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Queueing models
§ Customers requiring service are generated over time by an input 

source
§ These customers enter the queueing system and join a queue
§ At certain times, a member of the queue is selected for service by 

some rule known as the queue discipline.
§ The required service is then performed for the customer by the 

service mechanism, after which the customer leaves the queueing 
system.
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Queueing models
§ Parameters that characterize a queue
• Number of parallel servers, 𝑐
• Capacity, 𝐾 (equal to buffer + servers, may be infinite)
• Arrival rate, 𝜆
• Service rate of one server, 𝜇
• Transition probabilities, 𝑝!"

§ Arrival distribution
§ Queue discipline
§ Service distribution

µ DeparturesArrivals λ

c

K
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Complete Kendall notation
𝐴	/	𝑆	/	𝑐	/	𝐾	/	𝑃	/	𝑄𝐷

§ 𝐴: inter-arrival time distribution
§ 𝑆: service time distribution
§ 𝑐: number of servers
§ 𝐾: total system size (∞)
§ 𝑃: population size (∞)
§ 𝑄𝐷: Queue discipline (FIFO)
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Kendall notation
𝐴	/	𝑆	/	𝑐	/	𝐾	/	𝑃	/	𝑄𝐷

§ Arrival (𝐴) / Service (𝑆) Process
• Assumption: i.i.d

§ Some standard code letters for 𝐴 and 𝑆:
• 𝑀: Exponential (𝑀 stands for memoryless/Markovian)
• 𝐷: Deterministic
• 𝐸#  : kth-order Erlang distribution
• 𝐺: General distribution

§ Examples:
• 𝐷/𝐷/1, lends itself to a graphical analysis (Unit 1)
• 𝑀/𝑀/𝑐
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Number of servers
§ Single server
• One server for all queued customers

§ Multiple server
• Finite number of “identical” servers operating in a parallel configuration

§ Infinite-server
• A server for every customer
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Kendall notation
𝐴	/	𝑆	/	𝑐	/	𝐾	/	𝑃	/	𝑄𝐷

§ 𝐾: total system size, i.e. buffer size + number of servers
§ Referred to as “capacity” in queueing theory
§ 𝐾 < ∞: finite capacity queues
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Queue discipline
§ Refers to the order in which members of the queue are selected for service
§ FIFO: first-in first-out (a.k.a. FCFS)

• first customer to arrive is first to depart, no passing
• Single road lane, airport check-in counters

§ LIFO: last-in first-out
• last customer into queue is first to leave
• Unboarding cars from a ferry, unboarding a bus from behind

§ Priority
• Customers get served in order of priority (highest to lowest)
• Flight departures along a runway, priority seating when boarding flights
• Yields / intersections: priority between approaches

§ SIRO: service in random order
§ PS: processor sharing
§ FIFO is the most common discipline for most transportation applications
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Queueing theory - keep in mind
§ Queueing theory can provide insights and approximation of the 

main system performance measures.
• Can enable identification of the location of bottlenecks in networks,
• Give indications on how to improve the system’s performance.

§ Most closed-form results involve stationary regime (steady-state) 
and low-order moments (mean, variance) of the inter-arrival and 
service time distributions

§ Trade-off: realistic model (few available results) vs. tractability 
(assumptions are questionable)
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Stationary analysis
§ State of system: number 𝑛 of 

customers in the system
§ Steady state condition: system is 

independent of initial state and has 
reached its long-term equilibrium 
characteristics
• A.k.a. steady state regime, stationary 

regime
§ Given:

• 𝜆 = arrival
• 𝜇 = service rate per server
• 𝑐 = number of servers 

(parallel service channels)

§ Quantities of interest:
• $𝑁: expected number of users in 

queueing system ($𝑁 = 𝐸 𝑁 )
• $𝑁!  : expected number of users in 

queue ($𝑁! = 𝐸 𝑁! )
• (𝑇	: expected time in queueing system 

per user ((𝑇 = 𝐸[𝑇])
• (𝑇!  = expected waiting time in queue 

per user ((𝑇! = 𝐸 𝑇! )
§ 4 unknowns ⟹ need 4 equations
§ Also of interest: (𝑃!): stationary 

queue length distribution
• ∑"#$% 𝑃" = 1
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Stability
• A system is said to be stable if its long run averages (𝑁, 𝑇) exist and 

are finite
• Consider an infinite capacity queue:
• Traffic intensity (also called utilization factor):

