
Wu

Integer Programming

Cathy Wu

1.041/1.200 Transportation: Foundations and Methods

Spring 2024

Wu

• Bradley, Stephen P., Arnoldo C. Hax, and Thomas L. Magnanti.
Applied mathematical programming. Addison-Wesley (1977).
Chapter 9 Integer Programming [URL]

Readings
3

https://web.mit.edu/15.053/www/AppliedMathematicalProgramming.pdf

Wu

Unit 4: Optimizing transportation resources
4

LAB 4: Solve the traveling
salesman problem

LAB 3: Build an AI agent
to optimize traffic

Cumulative
diagrams

Numerical
integration

Deep learning

Deep Q Networks

Q-learning

Value iteration

Markov decision
processes

Branch-and-bound

Integer
programs

Modeling
mathematical

programs

Time-space
diagrams

Queueing models

Uncertainty

Poisson process

LAB 1: Build your
own traffic jam

Sequential
decision

problems

LAB 2: Build a queuing
model for Seattle transit

Facility dynamics

Discrete event
simulation

Markov chains

Linear programs

Traffic flow
theory

Simplex method
Vehicle

dynamics

Unit 4

Optimizing

Single-stage

Wu

Outline

1. Integer programming

2. Example uses of integer variables
• Knapsack problem
• Scheduling
• Traveling salesperson

3. Solving integer programs: branch and bound

5

Wu

What are integer programming problems?
§ Linear programming problems in which fractional solutions are not

realistic.
§ Typically OK to assume as fractional
• Highway traffic volumes (2000 vehicles is not so different from 2001, so

neither is 2000.5)
• Passengers on a train

§ Typically not OK to assume as fractional
• Number of trains, nuclear aircraft carriers, cruise ships, etc. (large expensive

vehicles, 2 is quite different from 3)
• Number of bus drivers

§ Types of integer programs:
• Mixed integer programs: when some, but not all, variables are restricted to

be integer.
• Pure integer programs: when all decision variables must be integers.
• Binary programs: when all decision variables must be either 0 or 1.

6

Wu

Some Integer-Programming Models

7

Wu

Warehouse Location
§ In modeling distribution systems, decisions must be made about

tradeoffs between transportation costs and costs for operating
distribution centers.

§ As an example, suppose that a manager must decide which of 𝑚
warehouses to use for meeting the demands of 𝑛 customers for a
good.

§ The decisions to be made are which warehouses to operate and how
much to ship from any warehouse to any customer.

8

Wu

Decision variables and relevant data

𝑦! =	&
1	 if	warehouse	𝑖	is	opened
0	 if	warehouse	𝑖	is	not	opened

𝑥!" = Amount	to	be	sent	from	warehouse	𝑖	to	customer	𝑗
𝑓! =	Fixed operating cost for warehouse 𝑖, if opened (for example, a

cost to lease the warehouse)
𝑐!" = Per-unit operating cost at warehouse 𝑖 plus the transportation

cost for shipping from warehouse 𝑖 to customer 𝑗

§ There are two types of constraints for the model:
• the demand 𝑑! of each customer must be filled from the warehouses,
• goods can be shipped from a warehouse only if it is opened.

9

Wu

Model

Minimize	B
!"#

$

B
%"#

&

𝑐!%𝑥!% +B
!"#

$

𝑓!𝑦!

subject to:

B
!"#

$

𝑥!% = 𝑑% 	 𝑗 = 1, 2, … , 𝑛

B
%"#

&

𝑥!% − 𝑦! B
%"#

&

𝑑% ≤ 0	 𝑖 = 1, 2, … ,𝑚

𝑥!% ≥ 0	 𝑖 = 1, 2, … ,𝑚; 	 𝑗 = 1, 2, … , 𝑛
𝑦! = 0	𝑜𝑟	1	 𝑖 = 1, 2, … ,𝑚

10

Wu

The model can be made much richer by including
logical considerations
§ The opening of one warehouse contingent upon opening of another

warehouse (contingency constraints). Example: opening of pets
warehouse is contingent on pet food & supplies warehouse.

𝑦! ≤ 𝑦%
§ Conflicting warehouses (multiple-choice constraints)

𝑦# + 𝑦' + 𝑦(+ 𝑦) ≤ 1

11

Wu

The 0-1 knapsack problem
§ Resource constraints: warehouses may have costs to open / operate

/ construct (capital costs)

Maximize	B
!"#

$

𝑓!𝑦!

subject to:

B
%"#

&

𝑎%𝑦% ≤ 𝑏

𝑦% ∈ 0, 1 	 𝑗 = 1, 2, … ,𝑚

12

Wu

Scheduling
§ Consider the scheduling of airline flight personnel.
§ The airline has a number of routing ‘‘legs’’ to be flown, such as 10

A.M. New York to Chicago, or 6 P.M. Chicago to Los Angeles.
§ The airline must schedule its personnel crews on routes to cover

these flights. One crew, for example, might be scheduled to fly a
route containing the two legs just mentioned.

