
Wu

Reinforcement Learning
Solving MDPs from samples

Cathy Wu

1.041/1.200 Transportation: Foundations and Methods

Spring 2024

Wu

1. Miller, Tim. Introduction to reinforcement learning. 2024.

• Value iteration [URL]
• Temporal difference reinforcement learning [URL]
• Reward shaping [URL]

Readings
2

https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html
https://gibberblot.github.io/rl-notes/single-agent/temporal-difference-learning.html
https://gibberblot.github.io/rl-notes/single-agent/reward-shaping.html

Wu

Unit 3: Machine learning for traffic control
3

LAB 4: Solve the traveling
salesman problem

LAB 3: Build an AI agent
to optimize traffic

Cumulative
diagrams

Numerical
integration

Deep learning

Deep Q Networks

Q-learning

Value iteration

Markov decision
processes

Branch-and-bound

Integer
programs

Modeling
mathematical

programs

Time-space
diagrams

Queueing models

Uncertainty

Poisson process

LAB 1: Build your
own traffic jam

Sequential
decision

problems

LAB 2: Build a queuing
model for Seattle transit

Facility dynamics

Discrete event
simulation

Markov chains

Linear programs

Traffic flow
theory

Simplex method
Vehicle

dynamics

Unit 3

Optimizing

Multi-stage

Wu

Outline
4

1. Dynamic programming for traffic control

2. Value iteration algorithm

3. Grid world parking problem

4. Q-value iteration algorithm

5. Q-learning algorithm

6. Reward shaping

Wu

Outline
6

1. Dynamic programming for traffic control
a. Challenges
b. A value function for infinite horizon problems

2. Value iteration algorithm

3. Grid world parking problem

4. Q-value iteration algorithm

5. Q-learning algorithm

6. Reward shaping

Wu

CL3: Build an AI agent to optimize traffic

Random policy

7

Wu

CL3: Build an AI agent to optimize traffic

Poorly trained policy

8

Wu

DP for traffic signal control: challenges

§ Dynamic programming: O(|S|2|A|T) = 2!"×$×4×5400
• Not so efficient L

§ Parts that are (surprisingly) OK
• DP recursion
• Action space usually small

𝑉! 𝑠! = 𝑟! 𝑠!
for 𝑡 = 𝑇 − 1,… , 0 do
 for 𝑠" ∈ 𝒮" do
 𝑉" 𝑠" = max

#!∈𝒜! &!
𝑟" 𝑠", 𝑎" + 𝔼&!"#∼((⋅|&!,#!) 𝑉"./ 𝑠"./

end for

Updates all states (even impossible/unlikely)

Large state space (e.g., 𝑆 = 2!")

9

Long horizon (e.g., 𝑇 = 5400)

Reward sparse (often zero)

Check all next states
to select next action

(Today)

(Today)

(Today)

(Lectures 17-18)

(Today)

Wu

State representation
10

Discretized
occupancy

Wu

Reward function
11

Total wait time among all vehicles
(over 90 minutes)

Wu

CL3: Build an AI agent to optimize traffic

Well trained policy

12

Wu

DP for traffic signal control: challenges

§ Dynamic programming: O(|S|2|A|T) = 2!"×$×4×5400
• Not so efficient L

§ Parts that are (surprisingly) OK
• DP recursion
• Action space usually small

𝑉! 𝑠! = 𝑟! 𝑠!
for 𝑡 = 𝑇 − 1,… , 0 do
 for 𝑠" ∈ 𝒮" do
 𝑉" 𝑠" = max

#!∈𝒜! &!
𝑟" 𝑠", 𝑎" + 𝔼&!"#∼((⋅|&!,#!) 𝑉"./ 𝑠"./

end for

Long horizon (e.g., 𝑻 = 𝟓𝟒𝟎𝟎)

Large state space (e.g., 𝑆 = 2!") Reward sparse (often zero)

Updates all states (even impossible/unlikely)
(Today)

(Today)

(Today)

(Lectures 17-18)

13

Check all next states
to select next action

(Today)

Wu

Recall (finite horizon): The value function
Given a policy 𝜋 (deterministic to simplify notation)

§ Finite time horizon 𝑇: deadline at time 𝑇, the agent focuses on
the sum of the rewards up to 𝑇.

𝑉% 𝑡, 𝑠 = 	𝔼 *
&'(

)*+

𝑟 𝑠&, 𝜋(𝑠&) + 𝑅 𝑠) |𝑠(= 𝑠; 𝜋

where 𝑅 is a value function for the final state.

