Uncertainty in transportation

Probabilistic Concepts

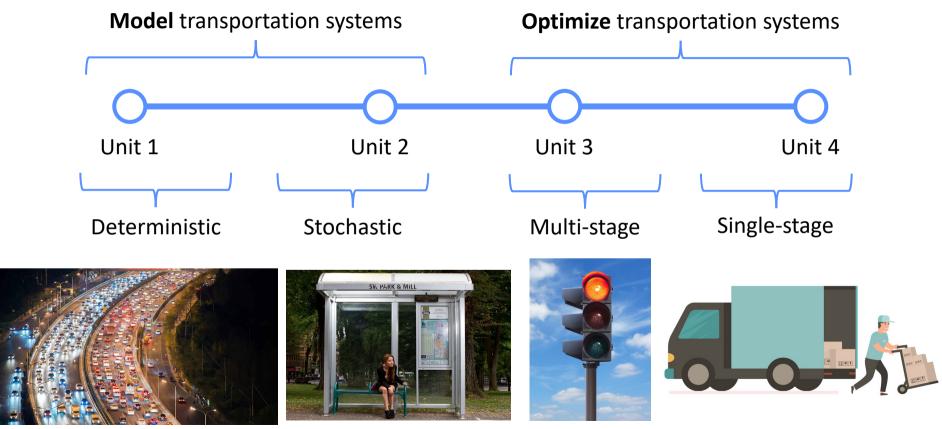
Cathy Wu

1.041/1.200 Transportation: Foundations and Methods

Readings

1. Larson, Richard C. and Amedeo R. Odoni. **Urban Operations Research**. Prentice-Hall (1981). Chapter 2: Probability. <u>URL</u>.

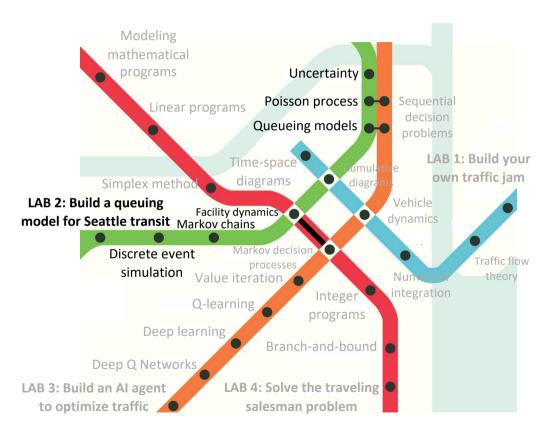
1.041/1.200 overview



Unit 2: Queuing systems

Modeling

Stochastic



Outline

- 1. Uncertainty in transportation
- 2. Expected waiting time of a bus passenger problem

Outline

- 1. Uncertainty in transportation
- 2. Expected waiting time of a bus passenger problem

Uncertainty

Decision-making typically takes place under uncertainty

- Today: deterministic → probabilistic concepts.
- What is the role of probability for modeling in transportation?

Examples: Sources of uncertainty in transportation

- Road traffic
 - Weather, road condition
 - Local events
 - Time of day (demands)
 - Day of week (demands)
 - Types of drivers on the road
 - Exact number of vehicles, driving behavior
- Bus stop
 - Exact arrivals of passengers
 - Road traffic

- Uber/Lyft ride
 - Availability of drivers
 - Other users making requests
 - Road traffic
 - Exact traffic signal timing
- Airline departure
 - Engine malfunction, safety checks
 - Boarding time
 - Run-way availability

Empirical (cumulative) distribution function

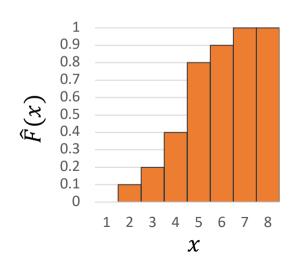
- From relative frequencies:
 - Example: k = time headway (minutes) of bus arrivals
- Compute cumulative frequencies:

k	2	3	4	5	6	7
$v_k = \frac{n_k}{n}$.1	.1	.2	.4	.1	.1
k	2	3	4	5	6	7
c_k	.1	.2	.4	.8	.9	1

Yielding empirical cumulative distribution function (cdf):

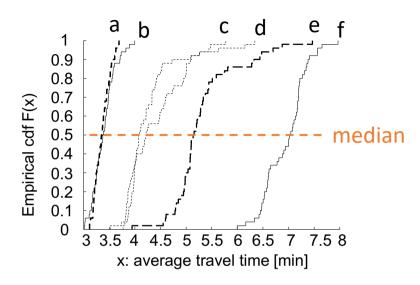
$$\hat{F}(x) \begin{cases} 0 : -\infty < x < 2 \\ c_k : k \le x < k + 1, k = 2, \dots 6 \\ 1 : 7 \le x < \infty \end{cases}$$

• $\widehat{F}(x)$ is the proportion of observations smaller or equal to x.



Example: traffic signal plans

- Road network of Lausanne, Switzerland
- Empirical cdfs of the average travel times under different signal plans
- Goes beyond comparing averages
- Information on the variance (e.g. travel time reliability)



Outline

- 1. Uncertainty in transportation
- 2. Expected waiting time of a bus passenger problem

Expected waiting time

- Every morning, you arrive at a bus stop and wait patiently for the bus to arrive.
- A bus is scheduled to arrive every 20 minutes.
- Why does it feel like you wait on average more than 10 minutes?

