

Graphical analysis II

Cumulative diagrams

Cathy Wu

1.041/1.200 Transportation: Foundations and Methods

Announcements

Evidence-based decision making - Why Pset Checks

<https://gemini.google.com/share/345b72c6c3c4>

Readings

1. C. Daganzo, *Fundamentals of transportation and traffic operations*, vol. 30. Pergamon Oxford, 1997. Chapter 2: Cumulative plots. [URL](#).
2. John D.C. Little and Stephen C. Graves, Chapter 5: Little's Law from *Building Intuition: Insights From Basic Operations Management Models and Principles*, 2008. doi: [10.1007/978-0-387-73699-0](https://doi.org/10.1007/978-0-387-73699-0).
3. (Optional) *How Do Traffic Signals Work?* Practical Engineering, YouTube, 2019. [URL](#).

Outline

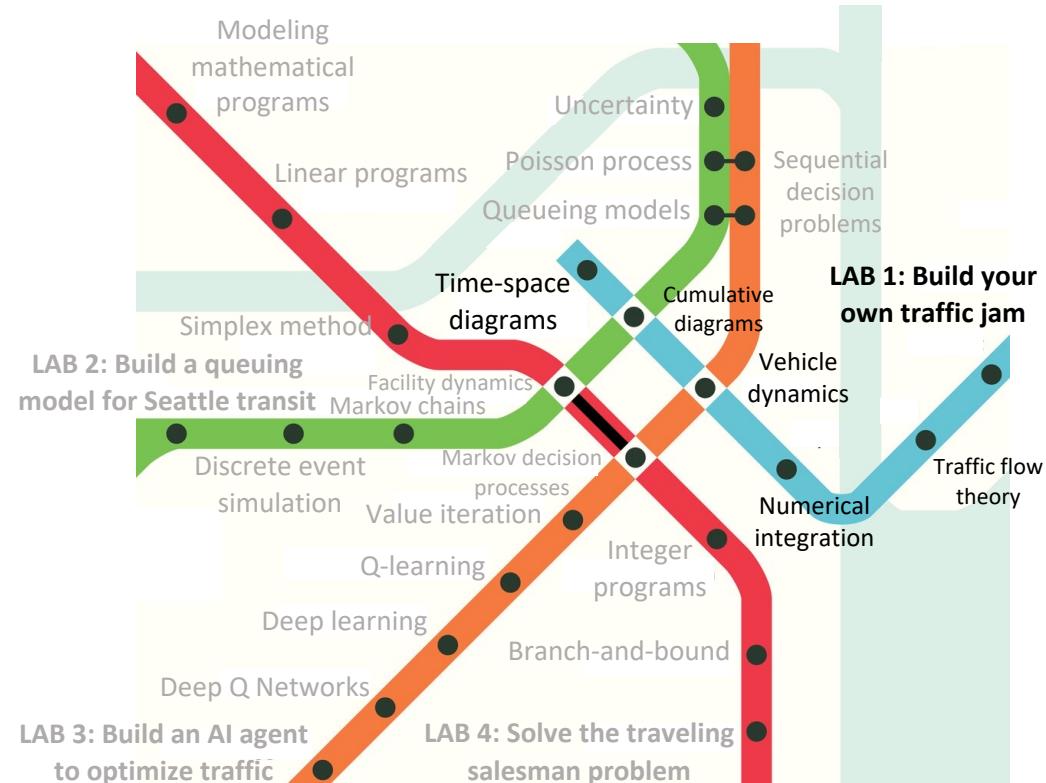
1. Cumulative diagrams
2. Ramp metering problem

