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Readings

1.

M. Treiber and A. Kesting, “Chapter 10: Elementary Car-Following
Models,” Traffic Flow Dynamics: Data, Models and Simulation,
Springer-Verlag Berlin Heidelberg, 2013, doi: 10.1007/978-3-642-
32460-4.

M. Treiber and A. Kesting, “Chapter 11: Car-following Models Based
on Driving Strategies,” Traffic Flow Dynamics: Data, Models and
Simulation, Springer-Verlag Berlin Heidelberg, 2013, doi:
10.1007/978-3-642-32460-4.

(For fun) Phil Koopman, “L126 AV Trajectories: Newtonian
Mechanics vs. the Real World,” YouTube, 2022. URL. (Start until
8:22)


https://doi.org/10.1007/978-3-642-32460-4
https://doi.org/10.1007/978-3-642-32460-4
https://doi.org/10.1007/978-3-642-32460-4
https://www.youtube.com/watch?v=41gAByqyoIk
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Unit 1: Traffic flow fundamentals
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Today: Generating vehicle traJectorles
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1. Car following models
2. Numerical integration
3. Advanced driving behavior

4. Vehicle dynamics



A basic traffic system

Consider a single lane road with multiple vehicles
Vehicles exhibit car following behavior
No traffic signals, no lane changes, no merging, no stop signs

B 1 (=)

Video source: CGP Grey, 2016



Continuous-time car-following model

Mathematical model that describe how a vehicle moves on a road

Defined by an acceleration function a:
v;(t) = a(xi(t); , v (), )

x;(t) and v;(t) are the position and speed of vehicle i at time ¢,
respectively

Vehiclei — 1 is the of vehicle i ; (follower)

Input: position and speed of vehicles
landi —1attimet

Output: changes in speed




Newell simple car-following model (2002)

Translate the trajectory in time

Translate the trajectory in space

Newell G.F. (2002) A simplified car-following theory: a lower order model. ITS, UC Berkeley.
M. Treiber and A. Kesting, “Chapter 10: Elementary Car-Following Models,” Traffic Flow Dynamics: Data, Models and Simulation, Springer-Verlag Berlin Heidelberg, 2013, doi: 10.1007/978-3-642-32460-4.



https://doi.org/10.1007/978-3-642-32460-4

Newell’s car following model (2002)

The simplest car following model
xa(t +T) = xa—l(t) — Xlag
va(t +T) = va—l(t)
Time lag

e o—1 o

Distance lag
Not well-defined
E.g., needs a first trajectory
Cannot reproduce traffic phenomena by its

Can produce any shifted pattern, even if not realistic

Parameter Typical value Typical value

highway city traffic
Desired speed vg 120 km/h 54 km/h
Time gap T 14s 125

Newell G.F. (2002) A simplified car-following theory: a lower order model. ITS, UC Berkeley.
M. Treiber and A. Kesting, “Chapter 10: Elementary Car-Following Models,” Traffic Flow Dynamics: Data, Models and Simulation, Springer-Verlag Berlin Heidelberg, 2013, doi: 10.1007/978-3-642-32460-4.



https://doi.org/10.1007/978-3-642-32460-4

Optimal velocity model (OVM) (Bando, 1995)

Intuition: Relax speed towards an optimal velocity v,;.
vopt(s) —U

a(s,v) =

T

S: spacing between ego and leading vehicle (headway)

v: velocity of ego vehicle

Vopt () is a target velocity function

tanh (5 — ) + tanh(8)
1 + tanh(pB)

vopt(s) = Vo

120

Table 10.1 Parameter of two variants of the Optimal Velocity Model (OVM) = 100

€ 80

Parameter Typical value Typical value _E 60

highway city traffic g 4

L 40

Adaptation time © 0.65 s 0.65 s 20

Desired speed vo 120 km/h 54 km/h 0
Transition width As [vop according to Eq.(10.21)] 15m 8 m

