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Type of decisionDegree of coordinationTopologyScale

Learning for mobile coordination
2

Warehouse 
automation

Vehicle 
routing

Intelligent 
transportation

Discrete coordinationKinematic coordination

Mixed integer linear programming

…
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How to effectively design systems 
in the face of growing complexity?

Fundamental research question:
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Inspiration: Learning for decision making
5

Atari 2600 games
100+ games
• Not too similar
• Not too different

DQN
Train

DQN DQN DQN

General purpose “meta” method 
Deep Q Networks (DQN)

Specialized method for problem variant
Montezuma’s Revenge AIPong AISpace Invaders AIBreakout AI

V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, 2015.

Figure: Automatically learned specialized 
method vs human player
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Example: vehicle routing problems (VRPs)
6

VRP variants

Figure courtesy Li, et al. arXiv 
2107.07076, 2021.
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Aim: Bring these principles to engineering systems
7

Dozens of variants
• Not too similar
• Not too different

Figure: Automatically learned specialized 
method vs heuristic solverSpecialized method for problem variant

Vehicle routing problems (VRPs)
Depot

City

Route

Train

General purpose “meta” method
??? ??? ??? ???

…CVRP w/ Pickup 
and Delivery

CVRP with Time 
Windows solver

Capacitated 
VRP solver
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Aim: Bring these principles to engineering systems
8

Countless variants
• Network topology
• Autonomy adoption
• Autonomy level
• …

Figure: Automatically learned specialized 
method vs heuristic solverSpecialized method for problem variant

Autonomy-enabled traffic

Train

General purpose “meta” method
??? ??? ??? ???

…………
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Hybridize learning + solvers

Background on solver design
9

Effectiveness 
(performance 

& speed)

Cost of solver design for a new problem variation

Low 
(Automatic)

High 
(Manual)

Specialized 
heuristic solvers

Model-based 
solvers 

(e.g., MILP, MPC)
End-to-end 

learned solvers
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Learning-guided search: hybridizing learning + solvers
10

D. Silver et al., “Mastering the game of go without human knowledge,” Nature, 2017.

Learning-guided Monte 
Carlo Tree Search (MCTS)

Learning only

MCTS only

Superhumanà

AlphaGo
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Learning-guided search: hybridizing learning + solvers
11

§ Same as AlphaGo Zero, but without exploiting Go-specific features:
• No data augmentation due to rotational invariance
• Allows for more than win/loss (0 = draw) 

D. Silver et al., “A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play,” Science, 2018.
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This talk
13

§ Vision: Cope with growing system complexity with meta-methods

§ Learning-guided search as meta-methods for transportation?
• Vehicle routing problems
• Multi-robot warehousing
• Integer linear programming

§ What about autonomous vehicles?



Wu

This talk
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§ Vision: Cope with growing system complexity with meta-methods

§ Learning-guided search as meta-methods for transportation?
• Vehicle routing problems
• Multi-robot warehousing
• Integer linear programming

§ What about autonomous vehicles?
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Learning to Delegate for Large-scale Vehicle Routing

NeurIPS 2021
Spotlight (<3%)

Sirui Li*, Zhongxia Yan*, Cathy Wu



Wu

Example: vehicle routing problems (VRPs)
16

VRP variants

Figure courtesy Li, et al. arXiv 
2107.07076, 2021.
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General problem formulation: contextual decision
§ Problem setting: contextual MDP, generalization of standard MDP, 

adding a context space 𝒞 to capture heterogeneity within a problem 
class

§ Desired:
𝜋!∗(s) = argmax

#∈%!
𝑄!∗ 𝑠, 𝑎 ,

𝑐 ∈ 𝒞

§ Standard MDP: 𝑀 ≔ 𝒮,𝒜,𝒯, 𝑟, 𝜌  = (state space, action space, 
transition function, reward function, initial state distribution)

§ Value function 𝑄!∗ 𝑠, 𝑎  denotes the long-term reward of a state and 
action

Notation:
• Policy 𝜋
• State 𝑠, Action 𝑎 
• Action space 𝐴 
• Value function 𝑄 
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Decomposition strategies
§ Consider: Large transportation problems
§ Large problems can often be 

decomposed into smaller problems
§ MDP formulation

• State 𝑠: customer locations & demands, 
current solution

• Action 𝑎: solve subproblem with subsolver
§ 𝐴 ≈ 200

• Context 𝑐: variation of VRP
§ Customer distributions
§ Constraints, e.g., capacity, time windows