Unit 1: Traffic flow fundamentals

Unit 1

Modeling

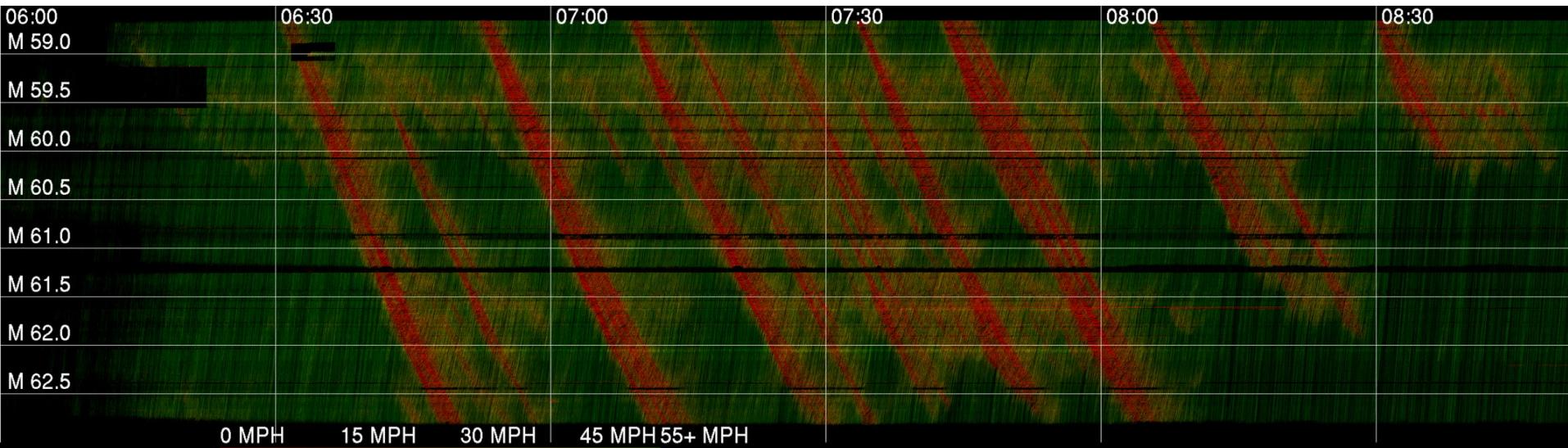
Deterministic



Outline

- 1. Cumulative diagrams**
 - a. Application: Signalized intersections**
- 2. Ramp metering problem**

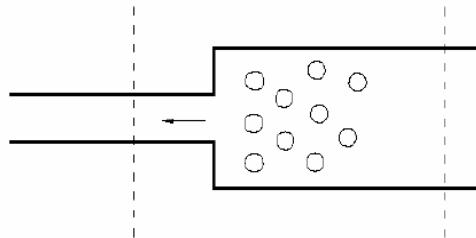
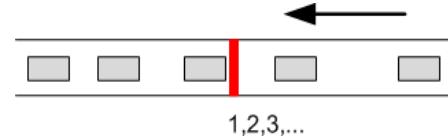
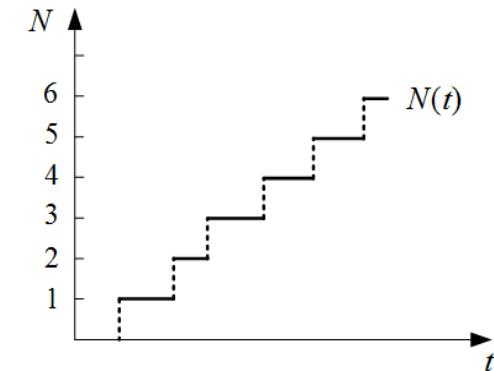
Limitations of time-space diagrams



- Delay: How long did drivers wait?
- Issue: Too many trajectories!

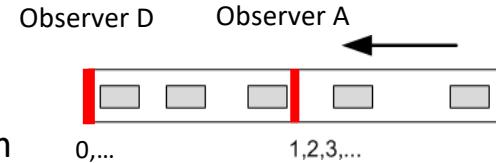
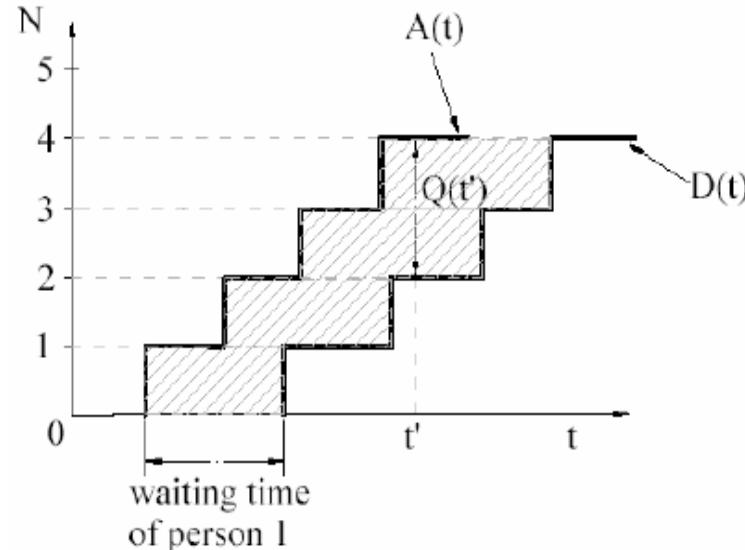
Cumulative diagram – Moskowitz (1954)

- Cumulative diagrams $N(t)$ are for **analyzing delay** in transportation systems.
- Represents the **cumulative** number (count) of arrivals at a fixed location