Form factor B [vop according to Eq.(10.21)] 1.5 1.5
Time gap T [vop according to Eq.(10.22)] 14s 1.2s
Minimum distance gap so [vopt according to Eq. (10.22)] 3m 2 m

Table 10.1

M. Treiber and A. Kesting, “Chapter 10: Elementary Car-Following Models,” Traffic Flow Dynamics: Data, Models and Simulation, Springer-Verlag Berlin Heidelberg, 2013, doi: 10.1007/978-3-642-32460-4.
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Fig. 10.4 Optimal velocity functions (10.21) (left) and (10.22) (right) for the parameter values of


https://doi.org/10.1007/978-3-642-32460-4

Optimal velocity model (OVM) (Bando, 1995)

Nice theoretical properties
String stability
Often used for theoretical analysis of microscopic traffic flow

Quantitatively unrealistic
Generates accidents or unrealistic accelerations
Behavior is sensitive to model parameters

Source of issues
Model doesn’t account for relative speed Av

l.e., behavior is identical regardless of if leader is faster or slower than ego
vehicle

M. Treiber and A. Kesting, “Chapter 10: Elementary Car-Following Models,” Traffic Flow Dynamics: Data, Models and Simulation, Springer-Verlag Berlin Heidelberg, 2013, doi: 10.1007/978-3-642-32460-4.



https://doi.org/10.1007/978-3-642-32460-4

20

Intelligent Driver Model

Acceleration goes to 0

Simplest complete model producing generally as vehicle approaches
. . . desired speed v
realistic acceleration profiles (lower 6 € [1,c0) indicates

[ v 5\ S*(U, Av) 2 smoother relaxation)
a(s,v,Av) =al|l—|—] — llivent b
UO S ntelligen raking

strategy

where

A
s*(v,Av) = sy + max (O vT + z‘i/i) desired spacing

Table 11.2 Model parameters of the Intelligent Driver Model (IDM) and typical values in different

R k scenarios (vehicle length 5 m unless stated otherwise)
e m a r S Parameter Typical value Typical value
. Highway City traffic
Relax towards desired speed v, Desired speed v 120k St
Time gap T 10s 1.0s
Equilibrium safe distance: sq + vT s o .
cceleration exponent & 4 4
. Acceleration a 1.0 m/s? 1.0 m/s?
Av -— v - vleader Comfortable deceleration b 1.5 m/s? 1.5 m/s?

Treiber, M., Hennecke, A. & Helbing, D. (2000) Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62, 1805-1824. (doi:10.1103/PhysRevE.62.1805
M. Treiber and A. Kesting, “Chapter 11: Car-following Models Based on Driving Strategies,” Traffic Flow Dynamics: Data, Models and Simulation, Springer-Verlag Berlin Heidelberg, 2013, doi: 10.1007/978-3-642-32460-4.



https://doi.org/10.1007/978-3-642-32460-4

IDM’s Intelligent braking strategy (intuition)

v\S  [s*(v,Av)\°
a(s,v,Av) =al|l—|—] —
Vg S

where

s*(v,Av) = sy + max (O, vT + %)

Treiber, M., Hennecke, A. & Helbing, D. (2000) Congested traffic states in empirical observations and microscopic simulations. Phys. Rev. E 62, 1805-1824. (doi:10.1103/PhysRevE.62.1805
M. Treiber and A. Kesting, “Chapter 11: Car-following Models Based on Driving Strategies,” Traffic Flow Dynamics: Data, Models and Simulation, Springer-Verlag Berlin Heidelberg, 2013, doi: 10.1007/978-3-642-32460-4.
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Fig. 11.5 a Fundamental diagram, ¢ speed-density diagram, and d speed-flow diagram showing
data from a virtual detector in the highway simulation shown in Fig. 11.4 (positioned 1 km upstream
of the ramp). For comparison, empirical data from a real detector on the Autobahn AS near Frankfurt,
Germany, is shown. Velocities have been calculated using arithmetic means in both the real data
and the simulation data. b Flow-density diagram with the same empirical data but using the real
(local) density for the IDM simulation rather than the density derived from the virtual detectors
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M. Treiber and A. Kesting, “Chapter 11: Car-following Models Based on Driving Strategies,” Traffic Flow Dynamics: Data, Models and Simulation, Springer-Verlag Berlin Heidelberg, 2013, doi: 10.1007/978-3-642-32460-4.
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Recall: Traffic waves