§ Ideal:
𝜋∗(s) = arg max

'∈) *
𝑄∗ 𝑠, 𝑎

§ Challenge: Expensive to evaluate

18

Candidate solution

Subproblem 
candidates

based on spatial locality

O 2! → O(𝑁) 
subproblems
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Large Neighborhood Search (LNS)
19

𝐼	 ← 𝐼 + 1

Solution at iteration 𝐼

Select 
Subproblem

LKH-3

Re-optimize with subsolver

Solution at iteration 𝐼 + 1

§ Large problems often decompose into smaller problems
§ LNS iteratively seek better solution by re-optimization of subproblems [1]

§ Subproblems are selected randomly or according to heuristics [1]

𝜋 s = Unif(𝐴 𝑠 )

[1] Taillard et al. Partial OPtimization Metaheuristic Under Special Intensification Conditions (POPMUSIC). Springer, 2002

Vehicle routing 
problem (VRP)
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Learning-guided Large Neighborhood Search (LNS)
20

𝐼	 ← 𝐼 + 1

Solution at iteration 𝐼

Select 
Subproblem

LKH-3

Re-optimize with subsolver

Solution at iteration 𝐼 + 1

§ Our work: learn promising subproblems to select
𝜋(s) = arg max

#∈% /
𝑄0 𝑠, 𝑎 ≈ arg max

#∈% /
𝑄∗ 𝑠, 𝑎 ,

Li*, Yan*, Wu. “Learning to Delegate for Large-scale Vehicle Routing.” NeurIPS, 2021. Spotlight (<3%).

Vehicle routing 
problem (VRP)
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Subproblem Selection with Learned Model
23

LKH-3

!	 ← ! + 1

Solution at iteration ! Select Subproblem Re-optimize with subsolver

Solution at iteration ! + 1

Solution at iteration 𝐼

Subproblem 
candidates

based on spatial locality

O 2! → O(𝑁) 
subproblems

argmax

Neural 
Network

Neural 
Network

Neural 
Network

Score

Score

Score

Prediction
of immediate improvement

𝑄" 𝑠, 𝑎 ≈ 𝑸𝒄
𝜸%𝟎 𝐬, 𝒂 ≈ 𝑄'∗ 𝑠, 𝑎

Supervision (training set) according 
to base solver LKH-3

Li*, Yan*, Wu. “Learning to Delegate for Large-scale Vehicle Routing.” NeurIPS, 2021. Spotlight (<3%).
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Transformer-based Neural Network
24

Li*, Yan*, Wu. “Learning to Delegate for Large-scale Vehicle Routing.” NeurIPS, 2021. Spotlight (<3%).

𝑥!
𝑦!
0

𝑥"
𝑦"
𝑑" 𝑥! 𝑦! 0

𝑥#
𝑥$
𝑥%
𝑥&
𝑥'

𝑦#
𝑦$
𝑦%
𝑦&
𝑦'

𝑑#
𝑑$
𝑑%
𝑑&
𝑑'

Subproblem 
Candidate

Remove Previous 
Routes

Unordered 
features

Score (via 
LKH-3 solver)

Neural network model
(6-layer Transformer)

𝑄" 𝑠, 𝑎
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Results: Contexts - Location distributions
25

Li*, Yan*, Wu. “Learning to Delegate for Large-scale Vehicle Routing.” NeurIPS, 2021. Spotlight (<3%).

Real-worldMixed

Uniform Clustered

Instance location distributions
Depot
Customers

Table: Results. Speed-up to 95% LKH-3 30k 
solution quality

VRP with varying location distributions

Finding: Up to 7x speed-up over random selection
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Results: Contexts - Classic VRP constraints
26

Variations
§ CVRP: VRP with 

vehicle capacity
§ CVRPTW: CVRP with 

time windows
§ VRPMPD: CVRP with 

pickup and delivery

Finding: Effective across 
VRP constraints

Li*, Yan*, Wu. “Learning to Delegate for Large-scale Vehicle Routing.” NeurIPS, 2021. Spotlight (<3%).

Table: Results. Speed-up to 95% LKH-3 30k 
solution quality

VRP with varying constraints
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Learning-guided LNS for large vehicle routing
§ First learning-guided LNS method for VRPs
§ Fast inference using 𝑸𝜽 𝑠, 𝑎 ≈ 𝑄!(𝑠, 𝑎)
§ Up to 7x faster than random 𝑎 ∈ 𝐴!
§ Takeaway: When inference is faster than solving, leverage learning 

to accelerate solving

Li*, Yan*, Wu. “Learning to Delegate for Large-scale Vehicle Routing.” NeurIPS, 2021. Spotlight (<3%).

