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Unit 1: Traffic flow fundamentals
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Application: Signalized intersections

2.  Ramp metering problem



Limitations of time-space diagrams
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Delay: How long did drivers wait?

Issue: Too many trajectories!

D. Gloudemans et al., “I-24 MOTION: An instrument for freeway traffic science,” Transportation Research Part C: Emerging Technologies, vol. 155, p. 104311, Oct. 2023, doi: 10.1016/j.trc.2023.104311.


https://doi.org/10.1016/j.trc.2023.104311

Cumulative diagram — Moskowitz (1954)

Cumulative diagrams N (t) are for in transportation
systems.
Represents the cumulative number (count) of arrivals at a fixed
location
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Slide adapted from Prof. Zhengbing He
Moskowitz, K. Waiting for a gap in a traffic stream. Proc. Highway Res. Board, 33, 385-395, 1954. Wu
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Cumulative diagram: illustrating system delays

Observer D Observer A

We can use two observers: -
Observer A looks at the arrivals to the system ID ] Dl I
Observer D looks at the departures from the system  o,.. 123,..

The following diagram represents the cumulative number of arrivals and
departures

Assumptions: FIFO, no passing / reordering
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Cumulative diagram vs. time space diagram

X

lin

Cumulative diagram can be obtained

from the time-space diagram
Time space diagram has complete info Xi
Cumulative diagram has a subset of the info
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Use cases — rules of thumb

Time-space diagram x(t)
Identifying patterns in

Cumulative diagram N(t)

Identifying properties of a single
(arrivals and/or
departures)

45 MPH 55+ MPH
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Continuous cumulative diagrams

Cumulative count are typically
in transportation (e.g.
passengers, buses, cars), so N(t) is

a step function. Nl
When the exact count is not o L
important, can leverage s |
4 Q(t)l
3
Advantage for 5L
differential calculus can be used, 1t
dN(t) 0

/ N(t)

~ N(t)

,where N(t) is a
of N(t)

i.e.q(t) =

Y
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Cumulative diagrams apply across scales
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Slide adapted from Prof. Zhengbing He Wu



Obligue cumulative diagram

In freeways, large flows obscure details.

An (linear transformation), isolates
changes in arrivals by retaining the relative relationship [1, 2]:
(N,t) = (N —qot, t)

where g, is a coefficient.

8000

4000

N(t)

N(t)-,t, ,=4800

4000 |

2000 F

6000
000
0
0
8000 |
500
000
2000
0 . A ) A A
3:10 3:50 4:40 5:30 6:20 3:10 350 4:40

Time t (pm) N Time t (pm)

1 Cassidy M. Bivariate relations in nearly stationary highway traffic. Transportation Research Part B. 1998.
2 Cassidy M. Some traffic features at freeway bottlenecks. Transportation Research Part B. 1999;33:25-42.

Slide adapted from Prof. Zhengbing He



Cumulative arrivals and departures

Arrivals at x,; departures at x;

(not shown) *1

Starting counting with a reference
customer / vehicle; Y
Let A(t) denote the arrivals |
Let D(t) denote the departures

Let
(customers / time)

ho

The same V(;hicle
to

Slide adapted from Prof. Zhengbing He



Virtual arrivals

in the system is composed of

: time to go through the system independently of traffic conditions
E.g. travel time along a link in uncongested conditions: free flow travel time (fftt)

: additional time in system due to congestion

% = A(t — fftt) isolate the delay in the system, obtained
by shifting A(t) right by fftt.

V (t) represents the departure time under no delay
The delay of vehicle n: w(n)

Queue at t, =~ excess vehicle
accumulation: Q(t,)

Total Delay:t1
D = j V(t) — D(D)]dt
t

i

The' same ve'hicle t

Slide adapted from Prof. Zhengbing He Wu
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Little’s Law (1961) — deterministic version

Simple relationship between arrival rate, average queue length, and average
delay (waiting time).
Assumption 1: Finite time window & vehicles

. ege . . _ ni—no . . . .
Definition (Average arrival rate): A = -t Assumption 2: Conservation of vehicles (all arriving
The delay of vehicle n: w(n) vehicles eventually depart)

Queue at t,: Q(t,) Then: Q = Aw
Total Delay: TD = ["[V(¢) — D(t)]dt = [ Q(t)dt Proof:
to to

The same vehicle I, t, L t

1961, John Little, MIT Institute Professor; See “Little’s Law as Viewed on its 50th Anniversary” (INFORMS)
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Example: Toll booths for East Boston Tunnel (I-90)

= Ted Williams Tunnel connecting East Boston to South Boston

* Massachusetts Transit Authority (MTA) modulates the number of open toll booths (up to 6
booths) such that on average there are no more than 20 vehicles waiting.