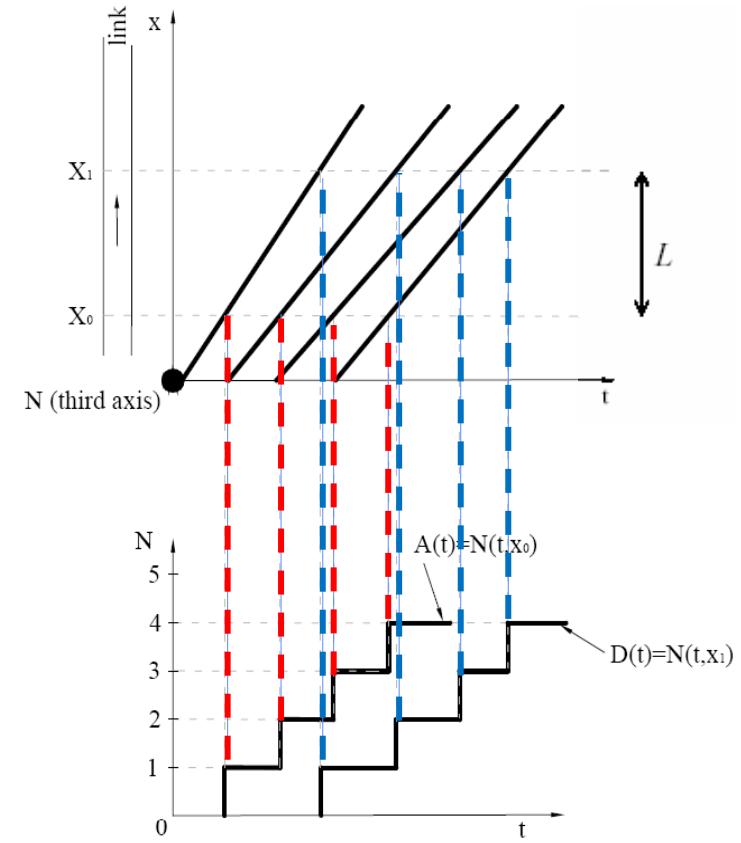
Cumulative diagram: illustrating system delays

- We can use two observers:
 - Observer A looks at the arrivals to the system
 - Observer D looks at the departures from the system
- The following diagram represents the **cumulative** number of **arrivals and departures**
- Assumptions: FIFO, no passing / reordering



Cumulative diagram vs. time space diagram

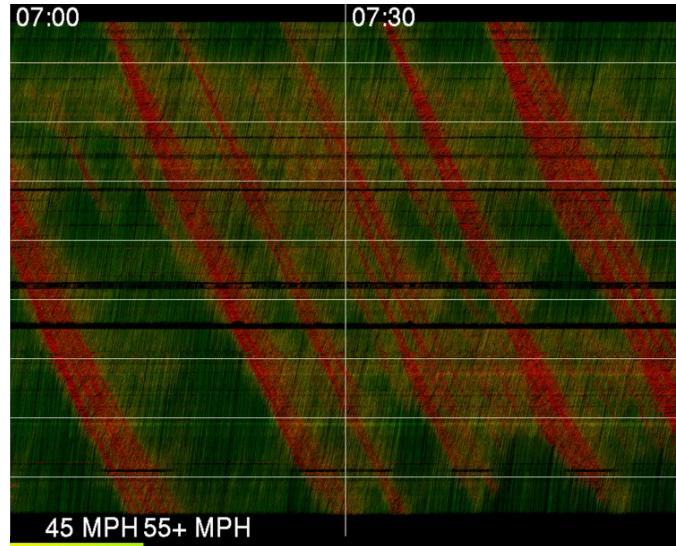
- Cumulative diagram can be obtained from the time-space diagram
 - Time space diagram has complete info
 - Cumulative diagram has a subset of the info



- Remark: Slope of cumulative diagram = flow (veh/time)

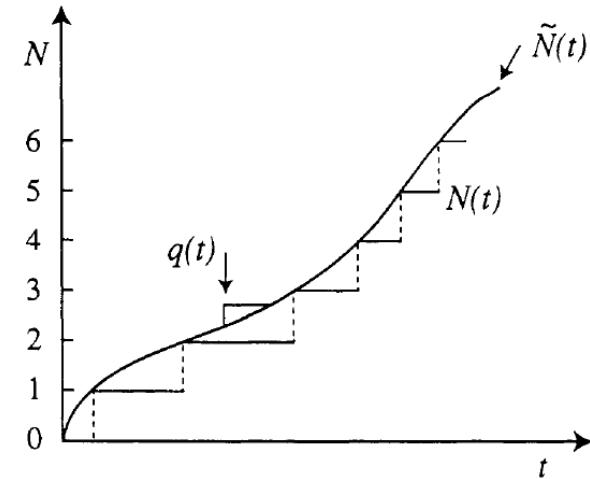
Use cases – rules of thumb

- Time-space diagram $x(t)$
 - Identifying patterns in **trajectories**
- Cumulative diagram $N(t)$
 - Identifying properties of a single **bottleneck** (arrivals and/or departures)