18

Wu

Decision variables and relevant data

𝑥% =	&
1	 if	a	crew	is	assigned	to	route	𝑗
0	 otherwise

𝑎!% =	&
1	 if	leg	𝑖	is	included	on	route	𝑗
0	 otherwise

	

𝑐!% = Cost for assigning a crew to route 𝑗

§ The coefficients 𝑎!% define the acceptable combinations of legs and
routes, taking into account such characteristics as sequencing of legs
for making connections between flights and for including in the
routes ground time for maintenance.

19

Wu

Model

Minimize	B
%"#

&

𝑐%𝑥%

subject to:

B
%"#

&

𝑎!%𝑥% = 1	 𝑖 = 1, 2, … ,𝑚

𝑥% = 0	𝑜𝑟	1	 𝑗 = 1, 2, … , 𝑛

20

Wu

An alternative formulation that permits a crew to
ride as passengers on a leg

B
%"#

&

𝑎!%𝑥% ≥ 1	 𝑖 = 1, 2, … ,𝑚

§ Set-partitioning: ∑%"#& 𝑎!%𝑥% = 1

§ Set-covering: ∑%"#& 𝑎!%𝑥% ≥ 1

21

Wu

Traveling salesperson problem
§ Starting from home, a salesperson wishes to visit each of (𝑛	 − 1)

other cities and return home at minimal cost.
§ The salesperson must visit each city exactly once and it costs 𝑐!% to

travel from city 𝑖 to city 𝑗.
§ What route should the salesperson select?

22

Wu

Decision variables

𝑥!% =	&
1	 if	the	salesperson	goes	from	city	𝑖	to	city	𝑗
0	 otherwise

23

Wu

Model

Minimize	B
!"#

&

B
%"#

&

𝑐!%𝑥!%

subject to:

B
!"#

&

𝑥!% = 1	 𝑗 = 1, 2, … , 𝑛

B
%"#

&

𝑥!% = 1	 𝑖 = 1, 2, … ,𝑚

𝑥!% ∈ 0, 1 	 𝑖 = 1, 2, … ,𝑚; 	 𝑗 = 1, 2, … , 𝑛
§ Sub-tours are not prevented.

24

Wu

Sub-tours elimination

+
𝑥#) + 𝑥#* + 𝑥#+ + 𝑥') + 𝑥'* + 𝑥'+ + 𝑥() + 𝑥(* + 𝑥(+ ≥ 1

§ With 𝑛 cities, (2& 	− 1) constraints of this nature must be added…
• True for this strategy and many other strategies used to eliminate sub-tours

in TSP models.

25

Wu

Formulating Integer Programs

26

Wu

Binary 0-1 variables
§ Suppose that we are to determine whether or not to engage in the

following activities:
1. to build a new warehouse,
2. to undertake a public service/awareness campaign, or
3. to develop/reform a new service.

§ In each case, we must make a yes–no or so-called go–no–go
decision. These choices are modeled easily by letting 𝑥% = 1 if we
engage in the 𝑗th activity and 𝑥% = 0 otherwise.

§ Variables that are restricted to 0 or 1 in this way are termed binary,
bivalent, logical, or 0–1 variables.

§ Binary variables are of great importance because they occur
regularly in many model formulations.

§ But can be also used as auxiliary variables.

27

Wu

Constraint Feasibility, a.k.a. Big M constraint
§ Does a given choice of the decision variables satisfy the constraint

below?
𝑓 𝑥#, 𝑥', … , 𝑥& ≤ 𝑏

§ Introduce a binary variable 𝑦 with the interpretation:

𝑦 = 	&1	 if	the	constraint	is	known	to	be	satisYied
0	 otherwise

and write:
𝑓 𝑥#, 𝑥', … , 𝑥& − 𝐵𝑦 ≤ 𝑏

𝐵 is chosen to be
large enough so that
the constraint always
is satisfied if 𝑦	 = 	1

28

Wu

Alternative constraints
𝑓# 𝑥#, 𝑥', … , 𝑥& ≤ 𝑏#
𝑓' 𝑥#, 𝑥', … , 𝑥& ≤ 𝑏'

