Spring 2024

Reinforcement Learning

Solving MDPs from samples

Cathy Wu
1.041/1.200 Transportation: Foundations and Methods

Wu

Readings

Miller, Tim. Introduction to reinforcement learning. 2024.

Value iteration [URL]
Temporal difference reinforcement learning [URL]
Reward shaping [URL]

https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html
https://gibberblot.github.io/rl-notes/single-agent/temporal-difference-learning.html
https://gibberblot.github.io/rl-notes/single-agent/reward-shaping.html

Unit 3: Machine learning for traffic control

O

Unit 3

Optimizing

Multi-stage

Modeling
mathematical
programs Uncertainty

Linear programs Poisson process Sequential
. decision
Queueing models
problems

LAB 1: Build your
own traffic jam

Time-space
diagrams

Simplex metho
LAB 2: Build a queuing oS :
Facility dynamics¥ @

model for Seattle transit parkov chains "‘
' T Markov decision * @

. | t processes
SIMUIation yalue iteration

dynamics

Traffic flow
theory

integration

Integer

Q-learning]
programs

Deep learning

Branch-and-bound

Deep Q Networks

LAB 3: Build an Al agent
to optimize traffic

LAB 4: Solve the traveling
salesman problem

Outline

A A T o o

Dynamic programming for traffic control
Value iteration algorithm

Grid world parking problem

Q-value iteration algorithm

Q-learning algorithm

Reward shaping

Outline

A L

Dynamic programming for traffic control

a. Challenges
b. A value function for infinite horizon problems

Value iteration algorithm
Grid world parking problem
Q-value iteration algorithm
Q-learning algorithm

Reward shaping

CL3: Build an Al agent to optimize traffic

Random policy

CL3: Build an Al agent to optimize traffic

I
!
. . I
Poorly trained policy]
o

DP for traffic signal control: c

(Today)

Updates all states (even impossible/unlikely)
(Lectures 17-18)

Large state space (e.g., |S| = 289)

nallenges

(Today)

Long horizon (e.g., T = 5400)

(Today)

— Reward sparse (often zero)

(Today)

Vr(sr) = rr(st)

fort=T-1,...,0do <«

> for St E ‘St dO v
Vi(se) = max 7:(sy,ap) + E
at€A(St)
end for

Se+1~P(C|spar) [Ves1(St41)]

Check all next states
to select next action

= Dynamic programming: O(|S|?|A|T) =
* Not so efficient ®
= Parts that are (surprisingly) OK

* DP recursion
* Action space usually small

280%X2%4%5400

©

0 O
N c
= (O
mp
o S
2 3
O O

State representation

Reward function

s

Total wait time among all vehicles
(over 90 minutes)

11

13

DP for traffic signal control: challenges
(Today) (Today)
Updates all states (even impossible/unlikely) Long horizon (e.g., T = 5400)
(Lectures 17-18) (Today)
Large state space (e.g., |S| = 28°) —— Reward sparse (often zero)
(Today)
Vr(sp) = rp(sy) Check all next states
fort=T7T-1,..,0do < to select next action
> for St E ‘St dO v
Vi(se) = max 1:(sp,ap) + IEst+1~P(-|st,at) [Ves1(St41)]
ar€AL(st)
end for

= Dynamic programming: O(|S|2|A|T) = 289%2x4x5400
* Not so efficient ®
= Parts that are (surprisingly) OK

* DP recursion
* Action space usually small

Recall (finite horizon): The value function
Given a policy «

: deadline at time T, the agent focuses on
the sum of the rewards up to T.

T—-1
VT(t,s) = IE[r(s;, m(s;)) + R(sp)|sy = s;m
TZ; 7)1St

where R is a value function for the final state.
Used when: there is an intrinsic deadline to meet.

Shorthand: V/*(s) or simply V/*

The infinite horizon value function

Given a policy T = (d4,d>, ...)
: the problem never terminates but
rewards which are closer in time receive a higher importance.

(0]

Z ytr(st, 7Tt(ht)) |So = s;1

t=0
with discount factor 0 <y < 1:

= short-term rewards, = long-term rewards
For any y € [0, 1) the series always converges (for bounded
rewards)

V™(s) = E

Used when: there is uncertainty about the deadline, to model an
intrinsic definition of discount, or to model a long deadline.

