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Readings

1. (Optional) Bertsekas, D. P. (2005). Dynamic programming and
optimal control, vol 1. Belmont, MA: Athena Scientific, 3™
Edition. Chapter 1: Introduction.
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Dynamic programming in transportation
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Bertsekas, D. P. (2005). Dynamic programming and optimal control, vol 1. Belmont, MA: Athena Scientific, 3" Edition. Chapter 1 & 3 (See examples)
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Recall: Deterministic vs stochastic sequential problems

A is a special case of a stochastic policy when
m(a|s) is a unit spike at a = w(s) for all s € § (and 0 otherwise).
A is a special case of a stochastic transition
when forallse S,a€e A

(and O otherwise).

That is, a deterministic sequential decision problem is a special case of
a stochastic sequential problem. It can still be modeled within the MDP
framework.



Uncertainty in Transportation

Recalling from Unit 2, there is uncertainty everywhere in transportation and
these can be represented in an MDP, via

Examples:
Public transportation: Bus arrivals at the start of a day are more on-time
than at the end of a day.
Driving and traffic conditions on a road.
The arrival time of your Lyft Line ride.
Airline departures and delays.
Etc., etc.

If we can identify the factors that contribute to the uncertainty, then we can
incorporate them into the MDP model.



Recall: dynamic programming algorithm

Vr(sr) = rT(ST)
fort=T-1,..,0do
fors, € §; do
Vi(se) = max ri(sgap) + Vig1(Set1)

end for A

Proof: by induction
:O([S]|A]T)
Equivalent to
Strength: Generality
Much better than naive approach O(T!)
Weakness: ALL the tail subproblems are solved



Dynamic programming algorithm

Vr(st) = 7”T(ST)
fort=T-1,...,0do
for s, € S, do

Ve(se) = 0 % re(sear) + E

end for

St+1~P(’|St,at) [Vt‘l'l (St+1)]




Dynamic programming algorithm

Vr(sy) = 7”T(ST)
fort=T—-1,..,0do
for s, € S, do
Vi(se) = tg}i%( ) re(se, ar) + Es,, ~P(|spar) [Vir1(se41)]
end for
Proof: by induction For deterministic shortest path routing
. O(|S]2]A|T) Equivalent to

Strength: Generality
“Efficient”:

Much better than naive approach O(T!)
Weakness: ALL the tail subproblems are
solved
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Example: Parking Problem

A driver wants to park as close as possible to the restaurant.

. . L. . . Reward k
Objective: maximize the satisfaction o 1 c
We know (assume) that: — P Restaurant
The driver cannot see if a spot is available
unless in front of it.
Reward 0

There are C + 1 parking spots.

Cannot move backwards. At each place k the

driver can either move to the next spot or park (if the place is available).
Each spot is free with probability p(k), independently of the other spots.
The closer to the restaurant, the higher the satisfaction. Assume that
satisfaction grows inversely with the distance to the restaurant.

However, parking sooner gives the driver satisfaction. In fact, parking at each
later slot gives a factor of 0.9 less satisfaction.

If the driver doesn’t park anywhere, then the driver leaves the restaurant and
has to find another place to eat.

Adapted from DPOC vol1 (2005) Chapter 3 and Lazaric (2014) Lecture 2 Wu



Applications

This is an instance of an :

At each stage, the decision maker observes the current state of the
system and decides whether to the process (perhaps at a
certain cost) or the process and incur a certain loss.
Applications in transportation:

Curbside management: mitigating effects of mobility-on-demand pick-up &
drop-offs

Infrastructure investment: when to buy land and build infrastructure
Dynamic scheduling / vehicle routing: wait for more information or decide
Famous application: secretary problem

Further reading

[1] P. N. Stueger, F. Fehn, and K. Bogenberger, “Minimizing the Effects of Urban Mobility-on-Demand Pick-Up and Drop-Off Stops: A Microscopic Simulation
Approach,” Transportation Research Record, vol. 2677, no. 1, pp. 814-828, Jan. 2023, doi: 10.1177/03611981221101894.

[2] J.-D. Saphores and M. Boranet, “Investing in urban transportation infrastructure under uncertainty,” in 8th annual real options conference, 2004.