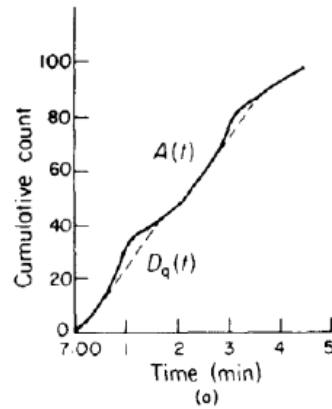
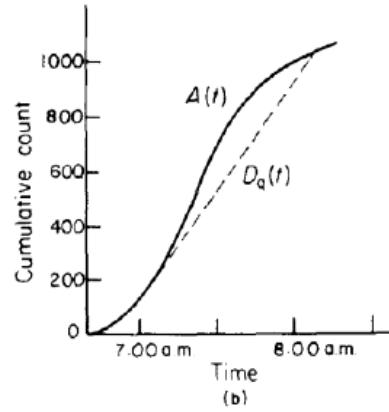
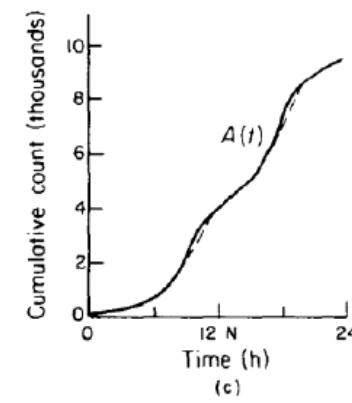
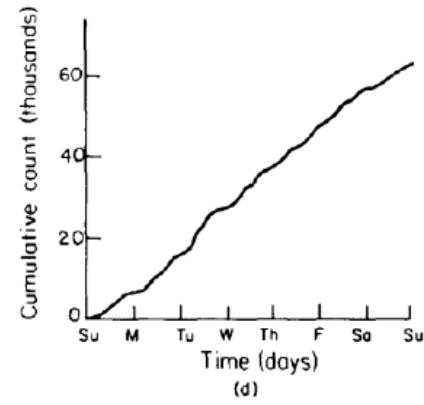


Continuous cumulative diagrams

- Cumulative count are typically **discrete** in transportation (e.g. passengers, buses, cars), so $N(t)$ is a step function.
- When the exact count is not important, can leverage **continuous analysis**.
- Advantage for **continuous analysis**: differential calculus can be used, i.e. $q(t) \approx \frac{d\tilde{N}(t)}{dt}$, where $\tilde{N}(t)$ is a **smooth approximation** of $N(t)$



Cumulative diagrams apply across scales



Seconds or minutes (queue)

Hours (peak demand or rush hours)

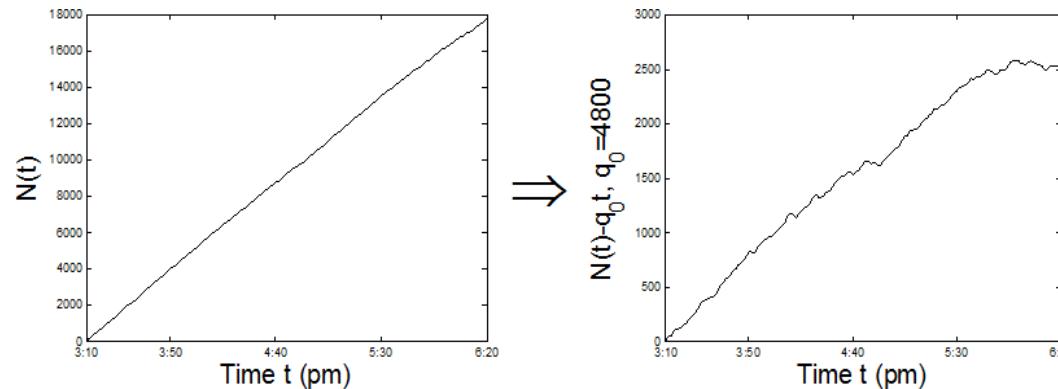
Days (different patterns on different days)

Oblique cumulative diagram

- In freeways, **large flows** obscure details.
- An **oblique coordinate system** (linear transformation), isolates changes in arrivals by retaining the **relative relationship** [1, 2]:

$$(N, t) \Rightarrow (N - q_0 t, t)$$

where q_0 is a coefficient.

