad=\max _{\pi_{t}} r_{t}\left(s_{t}, \pi_{t}\left(s_{t}\right)\right)+\max _{\pi_{t+1: T-1}}\left[r_{T}\left(s_{T}\right)+\sum_{i=t+1}^{T-1} r_{i}\left(s_{i}, \pi_{i}\left(s_{i}\right)\right)\right] \\
& =\max _{\pi_{t}} r_{t}\left(s_{t}, \pi_{t}\left(s_{t}\right)\right)+V_{t+1}^{*}\left(f_{t}\left(s_{t}, \pi_{t}\left(s_{t}\right)\right)\right) \\
& =\max _{\pi_{t}} r_{t}\left(s_{t}, \pi_{t}\left(s_{t}\right)\right)+V_{t+1}\left(f_{t}\left(s_{t}, \pi_{t}\left(s_{t}\right)\right)\right) \\
& =\max _{a_{t} \mathcal{A l}_{t}\left(s_{t}\right)} r_{t}\left(s_{t}, a_{t}\right)+V_{t+1}\left(f_{t}\left(s_{t}, a_{t}\right)\right) \\
& =V_{t}\left(s_{t}\right)
\end{aligned}
$$

Interpretation as optimal reward-to-go (cost-to-go) function.

Solving Shortest Path

Destination is node 5.

Sequential decision making as shortest path

Example: Automated vehicle

35 mph Applications: platooning, eco-driving, 30 mph lane change assist, merge 25 mph assist, parking assist

Sequential decision making as shortest path

Discuss: If shortest path isn't hard, why are DP problems still challenging?

Sequential decision making as shortest path

Example: Real-time ridesharing

Each stage may have

$$
|A|=N!
$$

for N drivers and N riders.

Sequential decision making can get hairy

Example: traveling salesman problem(TSP)

- N cities.
- Goal: Find the shortest tour (visit every city exactly once and return home).
- In this case, can't get around exponential. (why?)
- $|\mathrm{S}|=O(\mathrm{~N}!),|\mathrm{A}|=\mathrm{N}, \mathrm{T}=\mathrm{N}$, so $O(|\mathrm{~S}||\mathrm{A}| \mathrm{T})=O(\mathrm{~N}!)$.
- (Actually, DP is slightly better: $|\mathrm{S}|=\mathrm{O}\left(2^{\mathrm{N}} \mathrm{N}^{2}\right)$.)
- This is called the curse of dimensionality.

Terminal State t

	5	1	15
5		20	4
1	20		3
15	4	3	

Sequential decision making can get hairy

Example: traveling salesman problem (TSP)

- N cities.
- Goal: Find the shortest tour (visit every city exactly once and return home).
- In this case, can't get around exponential. (why?)
- $|\mathrm{S}|=O(\mathrm{~N}!),|\mathrm{A}|=\mathrm{N}, \mathrm{T}=\mathrm{N}$, so $O(|\mathrm{~S}||\mathrm{A}| \mathrm{T})=O(\mathrm{~N}!)$.
- (Actually, DP is slightly better: $|\mathrm{S}|=\mathrm{O}\left(2^{\mathrm{N}} \mathrm{N}^{2}\right)$.)
- This is called the curse of dimensionality.

(Recall) Key challenge: huge state spaces

- State: location, time, and vehicle type
- Location is encoded from geohash6 (precise location) [1,600] and geohash5 (neighborhood) [50]
- Time encoded from hour-of-week categories [168]
- Vehicle type: standard, luxury, SUV, or handicap accessible [4]
- State space is $\approx 1600 \times 50 \times 168 x 4=54 \mathrm{M}$
- For reference: SF Bay Area population is 8M
- Naïve approach: Would need everyone to take at least 7 rides to gather enough data

Figure 4: Spatial factor weights are weighted and normal ized by the inverse of the distance from the geohash centroid to smoothly interpolate the four closest geohash5 state factors. A similiar interpolation is applied using the two nearest hours of the week, yielding a cross-product of eight spatiotemporal factors and weights. Additional factors also consider the vehicle type, such as standard, luxury, SUV, or handicap accessible.

Optimal capacity expansion

A regional automotive company is planning a large investment in electric vehicle (EV) manufacturing plants over the next few years.

Table E11.1 Demand and cost per plant ($\$ \times 1000$)

Year	Cumulative demand (in number of plants)	Cost per plant $(\$ \times 1000)$
2025	1	5400
2026	2	5600
2027	4	5800
2028	6	5700
2029	7	5500
2030	8	5200

- A total of eight manufacturing plants must be built over the next six years because of both increasing demand in the region and the energy crisis, which has forced the closing of certain of their antiquated internal combustion engine (ICE) vehicle plants.
- Minimum-demand schedule: Assume that demand for electric vehicles in the region is known with certainty (deterministic) and that we must satisfy the minimum levels of cumulative demand indicated in Table E11.1.
- The demand here has been converted into equivalent numbers of manufacturing plants required by the end of each year.

Optimal capacity expansion

- The building of EV manufacturing plants takes approximately one year.
- In addition to a cost directly associated with the construction of a plant, there is a common cost of $\mathbf{\$ 1 . 5}$ million incurred when any plants are constructed in any year, independent of the number of plants constructed.
- This common cost results from contract preparation.
- In any given year, at most three plants can be constructed.
- The cost of construction per plant is given in

Table E11.1 for each year in the planning horizon. Table E11.1 Demand and cost per plant ($\$ \times 1000$)

- These costs are currently increasing due to the elimination of an investment tax credit designed to speed investment in EVs.
- However, new technology should be available by 2028, which will tend to bring the costs down, even given the elimination of the investment tax credit.

Year	Cumulative demand (in number of plants)	Cost per plant $(\$ \times 1000)$
2025	1	5400
2026	2	5600
2027	4	5800
2028	6	5700
2029	7	5500
2030	8	5200

SELUNG ON EBAY: O(1)

STILL WORKING ON YOUR ROUTE?

References

1. Bradley, Stephen P., Arnoldo C. Hax, and Thomas L. Magnanti. Applied mathematical programming. Addison-Wesley (1977). Chapter 11: Dynamic Programming.
2. Bertsekas, D. P. (2005). Dynamic programming and optimal control, vol 1. Belmont, MA: Athena Scientific, $3^{\text {rd }}$ Edition.
3. Lazaric, A. (2014). Master MVA: Reinforcement Learning.
4. With many slides adapted from Alessandro Lazaric and Matteo Pirotta.