Optimization Problem

Our goal: achieve the best value
Max value-to-go (min cost-to-go)

Definition (Optimal policy and optimal value function)

The solution to an MDP is an satisfying

" € argmax Vg’
mell

where II is some policy set of interest.

The corresponding value function is the
v =vT

Outline

™~

o vk~ W

Dynamic programming for traffic control

Value iteration algorithm

a. Bellman operator

Grid world parking problem
Q-value iteration algorithm
Q-learning algorithm

Reward shaping

17

18

Value iteration algorithm

1.
2.

3.
4.

Definition (Optimal Bellman operator)

For any W € R!S!, the optimal Bellman operator is defined as

@ Then we can write the algorithm step 2 concisely:

= A key result: V; - V", as i — oo,

Let V,(s) be any function V,: S — R. [Note: not stage 0, but iteration 0.]

Apply the principle of optimality so that given V; at iteration i, we compute
Viii(s) =TVi(s) = max r(s,a) + YEg . poisay Vi(s)] foralls

Terminate when V; stops ifiproving, e.g. when max |V, {(s) — V;(s)| is small.

Return the greedy policy: g (s) = arg max r(s, Q)+ YEs ~ pis,a) Vi (7
a

TW(s) = maxr(s,a) + YEg_p(s @) W(s') foralls
a€A '

Vii1(s) =TV,(s) foralls

Adapted from Morales, Grokking Deep
Reinforcement Learning, 2020.

Wu

19

The Optimal Bellman Equation

Bellman’s Principle of Optimality (Bellman (1957)):

“An optimal policy has the property that, whatever the
initial state and the initial decision are, the remaining
decisions must constitute an optimal policy with regard to
the state resulting from the first decision.”

The Optimal Bellman Equation

Theorem (Optimal Bellman Equation)

The optimal value function V* (i.e. V* = max V™) is the solution to the optimal Bellman
A
equation:

V*(s) = max lr(s, a) + yZ p (s'ls,a) V*(s"
S
And any optimal policy is such that:

n*(als) =20 < a € arg max [r(s, a') + yz p (s'|s,a) V*(s")
a
SI

Or, for short: V* = 7V*

% There is always an optimal deterministic policy (see: Puterman, 2005, Ch. 7)

Wu

Value Iteration: the Complexity

Time complexity
Each iteration takes on the orrer of S?A operations.

Vers(5) = TVie(s) = max | r(5,0) +¥ Y p(s'ls, @)V (s")
S/

The computation of the greedy policy takes on the order of S%A
operations.

g (s) € arg max [r(s, a)+y E p(s'|s, a)Vg(s")
a
N

Total time complexity on the order of KS?A.

Space complexity
Storing the MDP: dynamics on the order of S?4 and reward on the order of
SA.
Storing the value function and the optimal policy on the order of S.

Outline

1. Dynamic programming for traffic control
2. Value iteration algorithm

3. Grid world parking problem

a. Value iteration demo

4. Q-value iteration algorithm
5. Q-learning algorithm

6. Reward shaping

22

The Grid-World Problem

23

Example: Winter parking (with ice and potholes)

Simple grid world with a coal state (green, desired parking spot) with
reward (+1), a “bad state” (red, pothole) with reward (-100), and all other

states neural (+0).

Ommnidirectional vehicle (agent) can head in any direction. Actions move
in the desired direction with probably 0.8, in one of the perpendicular
directions with.

Taking an action that would bump into a wall leaves agent where it is.

0 0 0 1 .
Action = north

f

0 0 0 0 P =0.1 < —> P =0.1

[Source: adapted from Kolter, 2016]

24

Example: value iteration

Running value iteration with v = 0.9

Original reward function
(a)
Recall value iteration algorithm:
Vii1(s) = rglea}qxr(s, a) + YEs/ « p(isa) V;(s") foralls
Let’s arbitrarily initialize V, as the reward function, since it can be any function.
Example update (red state):
V,(red) = —100 + y max{ 0.8Vy(green) + 0.1Vy(red) + 0, [up]
0 + 0.1V, (red) + 0, [down]
0 + 0.1V, (green) + 0, [left]
0.8Vy(red) + 0.1V, (green) + 1} [right]

= —100 + 0.9(0.1 * 1) = —99.91 [best: go left]

25

Example: value iteration

Running value iteration with v = 0.9

Original reward function
(a)
Recall value iteration algorithm:
Vii1(s) = max r(s,a) + YEg_ ps a) V;(s") foralls
a ,
Let’s arbitrarily initialize V, as the reward function, since it can be any function.

