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1. (Optional) Bertsekas, D. P. (2005). Dynamic programming and 
optimal control, vol 1. Belmont, MA: Athena Scientific, 3rd 
Edition. Chapter 1: Introduction.

Readings
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Unit 3: Machine learning for traffic control
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1. Dynamic programming in transportation

2. Dynamic programming for stochastic problems

3. Parking problem

4. Dynamic programming analysis
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Dynamic programming in transportation

§ Optimal capacity expansion
§ Routing
§ Scheduling
§ Machine replacement
§ Inventory management
§ Queue management
§ Production planning
§ Optimal stopping

Bertsekas, D. P. (2005). Dynamic programming and optimal control, vol 1. Belmont, MA: Athena Scientific, 3rd Edition. Chapter 1 & 3 (See examples)

+

§ Planes
• Aviation
• Drones
• Runways

§ Train
§ Automobiles
• Electric chargers
• Connected / automated

§ Buses
§ Micromobility
• Bikes
• Scooters

§ Ships
§ …

6
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Recall: Deterministic vs stochastic sequential problems
§ A deterministic policy is a special case of a stochastic policy when 
𝜋 𝑎 𝑠  is a unit spike at 𝑎 = 𝜋 𝑠  for all 𝑠 ∈ 𝒮 (and 0 otherwise).

§ A deterministic transition is a special case of a stochastic transition 
when 𝑝 𝑠! 𝑠, 𝑎) is a unit spike at s! = 	f" s, a  for all 𝑠 ∈ 𝒮, 𝑎 ∈ 𝐴 
(and 0 otherwise).

That is, a deterministic sequential decision problem is a special case of 
a stochastic sequential problem. It can still be modeled within the MDP 
framework.
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Uncertainty in Transportation
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Recalling from Unit 2, there is uncertainty everywhere in transportation and 
these can be represented in an MDP, via a general 𝑝 𝑠! 𝑠, 𝑎).

Examples:
§ Public transportation: Bus arrivals at the start of a day are more on-time 

than at the end of a day.
§ Driving and traffic conditions on a road.
§ The arrival time of your Lyft Line ride.
§ Airline departures and delays.
§ Etc., etc.

If we can identify the factors that contribute to the uncertainty, then we can 
incorporate them into the MDP model.
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Recall: Deterministic dynamic programming algorithm

§ Proof: by induction
§ “Efficient”: O(|S||A|T)
§ Equivalent to Bellman-Ford algorithm
§ Strength: Generality
§ Much better than naive approach O(T!)
§ Weakness: ALL the tail subproblems are solved

11

𝑉" 𝑠" = 𝑟" 𝑠"  
for 𝑡 = 𝑇 − 1,… , 0 do
    for 𝑠# ∈ 𝒮# do
        𝑉# 𝑠# = max

$!∈𝒜! '!
𝑟# 𝑠#, 𝑎# + 𝑉#() 𝑠#()  where 𝑠#() = 𝑓 𝑠#, 𝑎#

end for



Wu

Dynamic programming algorithm
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𝑉" 𝑠" = 𝑟" 𝑠"  
for 𝑡 = 𝑇 − 1,… , 0 do
    for 𝑠# ∈ 𝒮# do
        𝑉# 𝑠# = max

$!∈𝒜! '!
𝑟# 𝑠#, 𝑎# + 𝔼'!"#∼+(⋅|'!,$!) 𝑉#() 𝑠#()

end for
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Dynamic programming algorithm

§ Proof: by induction
§ “Efficient”: O(|S|2|A|T)

§ For deterministic shortest path routing
• Equivalent to Bellman-Ford algorithm
• Strength: Generality
• “Efficient”: O(|S||A|T)
• Much better than naive approach O(T!)
• Weakness: ALL the tail subproblems are 

solved
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𝑉" 𝑠" = 𝑟" 𝑠"  
for 𝑡 = 𝑇 − 1,… , 0 do
    for 𝑠# ∈ 𝒮# do
        𝑉# 𝑠# = max

$!∈𝒜! '!
𝑟# 𝑠#, 𝑎# + 𝔼'!"#∼+(⋅|'!,$!) 𝑉#() 𝑠#()

end for
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Example: Parking Problem

Adapted from DPOC vol1 (2005) Chapter 3 and Lazaric (2014) Lecture 2

We know (assume) that:
§ The driver cannot see if a spot is available 

unless in front of it.
§ There are 𝐶 + 	1 parking spots.
§ Cannot move backwards. At each place 𝑘 the 

driver can either move to the next spot or park (if the place is available).
§ Each spot is free with probability 𝑝 𝑘 , independently of the other spots.
§ The closer to the restaurant, the higher the satisfaction. Assume that 

satisfaction grows inversely with the distance to the restaurant.
§ However, parking sooner gives the driver satisfaction. In fact, parking at each 

later slot gives a factor of 0.9 less satisfaction.
§ If the driver doesn’t park anywhere, then the driver leaves the restaurant and 

has to find another place to eat.

A driver wants to park as close as possible to the restaurant.

Objective: maximize the satisfaction 
Problem: Formulate the parking problem as an MDP.
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Applications
§ This is an instance of an optimal stopping problem.
§ At each stage, the decision maker observes the current state of the 

system and decides whether to continue the process (perhaps at a 
certain cost) or stop the process and incur a certain loss.