𝜌 =
𝜆
𝑐𝜇

• 𝑐𝜇: queue service rate.
• The queue is stable if and only if 𝜌 < 1
• If a system is unstable, its long run measures are meaningless
• Note:

• This is necessary only for infinite capacity queues
• Finite capacity queues have bounded queue lengths, and are therefore always stable
• Stable systems → a steady state condition exists
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Little’s law
§ John Little, MIT Institute Professor
§ Proof in: “A proof for the queuing 

formula: 𝐿 = 𝜆𝑊” (1961), 
Operations Research

§ Little’s Law as viewed on its 50th 
Anniversary (INFORMS)

§ (𝑁 = 𝜆*𝑇
• $𝑁: expected number of vehicles in 

the system
• 𝜆: system arrival rate
• (𝑇: expected time in the system

§ Assumption: The system is in a 
stationary regime

§ No assumptions/restrictions on the:
• inter-arrival and service time 

distributions
• queue discipline
• number of servers

§ For several classes/categories of 
users, Little’s law applies to each 
category

§ If you consider a finite time horizon 
(i.e. 𝜏 < ∞) then stationarity is not 
required.

(1)
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Little’s Law (1961) – deterministic version [Unit 1]
§ Simple relationship between arrival rate, average queue length, and average 

delay (waiting time).

1961, John Little, MIT Institute Professor; See “Little’s Law as Viewed on its 50th Anniversary” (INFORMS)

§ Definition (Average arrival rate): 𝜆 = !!"!"
#!"#"

§ The delay of vehicle 𝑛:𝑤 𝑛
§ Queue at 𝑡#: 𝑄 𝑡#
§ Total Delay:	𝑇𝐷 = ∫$!

$" 𝑉 𝑡 − 𝐷 𝑡 𝑑𝑡 = ∫$!
$"𝑄 𝑡 𝑑𝑡

§ Assumption 1: Finite time window & vehicles
§ Assumption 2: Conservation of vehicles (all 

arriving vehicles eventually depart)
§ Then: $𝑄 = 𝜆(𝑤
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Little’s law
1𝑁 = 𝜆4𝑇

• /𝑁: expected number of vehicles in the system
• 𝜆: system arrival rate
• 1𝑇: expected time in the system

1𝑁* = 𝜆4𝑇*
• /𝑁$: expected number of vehicles in the buffer
• 𝜆: system arrival rate
• 1𝑇$: expected time in the buffer

(1)

(2)
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Relationships between !𝑁, !𝑁!, $𝑇, and $𝑇!
§ Little’s law:
• /𝑁 = 𝜆1𝑇
• /𝑁$ = 𝜆1𝑇$

§ 4𝑇 = 4𝑇* +
+
,

• 𝜇 = service rate (Hz) ⟹ expected 
service time = %

&

§ 1𝑁 − 1𝑁* =
-
,

 (for M/M/1)
• which represents the expected 

number of vehicles under service 
(in steady-state)

§ Obtain one of the performance 
measures, the other three can 
then be deduced

§ Let’s try to obtain 1𝑁.
• The determination of /𝑁 may be 

hard or easy depending on the type 
of queueing  model at hand
• It is easy for 𝑀/𝑀/1 and quite easy 

for 𝑀/𝑀/𝑠 and for 𝑀/𝐺/1
§ In general: 1𝑁 = ∑./01 𝑛𝑃., 

where 𝑃. is the probability that 
there are 𝑛 customers in the 
system

(1)
(2)

(3)

(4)
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Analysis of queueing models
§ Closed-form expressions for the main performance measures 

typically involve:
• stationary regime (i.e. steady state analysis)
• specific distributional assumptions

§ Computational techniques allow us to numerically evaluate 
performance measures for more general queues, and also for 
transient regime (i.e. dynamic analysis)

§ 𝑀/𝑀/1	queueing system: “simple” to analyze
§ General strategy:
• Compute steady state probabilities 𝑃'
• Compute /𝑁 = ∑'()* 𝑛𝑃'
• Obtain /𝑁$, 1𝑇, and 1𝑇$
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Detailed analysis of 𝑀/𝑀/1 queueing system
§ (Recall) Inter-arrival times:

𝑓" 𝑡 = 𝜆𝑒#$%	 𝑡 ≥ 0; 	 𝐸 𝑋 =
1
𝜆
;	 𝜎"& =

1
𝜆&

§ (Recall) Service times:
𝑓' 𝑡 = 𝜇𝑒#()	 𝑡 ≥ 0; 	 𝐸 𝑆 =

1
𝜇
;	 𝜎'& =

1
𝜇&

§ From the properties of exponential r.v.’s, the probabilities of transitions in 
the next Δ𝑡:	
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State transition diagram for 𝑀/𝑀/1
§ States (number of “customers” in the system):