§ Used when: there is an intrinsic deadline to meet.

§ Shorthand: 𝑉(% 𝑠 or simply 𝑉(% (think: vector of size |𝑆|)

14

Wu

The infinite horizon value function
§ Given a policy 𝜋 = (𝑑#, 𝑑$, …) (deterministic to simplify notation)

§ Infinite time horizon with discount: the problem never terminates but
rewards which are closer in time receive a higher importance.

𝑉% 𝑠 = 	𝔼 6
&'"

(

𝛾&𝑟 𝑠& , 𝜋&)! |𝑠" = 𝑠; 𝜋

with discount factor 0 ≤ 𝛾 < 1:
§ Small = short-term rewards, big = long-term rewards
§ For any 𝛾 ∈ [0, 1) the series always converges (for bounded

rewards)

§ Used when: there is uncertainty about the deadline, to model an
intrinsic definition of discount, or to model a long deadline.

15

Wu

Optimization Problem

Definition (Optimal policy and optimal value function)
The solution to an MDP is an optimal policy 𝜋∗ satisfying

𝜋∗ ∈ argmax
%∈'

𝑉(%

where Π is some policy set of interest.

The corresponding value function is the optimal value function

𝑉∗ = 𝑉(%
∗

§ Same as before, but optimizing the infinite horizon value function
§ Our goal: achieve the best value

• Max value-to-go (min cost-to-go)

16

Wu

Outline
17

1. Dynamic programming for traffic control

2. Value iteration algorithm
a. Bellman operator

3. Grid world parking problem

4. Q-value iteration algorithm

5. Q-learning algorithm

6. Reward shaping

Wu

Value iteration algorithm
1. Let 𝑉!(𝑠) be any function 𝑉!: 𝑆 → ℝ. [Note: not stage 0, but iteration 0.]
2. Apply the principle of optimality so that given 𝑉" at iteration 𝑖, we compute

𝑉"#$ 𝑠 = 𝒯𝑉" 𝑠 ≔ max
%∈'	

𝑟(𝑠, 𝑎) + 𝛾𝔼)!~	+ ⋅),%) 𝑉" 𝑠/ 	 for	all	𝑠
3. Terminate when 𝑉" stops improving, e.g. when max

)
|𝑉"#$ 𝑠 − 𝑉" 𝑠 | is small.

4. Return the greedy policy: 𝜋0 𝑠 = argmax
%∈'	

𝑟 𝑠, 𝑎 + 𝛾𝔼)!~	+ ⋅),%)	𝑉0 𝑠/

18

Definition (Optimal Bellman operator)

For any 𝑊 ∈ ℝ " , the optimal Bellman operator is defined as
𝒯𝑊 𝑠 ≔ max

#∈%	
𝑟 𝑠, 𝑎 + 𝛾𝔼'!~) ⋅ ',#)	𝑊 𝑠- 	 for	all	𝑠

F Then we can write the algorithm step 2 concisely:
𝑉./0 𝑠 = 𝒯𝑉. 𝑠 	 for	all	𝑠

F A key result: 𝑉. → 𝑉∗, as 𝑖 → ∞.

Adapted from Morales, Grokking Deep
Reinforcement Learning, 2020.

V

Wu

The Optimal Bellman Equation
Bellman’s Principle of Optimality (Bellman (1957)):

“An optimal policy has the property that, whatever the
initial state and the initial decision are, the remaining

decisions must constitute an optimal policy with regard to
the state resulting from the first decision.”

19

Wu

The Optimal Bellman Equation

Theorem (Optimal Bellman Equation)

The optimal value function 𝑉∗ (i.e. 𝑉∗ = max
%

𝑉%) is the solution to the optimal Bellman
equation:

𝑉∗ 𝑠 = max
)∈*

𝑟 𝑠, 𝑎 + 𝛾<
+"
𝑝 𝑠, 𝑠, 𝑎)	𝑉∗(𝑠,)

And any optimal policy is such that:

𝜋∗ 𝑎 𝑠 ≥ 0 ⟺ 𝑎 ∈ arg max
)"	∈	*

𝑟 𝑠, 𝑎, + 𝛾<
+"
𝑝 𝑠, 𝑠, 𝑎)	𝑉∗(𝑠,) 	

Or, for short: 𝑉∗ = 𝒯𝑉∗

F There is always an optimal deterministic policy (see: Puterman, 2005, Ch. 7)

20

Wu

Value Iteration: the Complexity
Time complexity

§ Each iteration takes on the order of 𝑆2𝐴 operations.
𝑉3#$ 𝑠 = 𝒯𝑉3 𝑠 = max

%∈'
𝑟 𝑠, 𝑎 + 𝛾@

)/

𝑝 𝑠/ 𝑠, 𝑎 𝑉3 𝑠/

§ The computation of the greedy policy takes on the order of 𝑆2𝐴
operations.