Example update (green state):
V,(green) =1 +ymax{ 0.8Vy(green) + 0.1V,(green), [up]
0.8V, (red) + 0.1V, (green), [down]
0 + 0.1V, (green) + 0.1V, (red), [left]

0.8Vy(red) + 0.1V, (green) + 0} [right]
=14+ 0.9(09 1) = 1.81 [best: go up]

26

Example: value iteration

Running value iteration with v = 0.9 Running value iteration with v = 0.9
0 0 0 1 0 0 0.72 | 1.81
0 0 -100 0 0 [-99.91
0 0 0 0 0 0 0 0
Originél rewafd function 14 rat one riteration
(@) (b)

Recall value iteration algorithm:
Vii1(s) = max r(s,a) + YEg_ pys a) V;(s") foralls
a)

Let’s arbitrarily initialize V, as the reward function, since it can be any function.

Need to also do this for all the “unnamed” states, too.

27

Example: value iteration

Running value iteration with v = 0.9

0 0 0 0

Original reward function

(@)

Running value iteration with v = 0.9

2.686 (3.527 [4.402 (5.812

2.021 1.095 |-98.82

1.390|0.903]0.7380.123

17 at 10 iterations

(d)

Running value iteration with v = 0.9

0 0 0.72

1.81

~efel e

0 0 0

17 at one iteration

(b)

Running value iteration with v = 0.9

5.470(6.313|7.190

8.669

4.802 3.347

-96.67

4.161|3.654 | 3.222

1.526

17 at 1000 iterations

(e)

Running value iteration with v = 0.9

0.809 (1.5698 |2.475|83.745

0.268 . 0.302 [-99.59

0]0.034(0.122 (0.004

V at five iterations

(©)

Running value iteration with v = 0.9

—»—»—)T

N pape

Pl=]<1
Resulting policy after 1000 iterations

(f)

28

Value iteration demo

Wu

Outline

I e

Vi

Dynamic programming for traffic control
Value iteration algorithm
Grid world parking problem

Q-value iteration algorithm

a. State-action values (“Q values”)

Q-learning algorithm

Reward shaping

30

31

DP for traffic signal control: challenges
(Today) (Today)
Updates all states (even impossible/unlikely) — tongherizenters T = 54004
(Lectures 17-18) (Today)
Large state space (e.g., |S| = 28°) —— Reward sparse (often zero)
(Today)
Vr(sp) = rp(sy) Check all next states
fort=T7-1,..,0do < to select next action
> for St € ‘St dO v
Vi(se) = max 1:(sp,ap) + IEst+1~P(-|st,at) [Ves1(St41)]
ar€A(st)
end for

= Dynamic programming: O(|S|2|A|T) = 289%2x4x5400
* Not so efficient ®
= Parts that are (surprisingly) OK

* DP recursion
* Action space usually small

State-Action Value Function (“Q table”)

Example: Winter parking (with ice and

potholes)
0 0 0 1 .
Action = north
P=08
0 o |-100 T
0 0 0 0 P =0.1 < —> P =0.1

Q(s,a)

Running value iteration with v = 0.9

It is convenient to keep

track of not only the long 5.470

6.313

7.190

8.669

term value of a state, but V(S) 4,802

-

-96.67

also the state, jointly with

. 4161
the next action.

3.654

3.222

1.526

V at 1000 iterations

2.5 1.4 3.2 54
1.0 3.2 51 6.3
5.2 4.2 55 7.2
8.7 3.4 2.0 8.0
4.8 2.5 3.5 4.2
1.0 3.0 3.3 1.2
-180 | -172 | -99.7 | -150
4.2 2.1 3.2 3.7
2.1 2.0 3.7 3.1
3.0 1.2 3.2 2.7
0.1 1.5 0.1 1.0

4 L «— —>

Convenient for selecting next action!