= Traffic Jam without Bottleneck ©
.Ex;ierinwental evidence = ey
for the physical mechanism of forming a jam

-

Y uki Sugivama, Minoru Fukut, Macoto Kikuchi,
Katsuya Hasebe, Akihiro Nakayama, Katsuhiro Nishinan
Shin-ichi Tadaki and Satoshi Yukawa™

Movie 1

Vehicle trajectories (Sugiyama et al. 2008)

A
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Reproduced using IDM
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https://doi.org/10.1109/TRO.2021.3087314

IDM — Demo

http://www.traffic-simulation.de/ring.xhtml

27


http://www.traffic-simulation.de/ring.xhtml

Car following modeling principles

: each model parameter describes one aspect of
driving, is interpretable, and takes on plausible values.

depending on downstream application
Completeness of model
Accident-free

Incorporation of real driving behavior, such as keeping a safe distance or
preferring comfortable accelerations

M. Treiber and A. Kesting, “Chapter 11: Car-following Models Based on Driving Strategies,” Traffic Flow Dynamics: Data, Models and Simulation, Springer-Verlag Berlin Heidelberg, 2013, doi: 10.1007/978-3-642-32460-4.
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1.

2.

Discussion: Build your own car-following model

What aspects of longitudinal driving behavior might be missing
from the car following models we have discussed?

Using what surrounding information would you model such
behavior?

29
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From longitudinal behavior model to a trajectory

hink
e

a(v,x,t,...)

// N
trajectory

t




Special case: constant acceleration a

= Recall the basic equations of motion:
cv(t) =vy +at

c x(t) = xo + vt + %at2

nk

stations

theoretical

trajectory without
middle station

delay for introducing
middle station

Transit station placement problem (Lecture 2)

x(t)

v(t)

Position

Velocity

Acceleration

time —

34



Time-dependent acceleration  [==

= Acceleration changes over time

a(t)

= Velocity :

t =200 -1I50 -1I00 -SIOTimi) (ps)sl() 1(Im 1;0 200
v(t) = vy + j a(t)dt e
= Position t 2
x(t) = xo + f v(t)dt e

0 Y w4 o %m0 1w

Time (ps)



General case

= Acceleration depends on vehicle state and
surrounding information

a(v(x,t),x(t),t,...)

= Velocity .

v(x,t) = v, + j a(v(x,t),x(t),t,..)dt
0

= Position .

x(t) = x5 + j v(x, t)dt
0

36



General solution: numerical integration

Motivation: ODEs are in general extremely
difficult to solve by hand

Approach: Simulate and then analyze the position, x
ODE 4 vehicle i

The catch: Digital computers are discrete-
time devices.

Car-following models (ODEs) are <
continuous-time functions. %/

Need an integration scheme to approximate -
the numerical solution. OTHAT time, ¢

)

Given the situation at this moment, how to
approximate what will happen in the next time
increment (e.g., next second)?



Numerical integration: acceleration = velocity

Instead of allowing the acceleration to vary
continuously in time, assume it is constant
over very small (discrete) time intervals.

Let At < 1 be the

Given the velocity at the beginning of the
timestep, we can compute the velocity at ositon.»
the end of the time step by approximating A vehicle i

the acceleration:
t+A,

v(t+ At) = v(t) + J a(x,t,v)

))/?
dt v,(t)

v(t+ At) = v(t) + J
t >
U(t + At) = v(t) + At tot+A time, t

Suppose that in a computer simulation, given

the situation this time, what will happen in the
next time increment (e.g., next second)?