𝜋0 𝑠 ∈ argmax
%∈'

𝑟 𝑠, 𝑎 + 𝛾@
)/

𝑝 𝑠/ 𝑠, 𝑎 𝑉0 𝑠/

§ Total time complexity on the order of 𝐾𝑆2𝐴.

Space complexity
§ Storing the MDP: dynamics on the order of 𝑆2𝐴 and reward on the order of
𝑆𝐴.

§ Storing the value function and the optimal policy on the order of 𝑆.

21

Wu

Outline
22

1. Dynamic programming for traffic control

2. Value iteration algorithm

3. Grid world parking problem
a. Value iteration demo

4. Q-value iteration algorithm

5. Q-learning algorithm

6. Reward shaping

Wu

The Grid-World Problem
23

Wu

Example: Winter parking (with ice and potholes)
§ Simple grid world with a goal state (green, desired parking spot) with
reward (+1), a “bad state” (red, pothole) with reward (-100), and all other
states neural (+0).
§ Omnidirectional vehicle (agent) can head in any direction. Actions move
in the desired direction with probably 0.8, in one of the perpendicular
directions with.
§ Taking an action that would bump into a wall leaves agent where it is.

[Source: adapted from Kolter, 2016]

24

Wu

Example: value iteration

Recall value iteration algorithm:
V2/0 𝑠 = max

#∈%
𝑟 𝑠, 𝑎 + 𝛾𝔼'!~) ⋅ ',#) 𝑉. 𝑠- for	all	𝑠

Let’s arbitrarily initialize 𝑉3 as the reward function, since it can be any function.
Example update (red state):

(a)

V0 red =	−100 +	𝛾 max{ 0.8𝑉3 green + 0.1𝑉3 red + 0,
0 + 0.1𝑉3 red + 0,
0 + 0.1𝑉3 green + 0,

0.8𝑉3 red + 0.1𝑉3 green + 1

[up]
[down]
[left]
[right]}

= −100 + 0.9 0.1 ∗ 1 = −99.91 [best: go left]

25

Wu

Example: value iteration

Recall value iteration algorithm:
V2/0 𝑠 = max

#∈%
𝑟 𝑠, 𝑎 + 𝛾𝔼'!~) ⋅ ',#) 𝑉. 𝑠- for	all	𝑠

Let’s arbitrarily initialize 𝑉3 as the reward function, since it can be any function.
Example update (green state):

(a)

V0 green =	1 +	𝛾 max{ 0.8𝑉3 green + 0.1𝑉3 green ,
0.8𝑉3 red + 0.1𝑉3 green ,

0 + 0.1𝑉3 green + 0.1𝑉3 red ,
0.8𝑉3 red + 0.1𝑉3 green + 0

[up]
[down]
[left]
[right]}

= 1 + 0.9 0.9	 ∗ 1 = 1.81 [best: go up]

26

Wu

Example: value iteration

Recall value iteration algorithm:
V2/0 𝑠 = max

#∈%
𝑟 𝑠, 𝑎 + 𝛾𝔼'!~) ⋅ ',#) 𝑉. 𝑠- for	all	𝑠

Let’s arbitrarily initialize 𝑉3 as the reward function, since it can be any function.

Need to also do this for all the “unnamed” states, too.

(a) (b)

27

Wu

Example: value iteration

(a) (b) (c)

(d) (e) (f)

28

Wu

29

Value iteration demo

Wu

Outline
30

1. Dynamic programming for traffic control

2. Value iteration algorithm

3. Grid world parking problem

4. Q-value iteration algorithm
a. State-action values (“Q values”)

5. Q-learning algorithm

6. Reward shaping

Wu

DP for traffic signal control: challenges

§ Dynamic programming: O(|S|2|A|T) = 2!"×$×4×5400
• Not so efficient L

§ Parts that are (surprisingly) OK
• DP recursion
• Action space usually small

𝑉! 𝑠! = 𝑟! 𝑠!
for 𝑡 = 𝑇 − 1,… , 0 do
 for 𝑠" ∈ 𝒮" do
 𝑉" 𝑠" = max

#!∈𝒜! &!
𝑟" 𝑠", 𝑎" + 𝔼&!"#∼((⋅|&!,#!) 𝑉"./ 𝑠"./

end for

Long horizon (e.g., 𝑇 = 5400)