Notation:
• Policy 𝜋
• State 𝑠, Action 𝑎 
• Action space 𝐴 
• Value function 𝑄 

Vehicle routing 
problem (VRP)
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This talk
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§ Vision: Cope with growing system complexity with meta-methods

§ Learning-guided search as meta-methods for transportation?
• Vehicle routing problems
• Multi-robot warehousing
• Integer linear programming

§ What about autonomous vehicles?
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Neural Neighborhood Search for Multi-agent Path Finding

ICLR 2024

Zhongxia Yan, Cathy Wu
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Motivation: large real-time applications
Robotic Warehouses
E.g. multi-robot transportation of packages in Amazon sortation centers

Induct: load robot 
with package

Eject: deposit 
package into chute

Transport: robots move between 
induct stations and eject chutes

Incoming truckloads of packages Outgoing truckloads of packages

32
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Background: Amazon Sortation

• Fleet of ~800 robots (“drives”)
• Stream of incoming packages into the 

warehouse
• Two types of robot tasks:

§ Loaded: transport package to eject
§ Unloaded: move to an induct

• Need to optimize throughput (#tasks 
completed / duration)!

Map source: Jiaoyang Li, Andrew Tinka, Scott Kiesel, Joseph Durham, T. K. Satish Kumar, Sven Koenig. Lifelong MAPF in 
Large-Scale Warehouses. AAAI 2021

Multi-robot transportation of packages in Amazon sortation centers
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Multi-agent Path Finding (MAPF)

§ A slice of the overall 
sortation problem 
(discretized)

§ Agents 𝑎	 ∈ 1,… ,𝑁
• Start location 𝑠#
• Goal location 𝑔#

§ Solution: non-colliding 
space-time trajectories for 
all agents 

§ Cost: sum of trajectory 
lengths
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Learning-guided LNS for MAPF

Yan, Wu. “Neural Neighborhood Search for Multi-agent Path Finding.” ICLR, 2024.

Solution at iteration !

Subset Pool

Neural Model

Best

Worst

MAPF-LNS

Solver (Non-neural) Runtime: 5-100ms

35

Problem 
illustration
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Challenges of Neural LNS for MAPF
§ Why did [Huang 2022] stop at linear features?
§ Motion: MAPF has agent-agent, agent-obstacle, 

and intra-agent interactions
• Agent-to-agent and agent-obstacle: 3D convolution is 

suitable
• Intra-agent interactions: how to represent interaction 

along an agent’s path?
• Encoding is much heavier than for vehicle routing 

problems (VRP)
§ Need to encode 𝑱 (10-100) subsets each LNS step

• Can we share computation?
§ LNS for MAPF requires total neural network 

inference time to be roughly ≤ 25ms
• Difficult for 3D CNN

𝑝!
𝑝"

𝑝#

Desired agent 
interaction graph

Obstacle 2

Obstacle 1

1 2 3
T

𝐴 = {1,2,3}

Linear NN: Taoan Huang, Jiaoyang Li, Sven Koenig, Bistra Dilkina. Anytime MAPF via ML-guided LNS. AAAI 2022
Deep NN (Ours): Zhongxia Yan, Cathy Wu. Neural Neighborhood Search for MAPF. ICLR 2024



WuYan, Wu. “Neural Neighborhood Search for Multi-agent Path Finding.” ICLR, 2024.

Contribution: Architecture
38

§ New neural architecture (Multi-Subset) that efficiently encodes agent-
agent relationships in dense constrained environments

à agent-agent relationships

Encode local spatiotemporal 
information using 3D convolutions

Encode non-local trajectory-level 
information using self-attention
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Our Proposal: Multi-Subset Architecture
§ Summary

§ Global representation of all agent paths shares heavy computation 
across all subsets

§ Intra-agent transformer helps preserve agent entity
• Subsets of agents can be grouped directly from global representation

C×𝐻×𝑊×𝑇
features 3D convolution

Transformer attention 
along each path

𝐶′×𝐻×𝑊×𝑇 tensor

Group subset 𝛼# Transformer

Predict 
improvements

𝑓!(𝑆", 𝛼#, 𝐴\𝛼#)

𝑓!(𝑆", 𝛼$, 𝐴\𝛼$)Group subset 𝛼( Transformer

... ... ...

