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1. C. Daganzo, Fundamentals of transportation and traffic 
operations, vol. 30. Pergamon Oxford, 1997. Chapter 2: 
Cumulative plots. URL.

2. John D.C. Little and Stephen C. Graves, Chapter 5: Little’s Law 
from Building Intuition: Insights From Basic Operations 
Management Models and Principles, 2008. doi: 10.1007/978-
0-387-73699-0. 

3. (Optional) How Do Traffic Signals Work? Practical 
Engineering, YouTube, 2019. URL.

Readings

http://ndl.ethernet.edu.et/bitstream/123456789/75532/1/66.pdf
https://doi.org/10.1007/978-0-387-73699-0
https://doi.org/10.1007/978-0-387-73699-0
https://www.youtube.com/watch?v=DP62ogEZgkI
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Limitations of time-space diagrams

§ Delay: How long did drivers wait?
§ Issue: Too many trajectories!

D. Gloudemans et al., “I-24 MOTION: An instrument for freeway traffic science,” Transportation Research Part C: Emerging Technologies, vol. 155, p. 104311, Oct. 2023, doi: 10.1016/j.trc.2023.104311.

https://doi.org/10.1016/j.trc.2023.104311
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Cumulative diagram – Moskowitz (1954)
§ Cumulative diagrams !(#) are for analyzing delay in transportation 

systems.
§ Represents the cumulative number (count) of arrivals at a fixed 

location

Slide adapted from Prof. Zhengbing He
Moskowitz, K. Waiting for a gap in a traffic stream. Proc. Highway Res. Board, 33, 385-395, 1954.
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§ We can use two observers:
• Observer A looks at the arrivals to the system

• Observer D looks at the departures from the system

§ The following diagram represents the cumulative number of arrivals and 
departures

§ Assumptions: FIFO, no passing / reordering

Cumulative diagram: illustrating system delays
Observer D Observer A

0,…
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Cumulative diagram vs. time space diagram
• Cumulative diagram can be obtained 

from the time-space diagram
• Time space diagram has complete info

• Cumulative diagram has a subset of the info

• Remark: Slope of cumulative diagram = 
flow (veh/time)
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Use cases – rules of thumb
§ Time-space diagram %(#)
• Identifying patterns in trajectories

§ Cumulative diagram !(#)
• Identifying properties of a single 

bottleneck (arrivals and/or 
departures)
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Continuous cumulative diagrams
§ Cumulative count are typically 

discrete in transportation (e.g. 
passengers, buses, cars), so ! # is 
a step function.

§ When the exact count is not 
important, can leverage 
continuous analysis.

§ Advantage for continuous analysis: 
differential calculus can be used, 
i.e. & # ≈ ! "# $

!$ , where (! # is a 
smooth approximation of ! #
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Cumulative diagrams apply across scales

Slide adapted from Prof. Zhengbing He

Seconds or minutes (queue)

Hours (peak demand or rush hours)

Days (different patterns 

on different days)
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§ In freeways, large flows obscure details.
§ An oblique coordinate system (linear transformation), isolates 

changes in arrivals by retaining the relative relationship [1, 2]:
!, # ⟹ ! − &%#, #

where &% is a coefficient.

Oblique cumulative diagram

Slide adapted from Prof. Zhengbing He

1 Cassidy  M. Bivariate relations in nearly  stationary highway  traffic.  Transportation Research  Part B. 1998.

2 Cassidy  M. Some  traffic features at freeway  bottlenecks.  Transportation Research  Part B. 1999;33:25-42.
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§ Arrivals at %%; departures at %&
(not shown)

§ Starting counting with a reference 
customer / vehicle;
• Let !(#) denote the arrivals

• Let %(#) denote the departures

• Let & denote the service rate 
(customers / time)

Cumulative arrivals and departures

n0

t0

Slide adapted from Prof. Zhengbing He
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Virtual arrivals
§ Total time in the system is composed of

• “Service time”: time to go through the system independently of traffic conditions
§ E.g. travel time along a link in uncongested conditions: free flow travel time (fftt)

• Delay: additional time in system due to congestion
§ Virtual arrivals !(#) = &(# − fftt) isolate the delay in the system, obtained 

by shifting &(#) right by fftt.
• ! " represents the departure time under no delay

Slide adapted from Prof. Zhengbing He

§ The delay of vehicle *:, *
§ Queue at #! ≈ excess vehicle 

accumulation: . #!
§ Total Delay:

/0 = 1
"!