§ Applications in transportation:
• Curbside management: mitigating effects of mobility-on-demand pick-up & 

drop-offs
• Infrastructure investment: when to buy land and build infrastructure
• Dynamic scheduling / vehicle routing: wait for more information or decide

§ Famous application: secretary problem

Further reading
[1] P. N. Stueger, F. Fehn, and K. Bogenberger, “Minimizing the Effects of Urban Mobility-on-Demand Pick-Up and Drop-Off Stops: A Microscopic Simulation 
Approach,” Transportation Research Record, vol. 2677, no. 1, pp. 814–828, Jan. 2023, doi: 10.1177/03611981221101894.
[2] J.-D. Saphores and M. Boranet, “Investing in urban transportation infrastructure under uncertainty,” in 8th annual real options conference, 2004.
[3] N. Vodopivec and E. Miller-Hooks, “An optimal stopping approach to managing travel-time uncertainty for time-sensitive customer pickup,” Transportation 
Research Part B: Methodological, vol. 102, pp. 22–37, Aug. 2017, doi: 10.1016/j.trb.2017.04.017.
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https://doi.org/10.1177/03611981221101894
https://doi.org/10.1016/j.trb.2017.04.017
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Applications

1.200 Class project ideas – Notion

17

https://frill-flag-99f.notion.site/1-041-1-200-Class-project-ideas-Spring-2024-4fd92d0de7a44adc9be6f6af7bcf0b4f
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Example: Parking Problem

Adapted from DPOC vol1 (2005) Chapter 3 and Lazaric (2014) Lecture 2

A driver wants to park as close as possible to the restaurant.

Objective: maximize the satisfaction 
Problem: Formulate the parking problem as an MDP.
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Example: Parking Problem, Part II (Lazaric, 2014, Lecture 2)

§ Let’s solve the parking problem using dynamic programming 
principles, but now, considering the stochastic nature of the 
problem. 

§ As before, we start from the end.
§ We use an equivalent discounted version of the dynamic 

programming recursion:

𝑉#∗ 𝑠 = max
%∈𝒜

𝑟 𝑠, 𝑎 + 𝛾𝔼(!~* ⋅ 𝑠, 𝑎 𝑉#+,∗ 𝑠!

𝑉-∗ 𝑠 = max
%∈𝒜

𝑟 𝑠, 𝑎 	 (terminal	reward)
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Dynamic programming algorithm

§ Proof: by induction
§ “Efficient”: O(|S|2|A|T)

§ For deterministic shortest path routing
• Equivalent to Bellman-Ford algorithm
• Strength: Generality
• “Efficient”: O(|S||A|T)
• Much better than naive approach O(T!)
• Weakness: ALL the tail subproblems are 

solved
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𝑉" 𝑠" = 𝑟" 𝑠"  
for 𝑡 = 𝑇 − 1,… , 0 do
    for 𝑠# ∈ 𝒮# do
        𝑉# 𝑠# = max

$!∈𝒜! '!
𝑟# 𝑠#, 𝑎# + 𝔼'!"#∼+(⋅|'!,$!) 𝑉#() 𝑠#()

end for
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Proof of the induction step
Denote tail policy from time 𝑡 onward as 𝜋!:#$% = 𝜋!, 𝜋!&%, … , 𝜋#$%
Assume that 𝑉!&% 𝑠!&% = 𝑉!&%∗ 𝑠!&% .  Then:

𝑉!∗ 𝑠! = max
(!,(!"#:%&#

𝔼
*!"#:%&#

𝑟! 𝑠!, 𝜋! 𝑠! + 𝑟# 𝑠# + .
+,!&%

#$%

𝑟+ 𝑠+, 𝜋+ 𝑠+ 	

	 =	max
(!

𝑟! 𝑠!, 𝜋! 𝑠! + max
(!"#:%&#

𝔼
*!"#:%&#

𝑟# 𝑠# + ∑+,!&%#$% 𝑟+ 𝑠+, 𝜋+ 𝑠+

 = max
'!

𝑟( 𝑠( , 𝜋( 𝑠( + 𝔼
)!"#∼+(⋅|)! ,'! )! )

max
'!"#:%&#

𝔼
)!"':%&#

𝑟1 𝑠1 + ∑23(45165 𝑟2 𝑠2 , 𝜋2 𝑠2

	 = max
(!

𝑟! 𝑠!, 𝜋! 𝑠! + 𝔼
*!"#∼.(⋅|*!,(! *! )

𝑉!&%∗ 𝑠!&%
	 = max

(!
𝑟! 𝑠!, 𝜋! 𝑠! + 𝔼

*!"#∼.(⋅|*!,(! *! )
𝑉!&% 𝑠!&%

           = max
3!∈𝒜! *!

𝑟! 𝑠!, 𝑎! + 𝔼
*!"#∼.(⋅|*!,3!)

𝑉!&% 𝑠!&%
           = 𝑉! 𝑠!

Interpretation as optimal reward-to-go (cost-to-go) function.
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[induction hypothesis]

[definition]

[exchange]

[DP algorithm]
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Proof of the induction step

max
(7

.
*7
𝑝 𝑠6 𝑠, 𝑎 𝑉(7 𝑠6 	≤.

*7
𝑝 𝑠6 𝑠, 𝑎 max

(7
𝑉(7 𝑠6

For the =, we have:

But,	let	 9𝜋 𝑠6 = argmax
(7

	𝑉(7(𝑠6)

.
*7
𝑝 𝑠6 𝑠, 𝑎 max

(7
𝑉(7 𝑠6 ≤.

*7
𝑝 𝑠6 𝑠, 𝑎 𝑉7( 𝑠6 ≤ max

(7
.
*7
𝑝 𝑠6 𝑠, 𝑎 𝑉(7 𝑠6
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