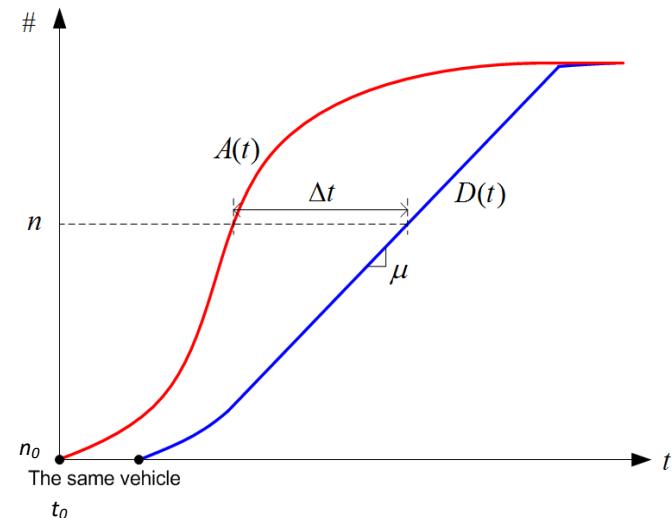


1 Cassidy M. Bivariate relations in nearly stationary highway traffic. *Transportation Research Part B*. 1998.

2 Cassidy M. Some traffic features at freeway bottlenecks. *Transportation Research Part B*. 1999;33:25-42.

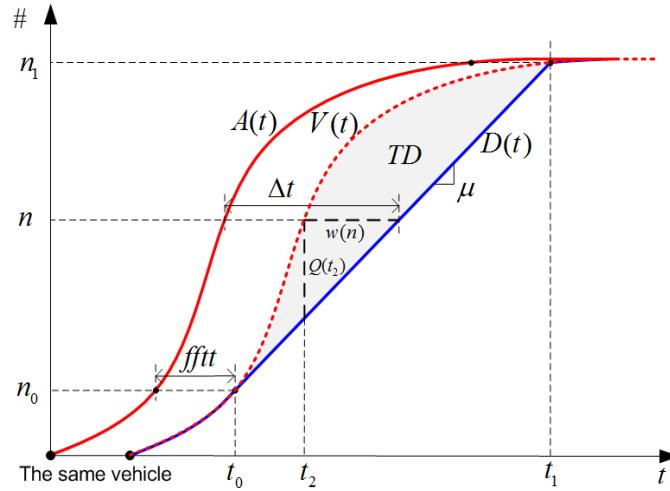
Cumulative arrivals and departures

- Arrivals at x_0 ; departures at x_1 (not shown)
- Starting counting with a reference customer / vehicle;
 - Let $A(t)$ denote the arrivals
 - Let $D(t)$ denote the departures
 - Let μ denote the service rate (customers / time)



Virtual arrivals

- Total time in the system is composed of
 - “Service time”: time to go through the system independently of traffic conditions
 - E.g. travel time along a link in uncongested conditions: free flow travel time (fftt)
 - Delay: additional time in system due to congestion
- Virtual arrivals $V(t) = A(t - \text{fftt})$ isolate the delay in the system, obtained by shifting $A(t)$ right by fftt.
 - $V(t)$ represents the departure time under no delay



- The delay of vehicle n : $w(n)$
- Queue at $t_2 \approx$ excess vehicle accumulation: $Q(t_2)$

- Total Delay:

$$TD = \int_{t_0}^{t_1} [V(t) - D(t)] dt$$

$$= \int_{t_0}^{t_1} Q(t) dt$$

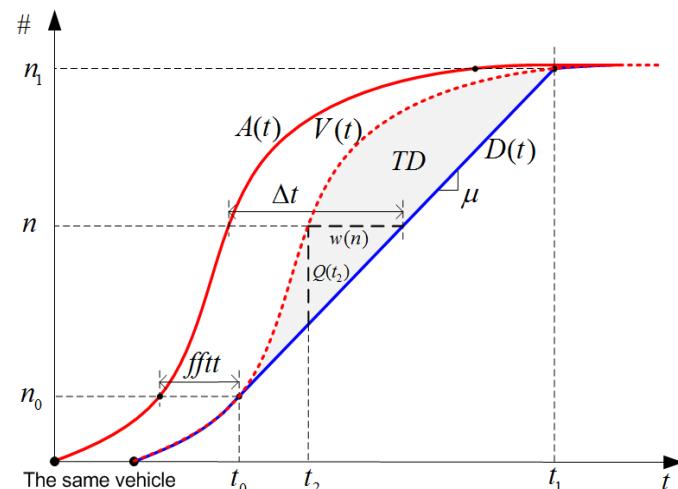
Little's Law (1961) – deterministic version

- Simple relationship between arrival rate, average queue length, and average delay (waiting time).

- Definition (Average arrival rate): $\lambda = \frac{n_1 - n_0}{t_1 - t_0}$
- The delay of vehicle n : $w(n)$
- Queue at t_2 : $Q(t_2)$
- Total Delay: $TD = \int_{t_0}^{t_1} [V(t) - D(t)]dt = \int_{t_0}^{t_1} Q(t)dt$

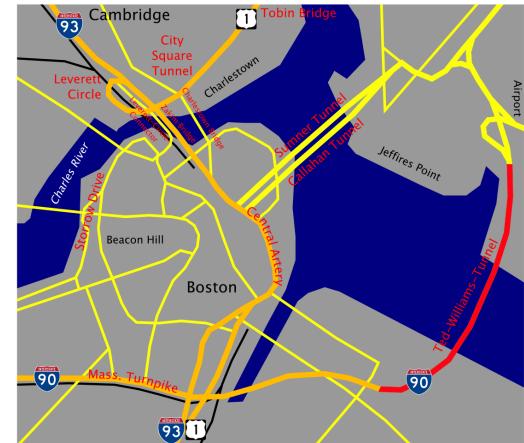
- Assumption 1: Finite time window & vehicles
- Assumption 2: Conservation of vehicles (all arriving vehicles eventually depart)
- Then: $\bar{Q} = \lambda \bar{w}$

Proof:



Example: Toll booths for East Boston Tunnel (I-90)