Large state space (e.g., 𝑆 = 2!") Reward sparse (often zero)

Updates all states (even impossible/unlikely)
(Today)

(Today)

(Today)

(Lectures 17-18)

31

Check all next states
to select next action

(Today)

Wu

32

State-Action Value Function (“Q table”)
§ Example: Winter parking (with ice and

potholes)

𝑎

𝑠

2.5 1.4

1.0

5.2

8.7

4.8

1.0

-180

4.2

2.1

3.0

0.1

3.2

4.2

3.4

2.5

3.0

-172

2.1

2.0

1.2

1.5

3.2 5.4

5.1

5.5

2.0

3.5

3.3

-99.7

3.2

3.7

3.2

0.1

6.3

7.2

8.0

4.2

1.2

-150

3.7

3.1

2.7

1.0

𝑄(𝑠, 𝑎)

𝑉(𝑠)

It is convenient to keep
track of not only the long
term value of a state, but
also the state, jointly with
the next action.

Wu

33

Convenient for selecting next action!
§ Winter parking (with ice and potholes)

Before

𝜋4 𝑠 = argmax
#∈%	

𝑟 𝑠, 𝑎 + 𝛾𝔼'!~) ⋅ ',#)	𝑉4 𝑠-

𝑎

𝑠

2.5 1.4

1.0

5.2

8.7

4.8

1.0

-180

4.2

2.1

3.0

0.1

3.2

4.2

3.4

2.5

3.0

-172

2.1

2.0

1.2

1.5

3.2 5.4

5.1

5.5

2.0

3.5

3.3

-99.7

3.2

3.7

3.2

0.1

6.3

7.2

8.0

4.2

1.2

-150

3.7

3.1

2.7

1.0

𝑄(𝑠, 𝑎)

Wu

State-Action Value Function
Definition (State-action Value Function)
In discounted infinite horizon problems, for any policy 𝜋, the state-action value function (or Q-function)
𝑄# ∶ 𝑆×𝐴	 ↦ ℝ is

𝑄# 𝑠, 𝑎 = 𝔼 8
$%&

'

𝛾$𝑟 𝑠$, 𝑎$ |𝑠& = 𝑠, 𝑎& = 𝑎, 𝑎$ = 𝜋 𝑠$, ∀𝑡 ≥ 1

The optimal Q-function is
𝑄∗ 𝑠, 𝑎 = max

#
𝑄#(𝑠, 𝑎)

and the optimal policy can be obtained as
𝜋∗ 𝑠 = argmax

(
𝑄∗ 𝑠, 𝑎

§ à Q-value iteration (just like value iteration, but with Q instead of V).
§ Benefit: computing the greedy policy from the Q-function does not require the MDP

𝜋0 𝑠 ∈ argmax
%∈'

𝑄0(𝑠, 𝑎)
§ Compare:

𝜋0 𝑠 = argmax
%∈'	

𝑟 𝑠, 𝑎 + 𝛾𝔼)!~	+ ⋅),%)	𝑉0 𝑠/

34

Wu

Q-value Iteration
Q-iteration:
1. Let 𝑄" be any Q-function

2. At each iteration 𝑘 = 1, 2,… . , 𝐾
• Compute 𝑄3#$ = 𝒯𝑄3

3. Return the greedy policy
𝜋D 𝑠 ∈ argmax

E∈F
𝑄D(𝑠, 𝑎)

Remark
§ Still requires model to compute 𝑄ABC = 𝒯𝑄A

37

𝑎

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

𝑄D(𝑠, 𝑎)

Wu

Outline
38

1. Dynamic programming for traffic control

2. Value iteration algorithm

3. Grid world parking problem

4. Q-value iteration algorithm

5. Q-learning algorithm
a. Exploration vs exploitation

6. Reward shaping

Wu

DP for traffic signal control: challenges

§ Dynamic programming: O(|S|2|A|T) = 2!"×$×4×5400
• Not so efficient L

§ Parts that are (surprisingly) OK
• DP recursion
• Action space usually small

𝑉! 𝑠! = 𝑟! 𝑠!
for 𝑡 = 𝑇 − 1,… , 0 do
 for 𝑠" ∈ 𝒮" do
 𝑉" 𝑠" = max

#!∈𝒜! &!
𝑟" 𝑠", 𝑎" + 𝔼&!"#∼((⋅|&!,#!) 𝑉"./ 𝑠"./

end for

Long horizon (e.g., 𝑇 = 5400)