""
! # − 0 # 2#

                 = ∫"!
"" . # 2#
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Little’s Law (1961) – deterministic version
§ Simple relationship between arrival rate, average queue length, and average 

delay (waiting time).

1961, John Little, MIT Institute Professor; See “Little’s Law as Viewed on its 50th Anniversary” (INFORMS)

§ Definition (Average arrival rate): # = !!"!"
#!"#"

§ The delay of vehicle !:# !
§ Queue at $#: % $#
§ Total Delay:	'( = ∫$!

$" + $ − ( $ -$ = ∫$!
$"% $ -$

§ Assumption 1: Finite time window & vehicles
§ Assumption 2: Conservation of vehicles (all arriving 

vehicles eventually depart)
§ Then: !" = $%&
Proof:
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Example: Toll booths for East Boston Tunnel (I-90)
§ Ted Williams Tunnel connecting East Boston to South Boston

• Massachusetts Transit Authority (MTA) modulates the number of open toll booths (up to 6 

booths) such that on average there are no more than 20 vehicles waiting.

• Tunnel handles up to 3600 vehicles/h during morning rush hour (with all 6 booths).

• The tunnel sees a total of 50,000 vehicles/day.

§ Little’s law for quick approximation of quality of service
• Arrival rate to toll booth: ' = 3600 veh/h (1 veh/sec)

• Expected number of vehicles in the system: ,- = 20
• Average time spent at toll booth: /0 = 20/3600 h = 20 s

John D.C. Little and Stephen C. Graves, Chapter 5: Little’s Law from Building Intuition: Insights From Basic Operations Management Models and 
Principles, 2008. doi: 10.1007/978-0-387-73699-0. 

https://doi.org/10.1007/978-0-387-73699-0
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1. Cumulative diagrams
a. Application: Signalized intersections

2. Reconstructing cumulative diagrams

3. Ramp metering problem
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Reconstructing the departure curve
§ We often have incomplete information.
• We might have '(#) or !(#) and the operating features of the server (e.g., 

constant service rate &), but we need %(#)
§ Consider:
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Example: Traffic signals
34

The average signal caused more than 80 

hours of delay each day in October, 2020

Source: INRIX

Slide adapted from Dajiang Suo
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Queuing diagram application
§ Example: On-off service (traffic signal basics)
• Given:  Arrival flow (rate) at a one way signalized intersection is constant (; 

we have information about the green/red timing plan of the signal (server), 
and the service rate during green &
• Find: The departure curve, total delay, average delay
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Deterministic intersection delay
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Reality check
Real traffic signals are more complex
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Traffic control fundamentals

Cycle: Time for one complete color change sequence

Phase: The part of a cycle for one or more movements (left/through/right)

Green/Red/Yellow time

All-red time (lost time) 

Slide adapted from Dajiang Suo
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Ramp metering problem
§ A ramp meter is being considered at an entrance to a freeway.

§ Currently, rush hour traffic arrives at the on-ramp at a rate 4# from time # =
0 to time # = #∗. After # = #∗, vehicles arrive at a (lower) rate 4!.

1. Assuming that drivers will not change their trips, draw and label a 
cumulative plot showing a metering (i.e. departure) rate of 6, s.t. 4! <6 < 4#.
• Label the maximum delay experienced by any vehicle, #!"# .
• What is #!"# as a function of $$, $%, &, and "∗?

2. If an alternate route is available to drivers, and it is known that they will 
take this route if their expected delay at the ramp meter is greater than %%&'
! , add this new scenario to your diagram. Now, show graphically the 

following:
a) The number of vehicles which will divert.
b) How much earlier the queue will dissipate (compared to part 1)?
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Ramp metering problem
§ A ramp meter is being considered at an 

entrance to a freeway.

§ Currently, rush hour traffic arrives at the on-

ramp at a rate 2( from time 3 = 0 to time 3 =
3∗. After 3 = 3∗, vehicles arrive at a (lower) 

rate 2*.

1. Assuming that drivers will not change their 

trips, draw and label a cumulative plot 

showing a metering (i.e. departure) rate of 

4, s.t. 2* < 4 < 2(.

• Label the maximum delay experienced by any 
vehicle, &!"# .

• What is &!"# as a function of '$ , '% , ), and *∗?
2. If an alternate route is available to drivers, 

and it is known that they will take this route 

if their expected delay at the ramp meter is 

greater than 

+'()
* , add this new scenario to 

your diagram. Now, show graphically the 

following:

a) The number of vehicles which will divert.
b) How much earlier the queue will dissipate 

(compared to part 1)?

N

t0
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