= Winter parking (with ice and potholes)

0 0 0 1

0 0 -100

0 0 0 0
Before

Action = north
P =

f

Q(s,a)

0.8

P =0.1 <

— P =0.1

Running value iteration with v = 0.9

5.47016.313 [7.190

4.802

8.669

3.347

-96.67

4.161|3.654 | 3.222

1.526

V at 1000 iterations

g (s) = arg rglea}qxr(s, a) + YEs - pisa) Vi (87)

Running value iteration with v = 0.9

—>—>—>T
— 4 — |«
t<]<]

Resulting policy after 1000 iterations

2.5 1.4 3.2 5.4
1.0 3.2 51 6.3
5.2 4.2 55 7.2
8.7 3.4 2.0 8.0
4.8 2.5 3.5 4.2
1.0 3.0 3.3 1.2
-180 | -172 | -99.7 | -150
4.2 2.1 3.2 3.7
2.1 2.0 3.7 3.1
3.0 1.2 3.2 2.7
0.1 1.5 0.1 1.0

33

State-Action Value Function

Definition (State-action Value Function)

In discounted infinite horizon problems, for any policy =, the state-action value function (or Q-function)
Q™" : SXA » Ris

Q™(s,a) = E [z vir(s,, a.)|so = s,a, = a,a, = (s,), vVt > 1
t=0
The optimal Q-function is

Q*(s,a) = max Q™ (s,a)
and the optimal policy can be obtained as

n*(s) = arg max Q*(s,a)

- Q-value iteration (just like value iteration, but with Q instead of V).
Benefit: computing the greedy policy from the Q-function does not require the MDP

g (s) € arg max Qk(s,a)
a
Compare:

T (s) = arg max
k(s) gaeA

Q-value lteration

Q-iteration:
1. Let Q, be any Q-function
Qo(s,a)
2. At each iteration k =1,2,....,K

Compute Q1 = 70y

3. Return the greedy policy
T (s) € argmax 0 (s, a)
acA
Remark
= Still requires model to compute (). = T 0y,

37

Outline

. & W N

Dynamic programming for traffic control
Value iteration algorithm

Grid world parking problem

Q-value iteration algorithm

Q-learning algorithm
a. Exploration vs exploitation

Reward shaping

38

39

DP for traffic signal control: challenges
(Today) (Today)
Updates all states (even impossible/unlikely) —— tengherizen{e-g-T—05400)
(Lectures 17-18) (Today)
Large state space (e.g., S| = 2°7) —— Reward sparse (often zero)

(Today)

VT(ST) = TT(ST) Cheekalnrextstates
fort=T-1,..,0do < to-select-next-action

fors; € S; do v
Vi(s) = max 7(sqap) + Es,, ~P(|spar) [Vit1(Se41)]

EA+(St)
end for e

= Dynamic programming: O(|S|2|A|T) = 289%2x4x5400

* Not so efficient ®

= Parts that are (surprisingly) OK

* DP recursion
* Action space usually small

Q-learning

Key idea: Update one state at a time (a little bit)
Q-value iteration update

Qi+1(s,a) =TQ;(s) = Vs, a
Q-learning update

Qur1(s,@) = (1= 1) Qus, @) + i ()

with learning rates n;, < 1

Q-learning is called because it does not require access to

P and r functions. Only requires samples (data) from P and r.
Compare: value iteration, Q-value iteration are model-based.

Dynamic programming is model-based

Reinforcement learning is model-free

Q Learning Algorithm

Let Qo be any Q-function, s be an initial state,

At each iterationk =0,1,2, ..., K _
Use Qy, to select an action a learning rates i, € [0, 1].
Observe next state s’ and reward r

Update Q function: Qx4+ (s,a) = (1 — 1) Qx(s,a) + 1y (r +y max Qy (s’ a’))
a

se s’ _ Q)+ 4 L@y — '
Return the greedy policy s, @) + 1 (r o Qu(s’,a) = Quls a))

Tk (S) = arg max TD / bootstrap target
acA Current guess of value

Temporal difference (TD) error &y,
Additional assumption needed for convergence:
Coverage: All the state-action pairs are visited infinitely often.
Learning rate: If for any n,n,, = 0 and are such that:

Enn=0°, ZW%@O

n=0 n=0

Exploration vs exploitation

How to ensure that learning agent visits potentially good states?
From the Q-learning algorithm: Use Q,, to select an action a