Large state space (e.g., 𝑆 = 2!") Reward sparse (often zero)

Updates all states (even impossible/unlikely)
(Today)

(Today)

(Today)

(Lectures 17-18)

39

Check all next states
to select next action

(Today)

Wu

Q-learning
§ Key idea: Update one state at a time (a little bit)
§ Q-value iteration update

𝑄GH# 𝑠, 𝑎 = 𝒯𝑄G 𝑠 ≔ max
I.∈K	

𝑟 𝑠, 𝑎 + 𝛾𝔼L.~	N ⋅ L,I) 𝑄G 𝑠P, 𝑎P 	 ∀𝑠, 𝑎

§ Q-learning update
𝑄QH# 𝑠, 𝑎 = 1 − 𝜂Q 𝑄Q 𝑠, 𝑎 + 𝜂Q 𝑟 + 𝛾 max

I.∈K	
𝑄Q 𝑠P, 𝑎P

• with learning rates 𝜂Q ≪ 1

§ Q-learning is called model-free because it does not require access to
𝑃 and 𝑟 functions. Only requires samples (data) from 𝑃 and 𝑟.
• Compare: value iteration, Q-value iteration are model-based.

§ Dynamic programming is model-based
§ Reinforcement learning is model-free

40

Wu

Q Learning Algorithm
41

1. Let 𝑄" be any Q-function, 𝑠 be an initial state,
2. At each iteration 𝑘 = 0, 1, 2, … , 𝐾
• Use 𝑄/ to select an action 𝑎
• Observe next state 𝑠′ and reward 𝑟
• Update Q function: 𝑄/01 𝑠, 𝑎 = 1 − 𝜂/ 𝑄/ 𝑠, 𝑎 + 𝜂/ 𝑟 + 𝛾max

)"
𝑄/ 𝑠,, 𝑎,

• 𝑠 ← 𝑠,
3. Return the greedy policy

𝜋R 𝑠 = argmax
I∈K

𝑄R 𝑠, 𝑎

Additional assumption needed for convergence:
§ Coverage: All the state-action pairs are visited infinitely often.
§ Learning rate: If for any 𝑛, 𝜂V ≥ 0 and are such that:

7
VWX

𝜂V = ∞, 7
VWX

𝜂VY < ∞

learning rates 𝜂Q ∈ 0, 1 .

= 𝑄5 𝑠, 𝑎 + 𝜂5 𝑟 + 𝛾max
#!

𝑄5 𝑠-, 𝑎- − 𝑄5 𝑠, 𝑎

Temporal difference (TD) error 𝛿)

TD / bootstrap target
Current guess of value

Wu

Exploration vs exploitation
§ How to ensure that learning agent visits potentially good states?

§ From the Q-learning algorithm: Use 𝑄M to select an action 𝑎

§ Complete exploitation:
argmax

I∈K
𝑄Q 𝑠, 𝑎

§ Complex exploration:

𝜋 𝑎 𝑠 =
1
𝒜

§ 𝜖-greedy: a simple strategy to balance the two
• With probability 𝜖, explore. Else, exploit

42

Wu

Outline
43

1. Dynamic programming for traffic control

2. Value iteration algorithm

3. Grid world parking problem

4. Q-value iteration algorithm

5. Q-learning algorithm

6. Reward shaping
a. Potential-based reward shaping
b. Reward hacking
c. Reward tuning
d. Reward shaping demo

Wu

DP for traffic signal control: challenges

§ Dynamic programming: O(|S|2|A|T) = 2!"×$×4×5400
• Not so efficient L

§ Parts that are (surprisingly) OK
• DP recursion
• Action space usually small

𝑉! 𝑠! = 𝑟! 𝑠!
for 𝑡 = 𝑇 − 1,… , 0 do
 for 𝑠" ∈ 𝒮" do
 𝑉" 𝑠" = max

#!∈𝒜! &!
𝑟" 𝑠", 𝑎" + 𝔼&!"#∼((⋅|&!,#!) 𝑉"./ 𝑠"./

end for

Long horizon (e.g., 𝑇 = 5400)

Large state space (e.g., 𝑆 = 2!") Reward sparse (often zero)

Updates all states (even impossible/unlikely)
(Today)

(Today)

(Today)

(Lectures 17-18)

44

Check all next states
to select next action

(Today)

Wu

Challenge: Reward sparsity
§ Rewards are sparse

when few state/action
pairs have non-zero
rewards.