[3] N. Vodopivec and E. Miller-Hooks, “An optimal stopping approach to managing travel-time uncertainty for time-sensitive customer pickup,” Transportation
Research Part B: Methodological, vol. 102, pp. 22-37, Aug. 2017, doi: 10.1016/j.trb.2017.04.017.



https://doi.org/10.1177/03611981221101894
https://doi.org/10.1016/j.trb.2017.04.017

Applications

1.200 Class project ideas (Spring 2024)

What if Google Maps routed drivers to available parking, rather than straight to the
destination? Current navigation apps send drivers to their destination, and then drivers spend
considerable time (and thus energy) manually looking for parking (un-aided by technology).
What would be the impact if navigation apps incorporated the search for available parking into
their routing recommendation? Model and design this routing feature. Analyze the amount of
time wasted by drivers looking for parking in an urban area. Time permitting, incorporate some
real data to inform your analysis.

Project mentor(s): Cathy Wu

1.200 Class project ideas — Notion Wu



https://frill-flag-99f.notion.site/1-041-1-200-Class-project-ideas-Spring-2024-4fd92d0de7a44adc9be6f6af7bcf0b4f
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Example: Parking Problem

A driver wants to park as close as possible to the restaurant.
Reward k

-

Objective: maximize the satisfaction o 1 c

Problem: Formulate the parking problem as an MDP. E E E
- pK) Restaurant
Reward 0 J

Adapted from DPOC vol1 (2005) Chapter 3 and Lazaric (2014) Lecture 2 Wu



Example: Parking Problem, Part Il (tazaric, 2014, Lecture 2)

Let’s solve the parking problem using dynamic programming
principles, but now, considering the nature of the

problem.
As before, we start from the end.
We use an equivalent discounted version of the dynamic

programming recursion:

Vie(s) = maxr(s,a) + yEg_p(is, ) [Vier1 ()]

Vi(s) = max r(s,a) (terminal reward)
a

22
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Dynamic programming algorithm

Vr(sr) = 7”T(ST)
fort=T-1,..,0do
for s, € S, do
Vi(se) = tg}i% ) 1:(Se, ap) + Es,, ~P(|spar) [Ves1(Se41)]
end for
Proof: by induction For deterministic shortest path routing
: O(|S|2|A|T) Equivalent to

Strength: Generality
“Efficient”:

Much better than naive approach O(T!)
Weakness: ALL the tail subproblems are
solved
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Proof of the induction step

Denote tail policy from time t onward as m;.p_1 = {7y, Tpyq, -
Assume that Vi1 (St4+1) = Vi41(St4+1). Then:
T-1 }

Vi(sg) =  max E {rt(st; ﬂt(st)) + rr(s7) + Z Ti(Si:ﬂi(Si))
i=t+1

(e, 41:7—1) St+1.7—1
l E {TT(ST) +Zl t+1TL(5i»7Ti

St+1:T-1
= maxr1e(Ss, m(Se) ) + { [ E {rq+(s;) + il s;, m;(s; ]}
¢ t( t t( t)) 5t+1~P(|5t7Tt(5t)) 7Tt+1T 1 LSt+2:T7- 1{ T( T) Zl t+1 l( l l( l))}

[definition]

{Vii1(se41)}
= maX?‘t(St, e (se)) + t+1~P(_I|E;t,nt(st)){Vt+1(St+1)} [induction hypothesis]

= max 1:(ssa Vi (s
atEcﬂt(St) t( t t) t+1~P('|St,at){ t+1( t+1)}
[DP algorithm]

= Vi(st)

-y 71}

(si))}] [exchange]

= max re(se, me(se)) + i tTla;( )

= max eS¢, Te(Se) ) + E
Tt t( o Toe( t)) St+1~P(:|st.te(st))

Interpretation as optimal reward-to-go (cost-to-go) function.



Proof of the induction step
For the =, we have:

mgx ) p(s'ls, VT () < Y plsls @) max V(s
YA A
s’ s’

But, let 7(s') = argmax V™ (s")
n-l

E p(s'ls,a) ma;xV”’(S’) < E p(s'ls,a) V7(s") < max E p(s'ls, )V (s")
T VA
S, SI sl
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