\Q

Ft+At

Wu



Numerical integration
To get the position of vehicle i at time t + At:

For the continuous-time function (e.g., continuous CFM)

. = A(")
;; ~ v;(t + At) = v;(t) + At
—x;(t + At) = x;(t) + At

For the discrete-time function (e.g., discrete CFM)

. x;(t) =v;(t+At) = V()
—)Xi(t + At)



Forward Euler: first-order method

Suppose we wish to approximate the solution of
the initial value problem

() = f(t,y(®), and  y(ty) =y

= 3 = £&,¥(0)
Let At be the Ienéth of time step, and t,, = ¢, + A '
n At. One step of Euler’s method from t t Ent
gives
Yn+1 = Yn Tt f(tn; yn)At
Based on a , e, Tt Yn + f (tn, yn) At
if we expand y in the neighborhood of t = tn, we n| (b )
get T
y(ty +At) = ypyq .
th ty + AL time, t

= y(t,) + At— e, + 0(At?)
=Y+ f (tn:yn)At + 0(At?)



Forward Euler for vehicle motion

= In car-following models, given:
* x;(t) = y(t,) = y, and

« function v(t + At) = y(t) ©
y

= Calculate x;(t + At) — y(t) A v =fty®)

= Also see the error generated.
position, x

A vehicle i

B Yn t+ f(tn» Yn)At

I T '
f(wyn)
x.(t) . At — o Y —>
/1 +At)=x,(1)+v,(1)At t, t, +At time, t
v.(t)
t t+ At tlm;t



Heun’s method (trapezoidal rule): second-order method

For the same initial value problem, we first
calculate the intermediate value y; .4 (i.e.,
slope at t + At)

Yn+1 = Yn + [ (0, yn)At

Then, the final approximation y,,,; is based
on the average of the slopes at t and t + At

At B
Yne1 = Yn t+ ? [f(tn» yn) + f(tn+1IYn+1)]

Example: vehicle motion

position, x
A vehicle i

At
xX(t+Af)=x(t)+ > [v,(t)fFv,(r+At)]

v.(t+At)

43



Runge Kutta methods

Forward Euler and Heun’s method

belong to a family of numerical

integration methods called
methods.

Shorthand: RK1, RK2 for first and

second order methods, respectively.

A

RK4:

There is even a RK6.

Trade-offs: computation cost,
accuracy, numerical stability (growth
in error over many steps)

h
Yntl = Yn + 5 (k1 + 2k2 + 2ks + k4)
thy1 =1t + h

where

kl - f(tnayn)a

h kq
ky = tn o Yn h_7
2 f( —|—2y+ 2)
h ko
ks = flt, + =, un + 2],
3 f( t 5 Un Tt 2)

k4 — f(tn+hayn ‘|’hk3)‘
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Simulation of car-following models

Unlder similar assumptions about the acceleration, we can compute the
velocity.

Simulation of a trajectory: Follow these procedures over and over again to
generate a trajectory (on a computer)

t X Vv a

lo Xp Vo ag = a(Vvp. Xp)
=1t + A\ X1= Xg *+ Vo'\s V1= Vo + o'y aq = al(vi.xq)
=1, + A Xo= Xq + Vl\ Vo= Vs + a4\ as = a(Vs,Xs)
t3= 1z + Ay Xa= X2 + Va/\s V3= Vo + as’\y az = a(Vva,Xa)

Simulation of traffic: Repeat these procedures for each vehicle.



Outline

1. Car following models
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What influences driving behavior? Driving culture

(Pittsburgh left, drink-driving,

(Egrgl:/eliist?/ilsi) phone use while driving)

Delays —. . E
: : | Attitude Subjective Perceived |
(reaction time) : Wbeliefemotion norm behavioral control | .
: I ‘ | E Kinetics
Imperfect information s dlisn / ! (terrain, weather
+  conditions, engine type)
eRr?\ﬁ?onment , \'" \' — T o l : Vehicle
| Perception |—» 'r'rgoé(g'sasliﬁ’" > 512?;'8" »| Handling - speed,
Traffic B - P 9 . | heading, etc.
environment | | |
B | B A P S T B T T B P R M A A A e e !