Complete exploitation:

arg max
a€A

Complex exploration:

w(als) = m

e-greedy: a simple strategy to balance the two
With probability €, explore. Else, exploit

Outline

o kA w N e

Dynamic programming for traffic control
Value iteration algorithm

Grid world parking problem

Q-value iteration algorithm

Q-learning algorithm

Reward shaping

a. Potential-based reward shaping
b. Reward hacking

c. Reward tuning

d. Reward shaping demo

43

44

DP for traffic signal control: challenges
(Today) (Today)
Uod ' { . iblefunlikely I horizon-te-g T = 5400)
(Lectures 17-18) (Today)
Large state space (e.g., |S| = 289) —— Reward sparse (often zero)

(Today)

Vr(sr) = rr(st) Ches ool messigtes
fort=T—1,...,0do= to-seleectnexttaction

fors; € S; do v
Vi(se) = max 1:(sp,ap) + Es, . ~P(|syap) [Ves1(St41)]

ar€AL(St)
end for e

= Dynamic programming: O(|S|2|A|T) = 289%2x4x5400

* Not so efficient ®

= Parts that are (surprisingly) OK

* DP recursion
* Action space usually small

Challenge: Reward sparsity

Rewards are 966 ALlE Vi
when few state/action
pairs have non-zero
rewards.

Adapted from Tim Miller — Introduction to RL, Reward Shaping

Reward shaping

Reward shaping is the use of small intermediate ‘fake’ rewards given
to the learning agent that help it converge more quickly.

Can we speed up learning and/or improve our final solution by
nudging our reinforcement learning agent towards behavior we

think is good?
Yes!

By incorporating domain knowledge - stuff about the domain that
the human modeller knows about while constructing the model to
be solved.

Adapted from Tim Miller — Introduction to RL, Reward Shaping

Shaped reward

In TD learning methods, we update a Q-function when a reward is
received. E.g, for 1-step Q-learning:

0(s,a) « Q(s,a) + « [r +ymaxQ(s’,a’) — Q(s, a)]
a
The approach to reward shaping is not to modify the reward
function or the received reward r, but to just give some additional
reward for some actions:
Q(s,a) « Q(s, a)+alr+F(s S’)+ymaxQ(s a) —Q(s, a)]

Additional reward

Shaped reward: r + F(s,s’)

Reward tuning: even more generally, tuned reward: r + G(s,a,s’)
Additional reward

Adapted from Tim Miller — Introduction to RL, Reward Shaping Wu

49

Potential-based Reward Shaping

Potential-based reward shaping is a particular type of reward shaping with nice theoretical guarantees. In potential-based
reward shaping, F is of the form:

F(s,s) = y®(s') — D(s)
We call @ the potential function and ®(s) is the potential of state .

So, instead of defining F : § X § = R, we define @ : § — R, which is some heuristic measure of the value of each
state s € S.

Theoretical guarantee: this will still converge to the optimal policy under the assumption that all state-action pairs are
sampled infinitely often.

Adapted from Tim Miller — Introduction to RL, Reward Shaping

Potential-based Reward Shaping

This is quite straightforward to show as follows. Consider an episode with shaped reward G®:

G = Zzo }'i(ri + F(s;, 5i41))
Yo Yi(ri + y®(sis1) — D(s7))
Yo V1 + oo ¥ ®(sis1) — Yiog 7' D(s:)
G+ X520 7' ®(s)) — D(so) — Yo 7' P(si)
= G- D(s0)
where G refers to the shaped reward for the episode, and sy is the starting state of the episode. What this says is that the
shaped reward G® is just the unshaped reward G minus the potential of the initial state sy . However, because F' does not

depend on the actions and G® does not depend on shaped rewards beyond the initial state, the shaped Q function,

which we refer to as Q% , can be defined as just 0® (s, @) = Q(s, @) + ®(s). Given this, any optimal policy extracted from
0% will be equivalent to any optimal policy extracted from Q.

However! While it provides guarantees about the end result, potential-based reward shaping may either increase or
decrease the time taken to learn. A well-designed potential function decrease the time to convergence.