§ At least one, but not necessarily both, of these constraints must be
satisfied.
• This restriction can be modeled by combining the technique just introduced

with a multiple-choice constraint as follows:
𝑓" 𝑥", 𝑥#, … , 𝑥$ − 𝐵"𝑦" ≤ 𝑏"
𝑓# 𝑥", 𝑥#, … , 𝑥$ − 𝐵#𝑦# ≤ 𝑏#
𝑦" + 𝑦# ≤ 1
𝑦", 𝑦#	are	binary

• We can save one integer variable in this formulation:
𝑓" 𝑥", 𝑥#, … , 𝑥$ − 𝐵"𝑦" ≤ 𝑏"
𝑓# 𝑥", 𝑥#, … , 𝑥$ − 𝐵# 1 − 𝑦" ≤ 𝑏#
𝑦" = 0	𝑜𝑟	1

29

Wu

Conditional Constraints
§ These constraints have the form:
𝑓# 𝑥#, 𝑥', … , 𝑥& > 𝑏# implies that 𝑓' 𝑥#, 𝑥', … , 𝑥& ≤ 𝑏'

§ If we note that:
𝑝 ⟹ 𝑞 ⇔ ~𝑝 ∨ 𝑞

we end up with the following alternative constraints:
𝑓# 𝑥#, 𝑥', … , 𝑥& ≤ 𝑏#
𝑓' 𝑥#, 𝑥', … , 𝑥& ≤ 𝑏'

30

Wu

𝑘-Fold Alternatives
§ We must satisfy at least 𝑘 of the constraints:

𝑓% 𝑥#, 𝑥', … , 𝑥& ≤ 𝑏% 	 𝑗 = 1, 2, … , 𝑝
Assuming that 𝐵% for 𝑗 = 1, 2, … , 𝑝 are chosen so that the ignored
constraints will not be binding, the general problem can be
formulated as follows:

𝑓% 𝑥#, 𝑥', … , 𝑥& − 𝐵% 1 − 𝑦% ≤ 𝑏% 	 𝑗 = 1, 2, … , 𝑝

B
%"#

,

𝑦% ≥ 𝑘

𝑦% = 0	𝑜𝑟	1	 𝑗 = 1, 2, … , 𝑝

31

Wu

Compound Alternatives
32

Wu

Representing Nonlinear Functions
§ Nonlinear functions can be represented by integer-programming

formulations…

33

Wu

Fixed Costs
§ Frequently, the objective function for a minimization problem

contains fixed costs (preliminary design costs, fixed investment
costs, fixed contracts, and so forth).

34

Wu

Fixed Costs
§ Assume that the activity 𝑥 has a limit of 𝐵 units.
§ Define 𝑦 to be a binary variable that indicates when the fixed cost is

incurred, so that 𝑦	 = 	1 when 𝑥	 > 	0 and 𝑦	 = 	0 when 𝑥	 = 	0.
§ Then the contribution to cost due to 𝑥 may be written as

𝐾𝑦 + 𝑐𝑥
with the constraints

𝑥 ≤ 𝐵𝑦
𝑥 ≥ 0
𝑦 = 0	𝑜𝑟	1

35

Wu

Piecewise Linear Representation
36

Wu

Piecewise Linear Representation
§ To model the cost curve, we express any value of 𝑥 as the sum of

three variables 𝛿#, 𝛿', 𝛿(, so that the cost for each of these variables
is linear.

§ Hence,
𝑥 = 𝛿# + 𝛿' + 𝛿(

where
0 ≤ 𝛿# ≤ 4
0 ≤ 𝛿' ≤ 6
0 ≤ 𝛿(≤ 5

and the total variable cost is given by:
Cost = 5𝛿# + 𝛿' + 3𝛿(

37

Wu

Piecewise Linear Representation
§ Note that we have defined the variables so that:

• 𝛿! is the amount by which 𝑥 exceeds 0, but is less than or equal to 4;
• 𝛿" is the amount by which 𝑥 exceeds 4, but is less than or equal to 10
• 𝛿# is the amount by which 𝑥 exceeds 10, but is less than or equal to 15.

§ If this interpretation is to be valid, we must also require that 𝛿! = 4
whenever 𝛿" > 0 and that 𝛿" = 6 whenever 𝛿# > 0.