Other road users

. . Combined behavioural model to indicate factors that influence driver
(vehicles, pedestrians)

_ behaviour (after Van der Horst, 1998)
Rules & regulations

(traffic signals, speed limits)

N. Schaap, “Driving behaviour in unexpected situations. A study into drivers’ compensation behaviour to safety-ciritical situations and the effects of mental workload, event urgency and task prioritization,” 2012.
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Pittsburgh left
P W P W
= [ = e
e — e
.!- .!-
The Pittsburgh left is imposing potential danger to the pedestrians
crossing in the same direction.

Source: Wikipedia Wu



What influences driving behavior? (Simplified)

Decision

Traffic
enviro

nment

EA making

............................................................

A

3

Vehicle
speed,
heading, etc.

Other road users

(vehicles

)

50

N. Schaap, “Driving behaviour in unexpected situations. A study into drivers’ compensation behaviour to safety-ciritical situations and the effects of mental workload, event urgency and task prioritization,” 2012.



Levels of the driving ta

Strategic
E.g., choice of turn / route

Tactical
E.g., car following, overtaking,
lane changing

Operational / Control

Car operations (i.e., steering,
operating throttle)

Lane keeping

C. Lim, T. Sayed, and F. Navin, “A driver visual attention model. Part 1. Conceptual framework

sk

[Michon, 1985]

Time Constant

Strategic General
(Planning) — Plans Long
—> Level
I Route I
Speed  Criteria
A 2N ]
) m— Tactical Controlled
nput - —py Level
Feedback Criteria
Envi tal_of Operational Automatic
nvironmental g,
Input (Cl)-ontr?l) | » Action Patterns ms
eve

Driver task hierarchy (after Michon 1985).

52

,” Canadian Journal of Civil Engineering, vol. 31, pp. 463-472, Feb. 2011, doi: 10.1139/104-020.


https://doi.org/10.1139/l04-020

[Michon, 1985]

Levels of the driving task

Strategic ‘
E.g., choice of turn / route — [ by

T t . I NJ Route information as
N . .
rl Other orientation elements?

E.g., car following, overtaking, EE -
lane changing S B R cE,

LANE CHOICE

Familiar?

Y

STRATEGIC
LEVEL

Operational / Control D

. . . ‘ A4
Car operations (i.e., steering,
operating throttle)

of other road users?
Lane keeping

Y

Other road users?

TACTICAL
LEVEL

Estimation of course and speed
of other road users

Right of way?
Who goes first?

Perception of course and HANDLING VEHICLE
speed of own vehicle CHOICE CONTROL

CONTROL
.EVE

N. Schaap, “Driving behaviour in unexpected situations. A study into drivers’ compensation behaviour to safety-ciritical situations and the effects of mental workload, event urgency and task prioritization,” 2012.
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Basic inter-vehicle interactions

How do drivers interact with
other (nearby) vehicles?

Summary of basic driving subtasks

g Speed choices . &
Longitudinal (free speed) Car-following g%

Lane changing,
Lateral Lane choice merging, —

overtaking
How do drivers accelerate to
their desired speed?




Lane changing behavior and other discrete choices

General decision model:

Discrete set K of alternatives
Ex. Lane change: left, right, or none.