- Ted Williams Tunnel connecting East Boston to South Boston
 - Massachusetts Transit Authority (MTA) modulates the number of open toll booths (up to 6 booths) such that on average there are no more than 20 vehicles waiting.
 - Tunnel handles up to 3600 vehicles/h during morning rush hour (with all 6 booths).
 - The tunnel sees a total of 50,000 vehicles/day.
- Little's law for quick approximation of quality of service
 - Arrival rate to toll booth: $\lambda = 3600 \text{ veh/h}$ (1 veh/sec)
 - Expected number of vehicles in the system: $\bar{Q} = 20$
 - Average time spent at toll booth: $\bar{w} = 20/3600 \text{ h} = 20 \text{ s}$

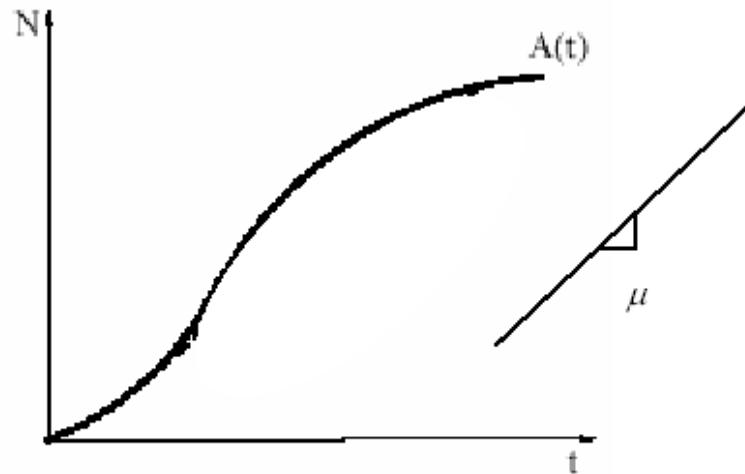


Outline

1. Cumulative diagrams
 - a. Application: Signalized intersections
2. Reconstructing cumulative diagrams
3. Ramp metering problem

Reconstructing the departure curve

- We often have **incomplete information**.
 - We might have $V(t)$ or $A(t)$ and the operating features of the server (e.g., constant service rate μ), but we need $D(t)$
- Consider:



Example: Traffic signals

How poorly timed traffic lights can make climate change worse

Pointless delays result in unnecessary idling.