§ However, these restrictions on the variables are simply conditional
constraints and can be modeled by introducing (more) binary variables:

𝑤! =)
1	 if	δ!	is	at	its	upper	bound
0	 otherwise

𝑤" =)
1	 if	δ"	is	at	its	upper	bound
0	 otherwise

4𝑤! ≤ 𝛿! ≤ 4
6𝑤" ≤ 𝛿" ≤ 6𝑤!
0 ≤ 𝛿# ≤ 5𝑤"
𝑤!	and	𝑤"	are	binary

38

Wu

Diseconomies of Scale
§ When marginal costs are increasing for a minimization problem or

marginal returns are decreasing for a maximization problem.

39

Wu

Diseconomies of Scale
Cost = 𝛿# + 3𝛿' + 6𝛿(

subject to:
0 ≤ 𝛿# ≤ 4
0 ≤ 𝛿' ≤ 6
0 ≤ 𝛿(≤ 5

§ The conditional constraints involving binary variables in the previous
formulation can be ignored if the cost curve appears in a
minimization objective function, since the coefficients of 𝛿#, 𝛿', 𝛿(
imply that it is always best to set 𝛿# = 4 before taking 𝛿' > 0, and
to set 𝛿' = 6 before taking 𝛿(> 0.

§ This representation without integer variables is not valid, however, if
economies of scale are present.

40

Wu

Some Characteristics of Integer Programs

41

Wu

A sample problem
Determine:

𝑧∗ = max 𝑧 = 5𝑥# + 8𝑥'
subject to:

𝑥# + 𝑥' ≤ 6
5𝑥# + 9𝑥' ≤ 45
𝑥#, 𝑥' ≥ 0	 and	are	integers

42

Wu

Feasible region

Dots in the shaded region are feasible integer points.

43

Wu

Some notes
§ If the integrality restrictions on variables are dropped, the resulting

problem is a linear program. We will call it the associated linear
program.

§ The optimal integer-programming solution is not obtained by
rounding the linear-programming solution.

§ The closest point to the optimal linear-program solution is not even
feasible.

§ The nearest feasible integer point to the linear-program solution is
far removed from the optimal integer point.

§ It is not sufficient simply to round linear-programming solutions.
§ Systematic and explicit enumeration does not work even for small

problems.

44

Wu

Branch-and-Bound

45

Wu

Strategy of ‘‘divide and conquer’’
§ An integer linear program is a linear program further constrained by

the integrality restrictions.
§ Thus, in a maximization problem, the value of the objective

function, at the linear-program optimum, will always be an upper
bound on the optimal integer-programming objective.

§ In addition, any integer feasible point is always a lower bound on the
optimal linear-program objective value.

§ The idea of branch-and-bound is to utilize these observations to
systematically subdivide the linear programming feasible region and
make assessments of the integer-programming problem based upon
these subdivisions.

46

Wu

𝐿!

𝑥 = 2.25
𝑥" = 3.75
𝑧 = 41.25

𝐿"

𝐿#

𝑧∗ ≤ 41

𝑥# ≥ 4

𝑥# ≤ 3

47

Wu

6 ● ● ● ● ● ● ● ● ● ●

5 ● ● ● ● ● ● ● ● ● ●

4 ● ● ● ● ● ● ● ● ● ●

3 ● ● ● ● ● ● ● ● ● ●

2 ● ● ● ● ● ● ● ● ● ●

1 ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

0 1 2 3 4 5 6 7 8 9

𝑥"

𝐿&

48

Wu

𝐿!

𝑥 = 2.25
𝑥" = 3.75
𝑧 = 41.25

𝐿"

𝐿#

𝑥# = 1.8
𝑥" = 4
𝑧 = 41

𝑧∗ ≤ 41

𝑥# ≥ 4

𝑥# ≤ 3

𝐿$

Infeasible

𝐿%

𝑥" ≥ 2

𝑥" ≤ 1

49

Wu

6 ● ● ● ● ● ● ● ● ● ●

5 ● ● ● ● ● ● ● ● ● ●

4 ● ● ● ● ● ● ● ● ● ●

3 ● ● ● ● ● ● ● ● ● ●

2 ● ● ● ● ● ● ● ● ● ●

1 ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

0 1 2 3 4 5 6 7 8 9

𝑥"

𝐿&

𝐿'

𝐿(

Optimal
integer
solution

Optimal continuous solution

𝑧 = 40𝐿#

50

Wu

𝐿!