Ex. Merging onto priority road: stopping or waiting for a sufficient gap between
the main-road vehicles

Acceleration as utility: UB%) := q(BK) for driver B, alternative k € K

Ego-driver a selects the option of maximum utility
—_ ;k’
Kselectea = arg II}(&IIX U@k’

M. Treiber and A. Kesting, “Chapter 14: Lane-Changing and Other Discrete-Choice Situations,” Traffic Flow Dynamics: Data, Models and Simulation, Springer-Verlag Berlin Heidelberg, 2013, doi: 10.1007/978-3-642-32460-4.



https://doi.org/10.1007/978-3-642-32460-4

Lane changing behavior

Fig. 14.1 Notation for a lane
change of the center vehicle
« to the left. All quantities
with a hat pertain to the new
situation after the (possibly
hypothetical) lane change

WLOG, consider 2 options (change to left lane or stay in current
lane)

Change lanes if utility of another lane is greater than current lane
a, —a, >0
Add a threshold to prevent marginal advantage
a, —a, > >0

Add a bias term to model asymmetric behavior, a;,s > Aa (e.g.,
right-overtaking ban on most European highways)
a, —a, > Aa + >0

M. Treiber and A. Kesting, “Chapter 14: Lane-Changing and Other Discrete-Choice Situations,” Traffic Flow Dynamics: Data, Models and Simulation, Springer-Verlag Berlin Heidelberg, 2013, doi: 10.1007/978-3-642-32460-4.



https://doi.org/10.1007/978-3-642-32460-4

Lane changing behavior (MOBIL)

Fig. 14.1 Notation for a lane
change of the center vehicle
a to the left. All quantities
with a hat pertain to the new
situation after the (possibly
hypothetical) lane change

Add a politeness term (p € [0,1], typically = 0.2)
a, — a, + > Aa+ apjus >0
Special case: altruistic driver (p = 1), a lane change takes place only if sum of
acceleration of all affected drivers increases with the maneuver

This model is called MOBIL (Minimizing overall braking deceleration induced
by lane changes)

M. Treiber and A. Kesting, “Chapter 14: Lane-Changing and Other Discrete-Choice Situations,” Traffic Flow Dynamics: Data, Models and Simulation, Springer-Verlag Berlin Heidelberg, 2013, doi: 10.1007/978-3-642-32460-4.
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More complex driving models

Multiple leaders Distracted driving
Reaction times Driving fatigue
Perception thresholds and Imperfect driving

action point models Estimation errors

Responding to brake lights Field of vision

Trade-offs: Simplicity vs fit error. These models have more
parameters, and thus may fit data better. However, similar resulting
behavior can often be observed in simpler models.

M. Treiber and A. Kesting, “Chapter 12: Modeling Human Aspects of Driving Behavior,” Traffic Flow Dynamics: Data, Models and Simulation, Springer-Verlag Berlin Heidelberg, 2013, doi: 10.1007/978-3-642-32460-4.
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Driving behavior foundation models
Waymo Sim Agents Challenge (2023) / Waymo Open Motion Dataset

Captures road topology, road signs, and nearby
vehicles in all lanes and driving history

[1] Montali et al., The Waymo Open Sim Agents Challenge, NeurlPS 2023 Wu



AV Traffic Simulations

Benchmarks

by Motional

Argoverse

Method Name

SMART-tiny-DecompGAIL

SMART-R1

SMART-tin!

SMART-R1

TrajTok

unimotion

SMART-tiny-CLSFT-RoaD

SMART-tiny-RLFTSim
M

R1Sim
SMART-clsftlocal

nti

R1Sim

Realism Meta metric ¥

0.7864

0.7858

0.7857

0.7855

0.7852

0.7851

0.7847

0.7846

0.7844

0.7844

0.7842

0.7839

0.7839
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Methods

Kinematic metrics Interactive metrics Map-based metrics
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0.4927 0.9183
0.4940 . 0.9194
0.4887 . 0.9207
0.4943 0.9187
0.4932 0.9178
0.4931 0.9177
0.4928 0.9183
0.4893 0.9164
0.4913 0.9182
0.4913 0.9168
0.4909 0.9170
0.4901 0.9145

0.4916 0.9166

minADE Uses public model pretraining?