Adapted from Tim Miller – Introduction to RL, Reward Shaping

45

Wu

Reward shaping
§ Reward shaping is the use of small intermediate ‘fake’ rewards given

to the learning agent that help it converge more quickly.

§ Can we speed up learning and/or improve our final solution by
nudging our reinforcement learning agent towards behavior we
think is good?

§ Yes!

§ By incorporating domain knowledge - stuff about the domain that
the human modeller knows about while constructing the model to
be solved.

Adapted from Tim Miller – Introduction to RL, Reward Shaping

46

Wu

Shaped reward
§ In TD learning methods, we update a Q-function when a reward is

received. E.g, for 1-step Q-learning:
𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max

ES
𝑄 𝑠N, 𝑎N − 𝑄(𝑠, 𝑎)

§ The approach to reward shaping is not to modify the reward
function or the received reward r, but to just give some additional
reward for some actions:

𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝐹 𝑠, 𝑠P + 𝛾max
I.

𝑄 𝑠P, 𝑎P − 𝑄(𝑠, 𝑎)

§ Shaped reward: 𝑟 + 𝐹 𝑠, 𝑠N
§ Reward tuning: even more generally, tuned reward: 𝑟 + 𝐺 𝑠, 𝑎, 𝑠N

Adapted from Tim Miller – Introduction to RL, Reward Shaping

Additional reward

Additional reward

47

Wu

Potential-based Reward Shaping

Adapted from Tim Miller – Introduction to RL, Reward Shaping

49

Wu

Potential-based Reward Shaping

Adapted from Tim Miller – Introduction to RL, Reward Shaping

50

Wu

Example -- Potential Reward Shaping for GridWorld

Adapted from Tim Miller – Introduction to RL, Reward Shaping

(1,2) (2,2)

51

Wu

Example -- Potential Reward Shaping for GridWorld

Adapted from Tim Miller – Introduction to RL, Reward Shaping

52

Wu

Example -- Potential Reward Shaping for GridWorld

Adapted from Tim Miller – Introduction to RL, Reward Shaping

53

Wu

Reward hacking
54

§ Reward hacking is the
phenomenon where
optimizing an imperfect proxy
reward function leads to poor
performance according to the
true reward function.

J. Skalse, N. H. R. Howe, D. Krasheninnikov, and D. Krueger, “Defining and Characterizing Reward Hacking.” arXiv, Sep. 26, 2022. doi: 10.48550/arXiv.2209.13085.

https://doi.org/10.48550/arXiv.2209.13085

Wu

Reward shaping demo [URL]
55

https://colab.research.google.com/github/cathywu/rl-notes/blob/master/demos/Reward%20Shaping%20-%20Colab.ipynb

Wu

Summary & Takeaways
57

§ Traffic signal control is a harder sequential decision problem than those
considered thus far, due to its long horizon, large state space, and sparse
rewards.

§ Fortunately, the ideas from dynamic programming extend to the
discounted infinite horizon setting (value iteration), state-action value
functions (Q-value iteration), and learning directly from samples (Q-
learning).
• These three algorithms are all guaranteed to converge to the optimal solution

asymptotically (i.e., if run for long enough)
§ Reward shaping takes in some domain knowledge that "nudges" the

learning algorithm towards more positive actions.
• A weakness of model-free methods is that they spend a lot of time exploring at

the start of the learning. It is not until they find some rewards that the learning
begins. This is particularly problematic when rewards are sparse.

• Potential-based reward shaping guarantees that the policy will converge to the
same policy without reward shaping.

Wu

References
58

1. Miller, Tim. Introduction to reinforcement learning. 2024.
• Value iteration [URL]
• Temporal difference reinforcement learning [URL]
• Reward shaping [URL]

2. Morales, Miguel. Grokking deep reinforcement learning. 2020.
Chapter 3: Balancing immediate and long-term goals.

3. Dimitri P. Bertsekas. Dynamic Programming and Optimal Control.
Volume 2. 4th Edition. (2012). Chapters 1-2: Discounted Problems.

4. R. E. Bellman. Dynamic Programming. Princeton University Press,
Princeton, N.J., 1957.

5. Many slides adapted from Alessandro Lazaric and Matteo Pirotta.

https://gibberblot.github.io/rl-notes/single-agent/value-iteration.html
https://gibberblot.github.io/rl-notes/single-agent/temporal-difference-learning.html
https://gibberblot.github.io/rl-notes/single-agent/reward-shaping.html