Expected waiting time phenomenon

- Expected waiting time for a randomly arriving prospective rider
- Consider a prospective rider on this bus line who arrives at the stop at a random time, <u>independently of the bus schedule</u> (or without knowledge of the schedule).
- Suppose buses arrive at the stop, on average, every E[X] time units.
 - X is called the bus headway.
 - Let σ_X be the bus headway variance.
- What then is the expected waiting time of this prospective rider until the next bus arrives?
 - Hint: The answer is not E[X]/2. Why not?

Expected waiting time phenomenon

- Expected waiting time for a randomly arriving prospective rider
- Consider a prospective rider on this bus line who arrives at the stop at a random time.
- Suppose buses arrive at the stop, on average, every E[X] time units.
 - *X* is called the bus headway.
 - Let σ_x be the bus headway variance.
- What is the expected waiting time of this prospective rider until the next bus arrives?

Expected waiting time phenomenon

- Expected waiting time for a randomly arriving prospective rider
- Consider a prospective rider on this bus line who arrives at the stop at a random time.
- Suppose buses arrive at the stop, on average, every E[X] time units.
 - *X* is called the bus headway.
 - Let σ_x be the bus headway variance.
- What is the expected waiting time of this prospective rider until the next bus arrives?

Inspection paradox

- This is an example of a problem involving "random incidence", "inspection paradox".
 - See Chap. 2 in R.C. Larson A. Odoni, Urban Operations Research (2007)
- The inspection paradox arises whenever the probability of observing a quantity is related to the quantity being observed.

References

- Larson, Richard C. and Amedeo R. Odoni. Urban Operations Research. Prentice-Hall (1981). Chapter 2: Probability.
- 2. Lectures Modeling and Simulation in Logistics (2007) by Profs. Thomas Liebling and Carolina Osorio
- 3. Lecture Mesoscopic Simulation, Prof. Michel Bierlaire
- 4. Slides adapted from Carolina Osorio.

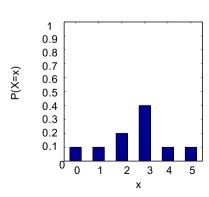
Appendix: Probability Review

Discrete random variable

- Random variable: outcome of random experiment
- Discrete random variable (r.v.) X, Y, etc.
- Realizations: x, y, etc.
- Defined over a set of discrete values: $\{0, ..., K\}$
- Is the outcome of a random experiment according to the probability distribution, called the probability mass function (pmf):

$$P(X = k) = f_k, \qquad k = 0, ..., K$$

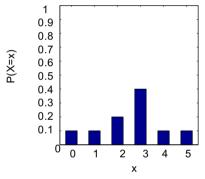
Such that
$$\begin{cases} f_k \geq 0, k = 0, \dots, K \\ \sum_{k=0}^K f_k = 1 \end{cases}$$

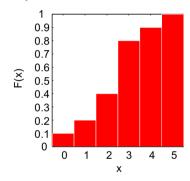


Cumulative distribution function (cdf): F(x)

$$F(x) = P(X \le x) = \sum_{k \le x} f_0 + \dots + f_{\lfloor x \rfloor}$$

F(x) is the probability that X is smaller or equal to x.





Example. For x = 2, $F(x) = f_0 + f_1 + f_2$ F(x) is such that:

- Bounded: $0 \le f(x) \le 1$
- Monotone increasing: If $x \le y$, then $F(x) \le F(y)$

Expected value and variance

- Expectation:
 - $E[X] = \sum_{k=0}^{K} k f_k$
- Variance:
 - $Var[X] = E[(X E[X])^2]$ = $E[X^2] - 2E[X]^2 + E[X] = E[X^2] - E[X]^2$
 - Squared deviation of a random variable from its mean
 - For a discrete distribution with potential outcomes k = 0, ..., K:

■
$$Var[X] = \sum_{k=0}^{K} (k - E[X])^2 f_k$$

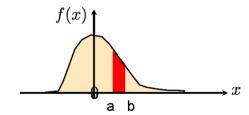
= $\sum_{k=0}^{K} k^2 f_k - E[X]^2$

- Standard deviation:
 - $\sigma = \sqrt{Var[X]}$

Continuous random variable

- Continuous random variable (r.v.) X, Y, etc.
- Realizations: x, y, etc.
- Probability density function: $f_X(x)$
- Defined by a continuous interval [a, b], could be infinite

• E.g.
$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$



- Nonnegativity: $f_X(x) \ge 0$, $\forall x$
- Cumulative distribution function (cdf): $F_X(x)$

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(u) du$$

Continuous random variable

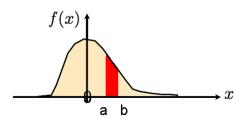
Expectation:

$$E[X] = \int_{-\infty}^{\infty} x f(x) dx$$

Variance:

$$\sigma_X^2 = Var(x) = \int_{-\infty}^{\infty} (xf(x) - E[X]^2) dx = E[X^2] - (E[X])^2$$

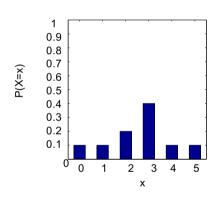
• $P(a \le X \le b) = \int_a^b f(x) dx$ is equal to the area:



Discrete vs. continuous distributions

Probability mass function:

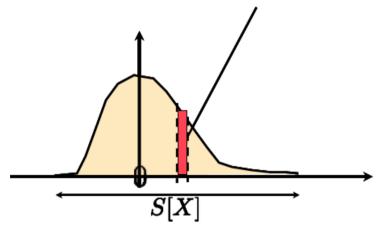
$$P(X-k) = f_k, \qquad k = 0, \dots, K$$



Example: uniform distribution

Probability density function:

$$P(x \le X \le x + dx) = f(x)dx$$



Support: locations where f(x) is nonzero