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Delays in transportation
7

§ Delays are pervasive in transportation

§ Today: Introduce stochastic models of delay
• To diagnose and improve delay
• Framework: Queueing theory
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Local delays

# U.S. city Hours lost per year 
per driver

1 Boston 164

2 Washington, D.C. 155

3 Chicago 138

4 Seattle 138

5 New York City 133

6 Los Angeles 128

Sources:
Boston.com
Boston Magazine
[February, 2019]
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Delays in transportation
§ Congestion/delays arises across all transportation modes
§ Sources: Urban mobility report (TTI, 2009); Transportation Vision for 

2030 (US  DOT, 2008)

9



Wu

Delays in transportation
§ Urban congestion:
• “Urban congestion lead in 2007 to an estimated additional 4.2 billion hours 

of travel and 2.8 billion gallons of fuel with a cost of $87.2 billion across 
urban areas in the US, an increase of more than 50% over the previous 
decade”

§ Highway traffic:
• “Highway vehicle miles traveled are projected to grow 60%, from 2,952 

billion miles traveled in 2005 to 4,733 billion miles traveled in 2030.”
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Delays in transportation
§ Air traffic:
• “The airline industry’s on-time performance in the first seven months of 

2007 was the worst on record, and nationally almost 30% of all flights are 
now cancelled or substantially delayed.”
• “Aircraft travel is projected to nearly double, and current forecasts estimate 

over 1.5 billion air passengers annually by 2030. This will place unparalleled 
demand on the air system.”

§ Freight traffic:
• “ The U.S. transportation system currently moves over 50 million tons of 

freight on the US transportation network. (...) By 2035, tons transported 
overall are expected to double to over 100 million, placing incomparable 
pressure on our domestic transportation network.”
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Background for queuing theory
§ To be useful, the assumed distributional form, should be:

1. Sufficiently realistic (reasonable predictions)
2. Sufficiently simple (mathematically tractable)

§ Key tools
• The Poisson process
• The exponential distribution, which is intimately tied to the Poisson process
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Exponential distribution
§ Also called the negative exponential
§ 𝑇	~	Exp 𝜆
§ 𝜆 is a parameter (a constant)

§ PDF: 𝑓! 𝑡 = 	 +𝜆𝑒
"#$	 𝑡 ≥ 0	

0	 𝑡 < 0
§ 𝐸 𝑇 = %

#

§ 𝑉𝑎𝑟 𝑇 = %
#!

§ CDF: The probability that 𝑇 will be less than or equal to any particular 
constant value, 𝑡, is equal to:

𝐹! 𝑡 = 𝑃 𝑇 ≤ 𝑡 = 7
&'(

$
𝜆𝑒"#&𝑑𝑥 = 1 − 𝑒"#$
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Exponential distribution: numerical example
Gap acceptance problem
§ Suppose that 𝑇:

a) represents the times between successive 
passages (headways) of vehicles on a road; and

b) is described by an exponential pdf.

§ A driver requires 5 sec to insert into 
mainstream traffic that flows at 400 veh/hr

§ What is the probability that the next gap is 
acceptable?
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Exponential dbn
§ What are the implications of assuming 𝑇~𝐸𝑥𝑝 𝜆 ?

Main properties of the exponential dbn:
§ Prop. 1) 𝑓! 𝑡 , the pdf, is a strictly decreasing function of 𝑡 𝑡 ≥ 0

• 𝑃 0 ≤ 𝑇 ≤ Δ𝑡 > 𝑃 𝑡 ≤ 𝑇 ≤ 𝑡 + Δ𝑡 , 𝑡 > 0, Δt > 0

• 𝑃 0 < 𝑇 < ! "
#

= 0.393

• 𝑃 ! "
#
< 𝑇 < $! "

#
= 0.38

• So, 𝑇 is more likely to be < ! "
#

 (small), 
than near 𝐸[𝑇], even though 2nd interval 
is twice as wide as the 1st.

§ Implications in practice?
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Exponential dbn
§ Prop. 2) Lack of memory (“memoryless”)

𝑃 𝑇 > 𝑡 + 𝑠 𝑇 ≥ 𝑠 = 𝑃 𝑇 > 𝑡 	 𝑡 > 0, 𝑠 > 0
§ Interpretation: The probability dbn of the remaining time until the occurrence 

of the next event (e.g. next vehicle arrival, next service completion) is always 
the same, regardless of how much time has already passed.
• For inter-arrival times: the time until the next arrival is uninfluenced by when the last arrival 

occurred
• For service times: if they differ from customer to customer, then “memoryless” may be a 

desirable property

§ The exponential dbn is the only continuous dbn with this property.