Zhongxia Yan, Cathy Wu. Neural Neighborhood Search for Multi-agent Path Finding. ICLR 
2024

Shared computation across 𝑱	subsets

For each of 𝑱	subsets

Amortized inference across J subsets 
using state encoding 𝐸$ 𝑠 , 
s.t. 𝑄" 𝑬𝝂 𝒔 , 𝑎 ≈ 𝑄& 𝑠, 𝑎

Large state 
𝑠 ∈ 𝒮&
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Experimental Setup
§ MAPF Benchmark Suite 

[Stern 2019]

§ Pre-apply spatial pooling 
for large floor maps

§ PBS as subset solver
§ LNS methods
• Unguided (Baseline)
• Linear (Baseline)

§ Hand-designed features
• Per-Subset (Baseline)
• Multi-Subset

Zhongxia Yan, Cathy Wu. Neural Neighborhood Search for Multi-agent Path Finding. ICLR 
2024

empty (32x32)
350 agents

random (32x32)
250 agents

warehouse (161x63)
300 agents

den520d (256x257)
800 agents

ost003d (194x194)
400 agents



Wu

Results: Cost (Gap) vs Time

empty (32x32)
350 agents

den512d (256x257)
800 agents

Solid: with neural overhead            Dashed: without neural overhead

2x

2x

Linear is 
similar to 
Unguided

Linear is 
similar to 

Multi-Subset

Zhongxia Yan, Cathy Wu. Neural Neighborhood Search for Multi-agent Path Finding. ICLR 
2024
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Results
44

Yan, Wu. “Neural Neighborhood Search for Multi-agent Path Finding.” ICLR, 2024.

Multi-Subset outperforms 
baselines

This is despite a 4-10x 
added overhead vs Linear
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Results
45

Yan, Wu. “Neural Neighborhood Search for Multi-agent Path Finding.” ICLR, 2024.

Multi-Subset reduces added overhead by 
2-8x vs naïve architecture (Per-Subset)

Per-Subset generally 
underperforms baselines 
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Conclusion
§ We propose an architecture for efficiently representing three-

dimensional trajectories of hundreds of agents
• Has applications beyond LNS for MAPF

§ We show that this architecture can practically accelerate the state-
of-the-art LNS-based multi-path planning solvers by 1.5-4x
• A milestone for learning-guided LNS for these spatiotemporal problems
• Though we still require a GPU, while Unguided does not

Zhongxia Yan, Cathy Wu. Neural Neighborhood Search for Multi-agent Path Finding. ICLR 
2024
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This talk
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§ Vision: Cope with growing system complexity with meta-methods

§ Learning-guided search as meta-methods for transportation?
• Vehicle routing problems
• Multi-robot warehousing
• Integer linear programming

§ What about autonomous vehicles?
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Learning to Configure Separators in Branch-and-Cut

NeurIPS 2023

Sirui Li*, Wenbin Ouyang*, Max B. Paulus, Cathy Wu



Wu

The Separator Configuration Task in Branch-and-Cut
This work introduces a new 

machine learning task to 
accelerate solving MILPs.

Li*, Ouyang*, Paulus, Wu. “Learning to Configure Separators in Branch-and-Cut.” NeurIPS, 2023.

50

integrality
s.t.
min
! 𝑐"𝑥

𝐴𝑥 ≤ 𝑏
𝑥# ∈ ℤ, ∀𝑗 ∈ 𝒥

constraints
objective

Mixed integer linear programs (MILPs)
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Learning-to-Separate: Configuring cutting planes for MILPs
52

Theorem: Optimal predictor performance 𝑓'𝑨 is submodular in 7𝑨 ⊆ 𝑨.

Implication: Can greedily construct 7𝑨 ≪ 𝑨; in practice 7𝑨 ≈ 20.

Main challenge: Configuration space |𝑨| 	= 	𝟐𝑴 ≈ 130𝐾 is huge! (𝑴 ≈ 𝟏𝟕 is # of separators)
Unlike in VRP, no ”spatial locality” for configurations

Li*, Ouyang*, Paulus, Wu. “Learning to Configure Separators in Branch-and-Cut.” NeurIPS, 2023.