Adapted from Tim Miller — Introduction to RL, Reward Shaping Wu

50

Example -- Potential Reward Shaping for GridWorld

(1,2) (2,2)

Adapted from Tim Miller — Introduction to RL, Reward Shaping

51

Example -- Potential Reward Shaping for GridWorld

For Grid World, we use the Manhattan distance to define the potential function, normalised by the size of the grid:

|x(g) — x(s)| + |y(g) — y(s)|
width + height — 2

D) =1 -

in which x(s) and y(s) return the x and y coordinates of the agent respectively, g is the goal state. and width and height
are the width and height of the grid respectively. Note that the coordinates are indexed from 0, so we subtract 2 from the

denominator.
Even on the very first iteration, a greedy policy such as € -greedy, will feedback those states closer to the +1 reward. From
state (1,2) with y = 0.9 if we go Right, we get:

- ol = Ly =] = 2

= 09-(1 :)—(1 =)

= 012

Adapted from Tim Miller — Introduction to RL, Reward Shaping

52

Example -- Potential Reward Shaping for GridWorld

We can compare the Q-values for these states for the four different possible moves that could have been taken from (1,2),
usinganda = 0.1 andy = 0.9:

Action r F(s,s") ymax, Q(s’,a’) New Q(s, a)
Up 0 09(1-2)-(1-2)=-0.06 0 —0.006
Down 0 0.9(1-%)—(1-2)=-006 0 —0.006
Right 0 09(1-3)-(1-2)= 012 0 0.012
Left 0 0.9(1 - g) -(1- %) = —0.24 0 —-0.024

Thus, we can see that our potential reward function rewards actions that go towards the goal and penalises actions that go
away from the goal. Recall that state (1,2) is in the top row, so action Up just leaves us in state (1,2) and Down similarly
because we cannot go through the walls.

But! It will not always work. Compare states (0,0) and (0,1). Our potential function will reward (0,1) because it is closer to
the goal, but we know from from our value iteration example that (0,0) is a higher value state than (0,1). This is because our
reward function does not consider the negative reward.

In practice, it is non-trivial to derive a perfect reward function -- it is the same problem as deriving the perfect search
heuristic. If we could do this, we would not need to even use reinforcement learning -- we could just do a greedy search
over the reward function.

Adapted from Tim Miller — Introduction to RL, Reward Shaping wu

53

Reward hacking

= Reward hacking is the
phenomenon where
optimizing an imperfect proxy
reward function leads to poor
performance according to the
true reward function.

J. Skalse, N. H. R. Howe, D. Krasheninnikov, and D. Krueger, “Defining and Characterizing Reward Hacking.” arXiv, Sep. 26, 2022. doi: 10.48550/arXiv.2209.13085. Wu

https://doi.org/10.48550/arXiv.2209.13085

Reward shaping demo [URL]

55

https://colab.research.google.com/github/cathywu/rl-notes/blob/master/demos/Reward%20Shaping%20-%20Colab.ipynb

Summary & Takeaways

Traffic signal control is a harder sequential decision problem than those
considered thus far, due to its long horizon, large state space, and sparse
rewards.

Fortunately, the ideas from dynamic programming extend to the
discounted infinite horizon setting (value iteration), state-action value
functions (Q-value iteration), and learning directly from samples (Q-
learning).
These three algorithms are all guaranteed to converge to the optimal solution
asymptotically (i.e., if run for long enough)
Reward shaping takes in some domain knowledge that "nudges" the
learning algorithm towards more positive actions.
A weakness of model-free methods is that they spend a lot of time exploring at
the start of the learning. It is not until they find some rewards that the learning
begins. This is particularly problematic when rewards are sparse.
Potential-based reward shaping guarantees that the policy will converge to the
same policy without reward shaping.

58

References

Miller, Tim. Introduction to reinforcement learning. 2024.

Value iteration [URL]
Temporal difference reinforcement learning [URL]
Reward shaping [URL]

Morales, Miguel. Grokking deep reinforcement learning. 2020.
Chapter 3: Balancing immediate and long-term goals.

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control.
Volume 2. 4th Edition. (2012). Chapters 1-2: Discounted Problem:s.

R. E. Bellman. Dynamic Programming. Princeton University Press,
Princeton, N.J., 1957.

Many slides adapted from Alessandro Lazaric and Matteo Pirotta.

https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html
https://gibberblot.github.io/rl-notes/single-agent/temporal-difference-learning.html
https://gibberblot.github.io/rl-notes/single-agent/reward-shaping.html