* Tunnel handles up to 3600 vehicles/h during morning rush hour (with all 6 booths).
* The tunnel sees a total of 50,000 vehicles/day.

= Little’s law for quick approximation of quality of service
* Arrival rate to toll booth: A = 3600 veh/h (1 veh/sec)

+ Expected number of vehicles in the system: Q = 20
* Average time spent at toll booth: w = 20/3600 h = 20 s

John D.C. Little and Stephen C. Graves, Chapter 5: Little’s Law from Building Intuition: Insights From Basic Operations Management Models and
Principles, 2008. doi: 10.1007/978-0-387-73699-0. Wu



https://doi.org/10.1007/978-0-387-73699-0
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a. Application: Signalized intersections

2. Reconstructing cumulative diagrams

3. Ramp metering problem
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Reconstructing the departure curve

We often have

We might have V' (t) or A(t) and the operating features of the server (e.g.,
constant service rate u), but we need D (t)

Consider:

Alt)
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Example: Traffic signals

How poorly timed traffic lights can make
climate change worse

Pointless delays result in unnecessary idling.

The average signal caused more than 80
hours of delay each day in October, 2020

Source: INRIX

Slide adapted from Dajiang Suo Wu



Queuing diagram application

Example: On-off service (traffic signal basics)

Given: Arrival flow (rate) at a one way signalized intersection is constant A;
we have information about the green/red timing plan of the signal (server)
and the service rate during green u

Find: The departure curve, total delay, average delay

Cumulative ,
count L

Total

delay

i

* time
green red green red

’



Deterministic intersection delay

total delay per cvcele
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N H\ A = arrival rate
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L = queue|discharge rate
R=Red | G=Green | l
C=Cycle time




Reality check

Real traffic signals are more complex

Wu
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Traffic control fundamentals

e o———

§ P I N N
Cycle: Time for one complete color change sequence

Phase: The part of a cycle for one or more movements (left/through/right)
Green/Red/Yellow time

All-red time (lost time)

Slide adapted from Dajiang Suo



TRAFFIC SIGNALS
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Ramp metering problem

A ramp meter is being considered at an entrance to a freeway.

Currently, rush hour traffic arrives at the on-ramp at a rate ¢; from time t =
Ototimet = t*. Aftert = t¥, vehicles arrive at a (lower) rate g,.

Assuming that drivers will not change their trips, draw and label a
cumulative plot showing a metering (i.e. departure) rate of u, s.t. g, <

H<q.
Label the maximum delay experienced by any vehicle, w,, ;-

What is w,,,4, as a function of g4, q,, u, and t*?

If an alternate route is available to drivers, and it is known that they will
take this route if their expected delay at the ramp meter is greater than
Wmax . . ) )

add this new scenario to your diagram. Now, show graphically the

following:
The number of vehicles which will divert.
How much earlier the queue will dissipate (compared to part 1)?



Ramp metering problem

A ramp meter is being considered at an
entrance to a freeway.

Currently, rush hour traffic arrives at the on-
ramp at a rate q; fromtimet = O totime t =
t*. After t = t*, vehicles arrive at a (lower)
rate q,.

Assuming that drivers will not change their
trips, draw and label a cumulative plot
showing a metering (i.e. departure) rate of
pyst.qz < p<(qq.

Label the maximum delay experienced by any
vehicle, Wy, g -

What is w,,, 4, as a function of q,,q,, u, and t*?

If an alternate route is available to drivers,
and it is known that they will take this route
if their expected delay at the ramp meter is

max

greater than W—, add this new scenario to
our diagram. Iﬁow, show graphically the
ollowing:
The number of vehicles which will divert.

How much earlier the queue will dissipate
(compared to part 1)?

.......................................................................

.......................................................................

.......................................................................

.......................................................................
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