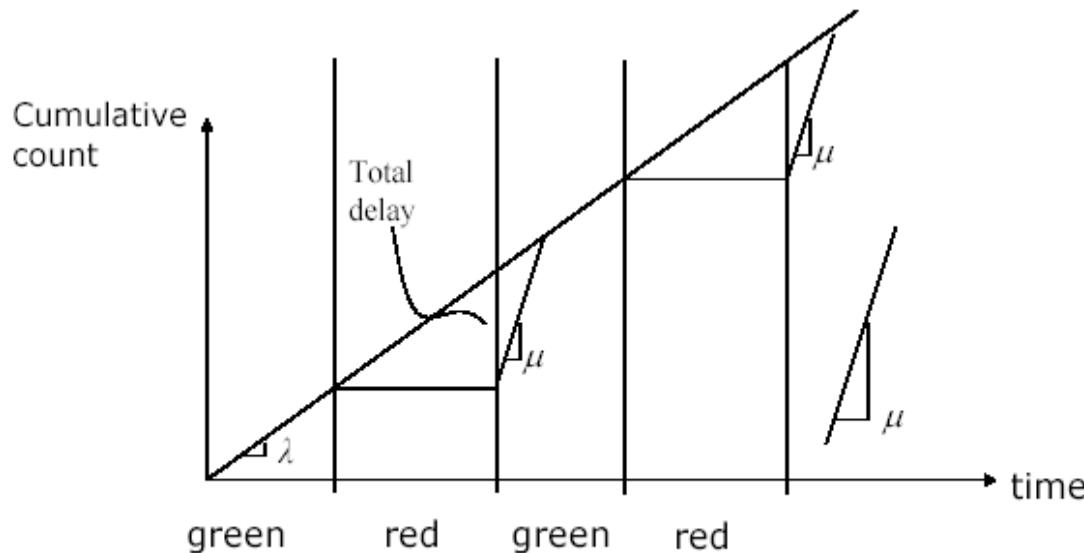
by YCC TEAM
JUNE 21, 2021

The average signal caused more than 80 hours of delay each day in October, 2020

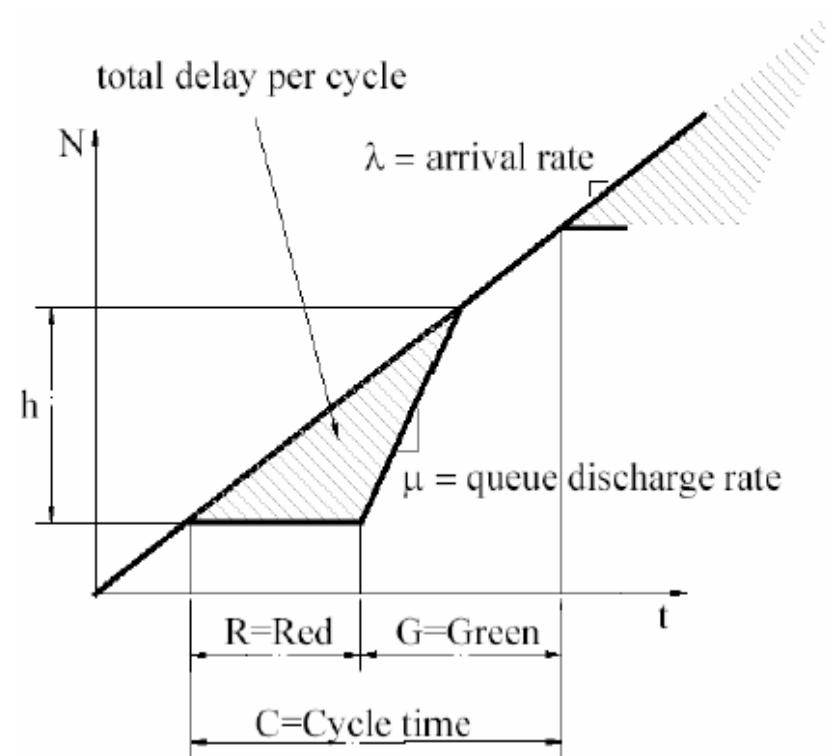
Source: INRIX

Queuing diagram application

- Example: On-off service (traffic signal basics)
 - **Given:** Arrival flow (rate) at a one way signalized intersection is constant λ ; we have information about the green/red timing plan of the signal (server), and the service rate during green μ
 - **Find:** The departure curve, total delay, average delay



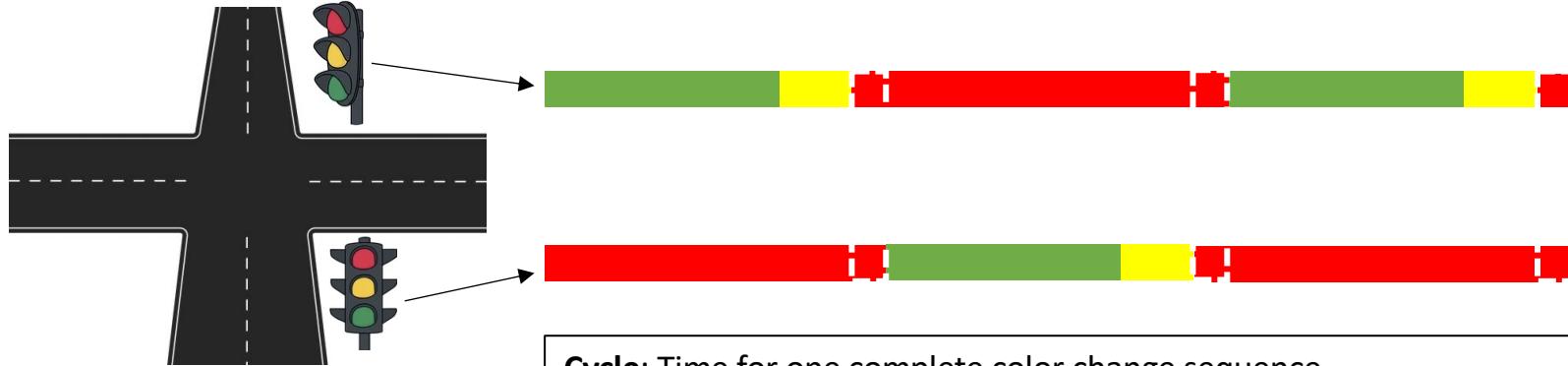
Deterministic intersection delay



Reality check

Real traffic signals are more complex

Traffic control fundamentals

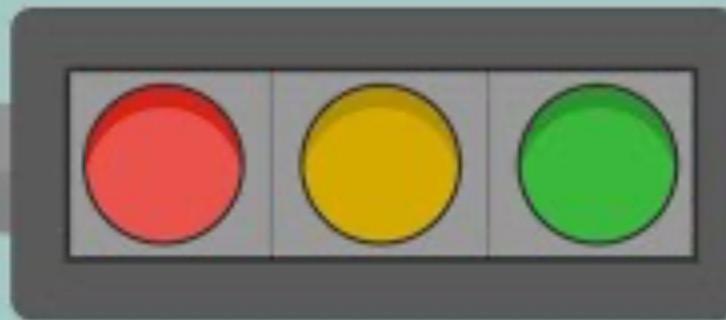


Cycle: Time for one complete color change sequence

Phase: The part of a cycle for one or more movements (left/through/right)

Green/Red/Yellow time

All-red time (lost time)