§ Also, a small interval is independent of the time:
𝑃 𝑇 ≤ 𝑡 + 𝜀 𝑇 > 𝑡 = 𝜆𝜀 + 𝑜 𝜀 , 	 𝜖 ≪ 1

§ Implications in practice?
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Example: Jitney rider
§ Carla waits on the side of the road for a jitney, which will 

transport her to the next town. This jitney travels along a fixed 
route between the edge of two towns.
• A jitney is a form of unlicensed taxi, often unscheduled. Jitney service (in 

various forms) is prevalent in developing countries.
• Trivia: Technically, Uber is considered an illegal taxi service in jurisdictions 

with medallion systems that restrict the number of legal cabs in 
operation.

1. Suppose that the interarrival time of the jitney service is an 
exponentially distributed random variable with a mean of 10 
minutes. Carla has already waited 15.5 minutes. What is the 
expected additional time (conditional mean) that she will have 
to wait?

2. Now assume the jitney interarrival time is uniformly distributed 
between 2 to 18 minutes. What is the expected additional time 
(conditional mean) that Carla will have to wait?
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Exponential dbn
§ Prop. 3) Minimum of Exp. R.V.s yields an Exp. R.V.

𝑇"~	𝐸𝑥𝑝 𝜆" , ∀𝑖 ∈ 1, 2, … , 𝑛	 independent
𝑈 = min

"#$,…,'
𝑇"

𝑈~𝐸𝑥𝑝 =
"#$

'

𝜆"

§ Inter-arrivals of different types, then the time until the next arrival 
follows an exponential dbn.

§ Example: 𝑛 check-in counters currently attending customers, then 
the time until the next service completion follows an exponential 
dbn.
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Exponential dbn
§ Prop. 4) Relationship to the Erlang distribution.
§ 𝑘 independent r.v’s: 𝑇"~	𝐸𝑥𝑝 𝜆 , ∀𝑖 ∈ 1, 2, … , 𝑘

Then, 𝐸( = ∑"#$( 𝑇"  follows a 𝑘)*-order Erlang dbn.

𝑓+% 𝑥 =
𝜆(𝑥(,$𝑒,-.

𝑘 − 1 !
, 𝑥 ≥ 0, 	𝑘 = 1, 2, …

§ 𝐸 𝐸( = (
-

§ 𝑉𝑎𝑟 𝐸( = (
-&

§ Example: total waiting time of passengers for a bus
§ Note (sanity check): the exponential dbn coincides with 𝑘 = 1.
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Exponential dbn
§ Prop. 5) Relationship to the Poisson process.
§ Suppose we have a sequence of demand arrivals (“events”) such that

a) successive demand inter-arrival times are mutually independent and
b) the demand inter-arrival times are all described by the same exponential pdf.  
Then, the number of arrivals constitutes a “Poisson process”.

§ Stated the other way around:
The inter-arrival times between events in a Poisson process that occur 
at the rate of 𝜆 per unit of time are: (i) mutually independent; and (ii) 
described by an exponential pdf with parameter 𝜆.
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The Poisson process
§ Count the number of events 𝑁 𝑡  that occur during time interval 

0, 𝑡
§ Definition (Poisson process):

If successive inter-event (inter-arrival) times are independent and 
identically distributed as 𝐸𝑥𝑝 𝜆 , then: 𝑁 𝑡  is a Poisson process 
with rate 𝜆

Source: wikipedia

For some fixed time t:

n

P(
N(

t) 
= 

n)

§ 𝑃 𝑁 𝑡 = 𝑛 = #$ ")#$%

*!
: probability that 𝑛 

events take place during the time interval
§ 𝑡: time interval length
§ 𝜆: arrival rate (veh/unit time), also referred to 

as the “intensity” of the arrivals of Poisson 
events

§ 𝐸 𝑁 𝑡 = 𝜆𝑡, 	𝑉𝑎𝑟 𝑁 𝑇 = 𝜆𝑡
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Poisson process à Exponential dbn
35

§ 𝑇 is the time between successive arrivals, then during a time interval 
of length 𝑡 ≤ 𝑇, no arrivals occurred, so for all such 𝑡:

𝑃 𝑡 ≤ 𝑇 = 𝑃 𝑁 𝑡 = 0 =
𝜆𝑡 /𝑒,-)

0!
= 𝑒,-)

§ Cumulative dbn function:
𝐹 𝑡; 𝜆 = 𝑃 0 ≤ 𝑇 ≤ 𝑡 = 1 − 𝑒,-)

§ Probability density function:
𝑓 𝑡; 𝜆 =

𝑑𝐹 𝑡; 𝜆
𝑑𝑡

= 𝜆𝑒,-)

§ Inter-arrival times follow an exponential dbn, with parameter 𝜆.