𝑥 = 2.25
𝑥" = 3.75
𝑧 = 41.25

𝐿"

𝐿#

𝑥# = 1.8
𝑥" = 4
𝑧 = 41

𝑧∗ ≤ 41

𝑥# ≥ 4

𝑥# ≤ 3

𝐿$

Infeasible

𝐿%

𝑥# = 1

𝑥" = 4
4
9

𝑧 = 40
5
9

𝑥" ≥ 2

𝑥" ≤ 1

𝐿&

𝑥# = 1
𝑥" = 4
𝑧 = 37

𝐿'

𝑥# ≤ 4

𝑥# ≥ 5

*

*

𝑧∗ ≥ 37

51

Wu

𝐿!

𝑥 = 2.25
𝑥" = 3.75
𝑧 = 41.25

𝐿"

𝑥# = 3
𝑥" = 3
𝑧 = 39

𝐿#

𝑥# = 1.8
𝑥" = 4
𝑧 = 41

𝑧∗ ≤ 41

𝑥# ≥ 4

𝑥# ≤ 3

𝐿$

Infeasible

𝐿%

𝑥# = 1

𝑥" = 4
4
9

𝑧 = 40
5
9

𝑥" ≥ 2

𝑥" ≤ 1

𝐿&

𝑥# = 1
𝑥" = 4
𝑧 = 37

𝐿'

𝑥# = 0
𝑥" = 5
𝑧 = 40

𝑥# ≤ 4

𝑥# ≥ 5

*

*

𝑧∗ ≥ 37

*

*

𝑧∗ ≥ 40

52

Wu

Further Considerations
§ There are three points that have yet to be considered with respect

to the branch-and-bound procedure:
• What is the best way to subdivide a given region, and which unanalyzed

subdivision should be considered next?
• Can the upper bound (𝑧	 = 	41, in the example) on the optimal value 𝑧 of the

integer program be improved while the problem is being solved?

56

Wu

What is the best way to subdivide a given region, and which
unanalyzed subdivision should be considered next?
§ If we can make our choice of subdivisions in such a way as to rapidly

obtain a good (with luck, near-optimal) integer solution 𝑧., then we
can eliminate many potential subdivisions immediately.
• as if any region has its linear programming value 𝑧 < 𝑧), then the objective

value of no integer point in that region can exceed 𝑧) and the region need
not be subdivided.

§ There is no universal method for making the required choice,
although several heuristic procedures have been suggested, such as
selecting the subdivision:
• with the largest optimal linear-programming value.
• on a last-generated–first-analyzed basis (depth-first).

§ Rules for determining which fractional variables to use in
constructing subdivisions are more subtle…

60

Wu

Can the upper bound on the
optimal value 𝑧∗ of the integer
program be improved while the
problem is being solved?

§ Initial upper bound =
41.25

§ Current upper bound
= 40 *

/

𝐿!

𝑥 = 2.25
𝑥" = 3.75
𝑧 = 41.25

𝐿"

𝑥# = 3
𝑥" = 3
𝑧 = 39

𝐿#

𝑥# = 1.8
𝑥" = 4
𝑧 = 41

𝑧∗ ≤ 41

𝑥# ≥ 4

𝑥# ≤ 3

𝐿$

Infeasible

𝐿%

𝑥# = 1

𝑥" = 4
4
9

𝑧 = 40
5
9

𝑥" ≥ 2

𝑥" ≤ 1

*

61

Wu

Summary
§ The essential idea of branch-and-bound is to subdivide the feasible

region to develop bounds 𝑧0 < 𝑧∗ < 𝑧1 on 𝑧∗.
§ For a maximization problem, the lower bound 𝑧0 is the highest value

of any feasible integer point encountered.
§ The upper bound is given by the optimal value of the associated

linear program or by the largest value for the objective function at
any ‘‘hanging’’ box.

§ After considering a subdivision, we must branch to (move to)
another subdivision and analyze it.

63

Wu

Summary
§ If either

1. the linear program over 𝐿! is infeasible;
2. the optimal linear-programming solution over 𝐿! is integer; or
3. the value of the linear-programming solution 𝑧! over 𝐿! satisfies 𝑧! ≤ 𝑧* (if

maximizing),
then 𝐿! need not be subdivided. In these cases, integer-programming
terminology says that 𝐿! has been fathomed.

§ Case
1. is termed fathoming by infeasibility,
2. fathoming by integrality, and
3. fathoming by bounds.

64

Wu

Branch-and-bound
Flowchart

65

Wu

References
72

1. Bradley, Stephen P., Arnoldo C. Hax, and Thomas L. Magnanti.
Applied mathematical programming. Addison-Wesley (1977).
Chapter 9 Integer Programming

• Companion slides of Applied Mathematical Programming by Bradley,
Hax, and Magnanti (Addison-Wesley, 1977) prepared by José Fernando
Oliveira Maria Antónia Carravilla