TRAFFIC SIGNALS

Outline

1. Cumulative diagrams
2. **Ramp metering problem**

Ramp metering problem

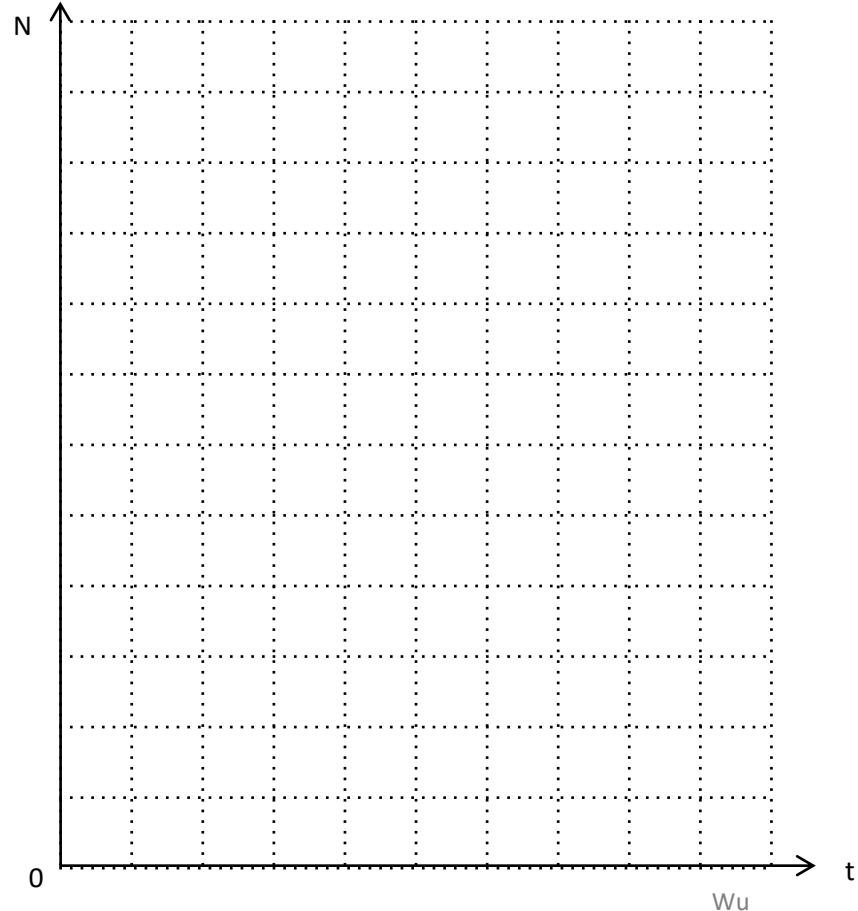
- A ramp meter is being considered at an entrance to a freeway.
- Currently, rush hour traffic arrives at the on-ramp at a rate q_1 from time $t = 0$ to time $t = t^*$. After $t = t^*$, vehicles arrive at a (lower) rate q_2 .

1. Assuming that drivers will not change their trips, draw and label a cumulative plot showing a metering (i.e. departure) rate of μ , s.t. $q_2 < \mu < q_1$.
 - Label the maximum delay experienced by any vehicle, w_{max} .
 - What is w_{max} as a function of q_1 , q_2 , μ , and t^* ?
2. If an alternate route is available to drivers, and it is known that they will take this route if their expected delay at the ramp meter is greater than $\frac{w_{max}}{2}$, add this new scenario to your diagram. Now, show graphically the following:
 - a) The number of vehicles which will divert.
 - b) How much earlier the queue will dissipate (compared to part 1)?

Ramp metering problem

- A ramp meter is being considered at an entrance to a freeway.
- Currently, rush hour traffic arrives at the on-ramp at a rate q_1 from time $t = 0$ to time $t = t^*$. After $t = t^*$, vehicles arrive at a (lower) rate q_2 .

1. Assuming that drivers will not change their trips, draw and label a cumulative plot showing a metering (i.e. departure) rate of μ , s.t. $q_2 < \mu < q_1$.
 - Label the maximum delay experienced by any vehicle, w_{max} .
 - What is w_{max} as a function of q_1 , q_2 , μ , and t^* ?
2. If an alternate route is available to drivers, and it is known that they will take this route if their expected delay at the ramp meter is greater than $\frac{w_{max}}{2}$, add this new scenario to your diagram. Now, show graphically the following:
 - a) The number of vehicles which will divert.
 - b) How much earlier the queue will dissipate (compared to part 1)?



References

1. C. Daganzo, *Fundamentals of transportation and traffic operations*, vol. 30. Pergamon Oxford, 1997. Chapter 2: Cumulative plots
2. John D.C. Little and Stephen C. Graves, Chapter 5: Little's Law from *Building Intuition: Insights From Basic Operations Management Models and Principles*, 2008. doi: [10.1007/978-0-387-73699-0](https://doi.org/10.1007/978-0-387-73699-0).
3. Prof. Nikolas Geroliminis' lecture Fundamentals of Traffic Operations and Control, Spring 2010 EPFL
4. Some slides adapted from Profs. Zhengbing He, Carolina Osorio, and Dan Work.