1.4209

1.2885

1.3252

1.2990

1.3179

1.3036

1.3042

1.3065

1.3123

1.3470

1.3074

1.3421

1.3347

1.4490

1.3430
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™

™

™

™

10M

™

™

™

™

™

™
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Driving behavior foundation models

| Method | Realism (1) | Kinematic (1) | Interactive (1) | Map-Based (1) | minADE () |
Classical method IDM 0.7001 0.7592 0.8192 0.5365 4.0632
Constant Speed 0.6891 0.7581 0.7904 0.5429 4.2243
Standard opt. SMART (CE) 0.7698 0.7353 0.8253 0.7183 2.0083

\ Competitive driving behavior foundation model (7M parameters) [2]

Kinematic-based features: Linear speed, linear acceleration magnitude, angular speed, and angular acceleration magnitude
Interaction-based features: TTC and distance to nearest object

Map-based features: Road departures and distance to road edge

minADE: How close the generated trajectory is to the ground-truth trajectory on average over all time steps

Realism: A meta metric

[1] Montali et al., The Waymo Open Sim Agents Challenge, NeurlPS 2023
[2] Wu, et al., SMART: Scalable Multi-agent Real-time Motion Generation via Next-token Prediction, NeurlPS 2024



Active research topic

Caveat: Developed by and for autonomous driving

What are the utility / implications for traffic operations & planning?

Noise-Aware Generative Microscopic
Traffic Simulation

Vindula Jayawardana*, Catherine Tang*, Junyi Ji, Jonah Philion, Xue Bin Peng, Cathy Wu

Abstract—Accurately modelmg individual vehicle behavior in
hallenge in intelli-

microscopic traffic simulation r ins a key ¢

gent transportation systems, as it requires vehicles to realistically == = = - =
generate and respond to plex traffic pk such as I o E—
L e phantom traffic jams. While traditional h driver simulation . L
N models like the Intelligent Driver Model offer computational a. A lane changing scenario in free flow traffic
) tractability, they do so by abstracting away the very plexity
N that defines human driving. On the other hand, recent advances ) - I———— =
Bf) in infrastructure-mounted camera-based roadway sensing have — = oo == =
enabled the extraction of vehicle trajectory data, presenting an
2 opportunity to shift toward generative, agent-based models that = —— - =
learn to reproduce driving behaviors directly from data. Yet, b. Stop-and-go phantom traffic jam with some vehicles
() a major bottleneck remains: most existing datasets are either placed slighly outside the road margins
itized or lack standardizati failine to reflect the

V. Jayawardana, C. Tang, J. Ji, J. Philion, X. B. Peng, and C. Wu, “Noise-Aware Generative Microscopic Traffic Simulation,” arXiv, 2025. doi: 10.48550/arXiv.2508.07453.



Outline

1. Car following models
2. Numerical integration
3. Advanced driving behavior

4. Vehicle dynamics
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Vehicle dynamlcs V/mhat move
—

Body in acceleration "\ |

: Body in equilibrium
(forces on the motion) .
Dynamics Statics (at rest or constant velocity)

.

Newton’s laws of motion Kinetics : .
Pure motion, e.g. behavior

(without consideration of physics)

(without consideration of physics)

link
"
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Vehicle Kinematics

The branch of mechanics that studies the motion of a body or a system of
bodies without consideration given to its mass or the forces acting on it.

a(v, x,t) describes driving behavior.
Longitudinal motion
Lateral motion

Note that from basic kinematics:
dv d?x

dt  dt?
These are ordinary differential equations (ODEs) of x(t) and v(t). We can solve them to
obtain the full motion of a vehicle.

a(v,x,t) = v =
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Basic resistance forces (kinetics)

By

Aerodynamic resistance; F4

F, = —CDAv?
p = air density
D = drag coefficient

A = frontal cross-sectional
area of the vehicle

v = vehicle speed

=ma+F, + F, +F w

Speed v
_——»

y(x)

Rolling resistance; F;.

E =—-fmv (K F)

B = tire rigidity and road
surface

Grade resistance (from
gravity); Fg

F, = —mgsin g,
m = mass
6, = angle of the slope/grade
g = gravity acceleration
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