Inter-arrival times that are i.i.d. 𝐸𝑥𝑝 𝜆  is equivalent to arrivals 
according to a Poisson process 𝑃 𝜆
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Fundamental properties of the Poisson process
1. For a sufficiently small Δ𝑡:

𝑃 𝑁 𝑡 + Δ𝑡 − 𝑁 𝑡 = 1 ≃ 𝜆Δ𝑡
𝑃 𝑁 𝑡 + Δ𝑡 − 𝑁 𝑡 = 0 ≃ 1 − 𝜆Δ𝑡
𝑃 𝑁 𝑡 + Δ𝑡 − 𝑁 𝑡 ≥ 2 ≃ 0

where these probabilities represent, respectively:
• the probability that exactly one event will occur in the next Δ𝑡
• the probability that no event will occur in the next Δ𝑡
• the probability that two or more events will occur in the next Δ𝑡

2. The number of events that occur in disjoint time intervals are mutually 
independent  r.v.’s

3. The number of events that occur during any pre-specified interval of 
length Δ𝑡 does not depend on the “starting time” of the time interval or 
on the number of  events recorded prior to the time interval
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More properties of the Poisson process
§ Given the relationship between the Poisson process and the 

exponential dbn, we have the following properties:
1. (“Memoryless”) If we begin observing a Poisson process with rate 𝜆 at 𝑡 =

0, the pdf for the time, 𝑋, until the next arrival is given by 𝑓' 𝑡 =
𝜆𝑒()* , 𝑡 ≥ 0 no matter how long before 𝑡 = 0 the last arrival occurred.

2. “The sum of 𝐾 independent Poisson processes is a Poisson process with a 
rate equal to the sum of the 𝐾 rates”.

3. Given two independent Poisson processes, with rates 𝜆+ and 𝜆#, 
respectively. Let 𝑋+ and 𝑋#, respectively, be the time until the next arrival 
from each process.  Then, the probability that an arrival from Process 1 will 
take place before an arrival from Process 2 is equal to:

𝑃 𝑋+ < 𝑋# =
𝜆+

𝜆+ + 𝜆#
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Poisson events and Bernoulli trials
§ Note that by Property 3 in the previous slide, the probability that the 

next arrival from either process will be a process 1 arrival is given by:

𝑝 =
𝜆$

𝜆$ + 𝜆0
and the probability that it will be a process 2 arrival by:

𝑞 = 1 − 𝑝 =
𝜆0

𝜆$ + 𝜆0
§ Thus, the type of arrival (from process 1 or from process 2) that will 

occur when an arrival takes place is determined by a Bernoulli trial 
(“coin flip”).

§ The probability that, out of 𝑛 arrivals, 𝑚 will be from process 1 is 
given by:
𝑃 𝑚	successes	in	𝑛	trials = 𝐶1'𝑝1 1 − 𝑝 ',1 , 	0 ≤ 𝑚 ≤ 𝑛
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Example: Timing of a pedestrian crossing light∗
§ Pedestrians approach from the left (resp. right) side of the crossing in a Poisson 

manner with arrival rate 𝜆, (resp. 𝜆-) arrivals per minute. Pedestrians wait until 
light turns green, referred to as a “dump”. Assume: 
• all pedestrians cross instantaneously
• the dump duration is zero
• left and right arrival processes are independent. 

§ We consider three operating rules:
• Dump every 𝑡& minutes
• Dump whenever the total number of waiting 

pedestrians equals 𝑛'
• Dump when the first pedestrian to arrive, after 

the previous dump, has waited for 𝑡( minutes
§ For each rule, determine:

• 1. The expected number of pedestrians 
crossing left to right on any dump

• 2. The probability that zero pedestrians 
cross left to right on any particular dump

• 3. The pdf for the time between dumps

Source: Chapter 2 in Larson, R.C. and A. Odoni, Urban Operations Research, Dynamic Ideas,  Belmont, MA 2007
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