Unrestricted Space A
|𝑨| = 𝟐𝟏𝟕

Restricted Subspace A𝑨
|A𝑨| ≪ 𝟐𝟏𝟕

Off On

(1) Space restriction (class level)

MILP 
Instance x∊𝒳

.𝒇𝜽

(2) Selection via contextual bandit (instance level)

Instance-aware 
predictor E𝒇𝜽: 𝒳 → A𝑨

Figure: Learning-to-separate method
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Results: Standard MILP benchmarks

Relative time improvements of 29-72%

Subspace restriction 
without learning

with learning

Li*, Ouyang*, Paulus, Wu. “Learning to Configure Separators in Branch-and-Cut.” NeurIPS, 2023.

53

Performance:
median

(std)

Similar gains over 
base Gurobi MILP 
solver of 12-56%
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Results: Real-World MILP benchmarks

Relative time improvements of 13-37%

Challenging 
heterogeneous 

benchmark 
(mixed MILP 

classes)

Li*, Ouyang*, Paulus, Wu. “Learning to Configure Separators in Branch-and-Cut.” NeurIPS, 2023.

54

Performance:
median

(std)

with 
learning

Subspace restriction 
without learning
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Learning-to-Separate: Interpretation analysis
55

§ The learned model recovers known facts from 
operations research about separators.

§ Example: Bin Packing
• Many bins ≈ Bipartite Matching problem
à Flowcover cuts effective

• Few bins ≈ Knapsack problem 
à Clique cuts effective

Many bins (66 bins) Few bins (16 bins)Moderate bins (33 bins)

Li*, Ouyang*, Paulus, Wu. “Learning to Configure Separators in Branch-and-Cut.” NeurIPS, 2023.
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Conclusions: Learning-to-separate
56

§ First method to effectively configure BnC separators for wide range 
of MILPs

§ Up to 3.5x faster than SCIP & 2x faster than Gurobi
§ Takeaway: When there are too many actions to learn effectively, 

leverage submodularity to restrict action space

Li*, Ouyang*, Paulus, Wu. “Learning to Configure Separators in Branch-and-Cut.” NeurIPS, 2023.
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This talk
59

§ Vision: Cope with growing system complexity with meta-methods

§ Learning-guided search as meta-methods for transportation?
• Vehicle routing problems
• Multi-robot warehousing
• Integer linear programming

§ What about autonomous vehicles?
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Better Search at Autonomous Intersections?

Zhongxia Yan, Han Zheng, Cathy Wu. Multi-agent Scheduling of Intersection Crossings for Cooperative Autonomous Driving. 
ICRA 2024. Under review at IEEE T-RO.

+ =

Multi-agent path finding Vehicle kinematics
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Results: Single Intersection

56 subzones

Zhongxia Yan, Han Zheng, Cathy Wu. Multi-agent Scheduling of Intersection Crossings for Cooperative Autonomous Driving. 
ICRA 2024. Under review at IEEE T-RO.
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Results: Multi-lane Intersections

Two-lanes: 230 subzones
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Zhongxia Yan, Han Zheng, Cathy Wu. Multi-agent Scheduling of Intersection Crossings for Cooperative Autonomous Driving. 
ICRA 2024. Under review at IEEE T-RO.
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3x speed

Three-lane 
Intersection
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§ Crossing order does not make 
sense across multiple 
intersections!

§ Thus, we optimize each 
intersection’s crossing orders 
independently of its neighboring 
intersection

§ OBS is just as effective!

Results: Multiple Intersections
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Zhongxia Yan, Han Zheng, Cathy Wu. Multi-agent Scheduling of Intersection Crossings for Cooperative Autonomous Driving. 
ICRA 2024. Under review at IEEE T-RO.
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6x speed

3x3 Grid of
Two-lane 
Intersections
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This talk: Towards Scalable Learning-based Mobile Coordination
68

§ Vision: Cope with growing system complexity with meta-methods

§ Learning-guided search as meta-methods for transportation?
• Vehicle routing problems [1]
• Multi-robot warehousing [2]
• Integer linear programming [3]

§ What about autonomous vehicles? [4]

[1] Li*, Yan*, Wu. “Learning to Delegate for Large-scale Vehicle Routing.” NeurIPS, 2021. Spotlight (<3%).
[2] Yan, Wu. “Neural Neighborhood Search for Multi-agent Path Finding.” ICLR, 2024.
[3] Li*, Ouyang*, Paulus, Wu. “Learning to Configure Separators in Branch-and-Cut.” NeurIPS, 2023.
[4] Z. Yan, H. Zheng, and C. Wu, “Multi-agent Path Finding for Cooperative Autonomous Driving,” in ICRA, 2024.
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