§ The probability of observing a transition from state 𝑖 to state 𝑗 
during the next Δ𝑡 with the system in steady-state:
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State transition diagram for 𝑀/𝑀/1

§ Another way to represent this State transition diagram:
• Nodes: states
• Arcs: possible state transitions
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Observing the diagram from two points
1. At a state:

2. Between states:

§ The two sets of equations yield the same solutions
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𝑀/𝑀/1: deriving 𝑃" and 𝑃#
1. 𝑃+ =

-
,
𝑃0, 	 𝑃2 =

-
,

2
𝑃0, … , 	 𝑃. =

-
,

.
𝑃0

2. ∑./01 𝑃. = 1, ⇒ 𝑃0 ∑./01 -
,

.
= 1, 	 ⇒ 𝑃0 =

+

∑+,-. /
0

+

3. For 𝑥 < 1, 	 ∑./01 𝑥. = +
+45

4. Define: 𝜌 = -
,

𝑃0 =
1

∑./01 𝜌. = 1 − 𝜌

𝑃. = 𝜌. 1 − 𝜌
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𝑀/𝑀/1: deriving !𝑁, !𝑁!, $𝑇, and $𝑇!
&𝑁 = )

!"#

$

𝑛𝑃!

= )
!"#

$

𝑛𝜌! 1 − 𝜌

= 1 − 𝜌 )
!"#

$

𝑛𝜌!

= 1 − 𝜌 𝜌)
!"#

$

𝑛𝜌!%&

= 1 − 𝜌 𝜌
𝑑
𝑑𝜌)

!"#

$

𝜌!

= 1 − 𝜌 𝜌
𝑑
𝑑𝜌

1
1 − 𝜌

= 1 − 𝜌 𝜌
1

1 − 𝜌 '

=
𝜌

1 − 𝜌 =

𝜆
𝜇

1 − 𝜆
𝜇
=

𝜆
𝜇 − 𝜆

4𝑇 =
1𝑁
𝜆
=

𝜆
𝜇 − 𝜆

⋅
1
𝜆
=

1
𝜇 − 𝜆

4𝑇* = 4𝑇 −
1
𝜇 =

1
𝜇 − 𝜆 −

1
𝜇 =

𝜆
𝜇 𝜇 − 𝜆

1𝑁* = 𝜆4𝑇* =
𝜆2

𝜇 𝜇 − 𝜆

34



Wu

Outline

1. Fundamental queueing models

2. Stationary analysis and Little’s law

3. M/M/1: Detailed analysis

4. More queues
a. 𝑀/𝑀/2
b. 𝑀/𝑀/𝑐
c. 𝑀/𝑀/𝑐/𝐾
d. 𝑀/𝑀/𝑐/𝑐	- Erlang loss model
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𝑀/𝑀/2 queueing system
§ What happens if we have two parallel, independent servers, each with service rate 𝜇 and 

exponentially distributed service times?
§ State transition diagram:

§ Balance equations: 6
𝜆𝑃# = 𝜇𝑃$	
𝜆𝑃$ = 2𝜇𝑃%	
𝜆𝑃% = 2𝜇𝑃&, …

𝑃$ =
'
(
𝑃#	

𝑃% =
'
%(
𝑃$ =

$
%

'
(

%
𝑃#	

𝑃& =
'
%(
𝑃% =

$
%

% '
(

&
𝑃#

𝑃) =
$
%

)*$ '
(

)
𝑃#	
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𝑀/𝑀/2 queue

𝑃0 =
1 − 𝜆

2𝜇

1 + 𝜆
2𝜇
	 for	𝜆 < 2𝜇

𝑃. = 2
𝜆
2𝜇

.

𝑃0, 	𝑛 ≥ 1

…	 1𝑁 =

𝜆
𝜇

1 + 𝜆
2𝜇 1 − 𝜆

2𝜇
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𝑀/𝑀/𝑐 queue
§ This model is a reasonable assumption at toll booths on turnpikes or at toll 

bridges where there is often more than one toll booth open.
§ Traffic intensity / utilization factor: 𝜌 = 1

2&

§ Stability: 1
2&
< 1

§ Stationary dbn:

𝑃# =

𝜆/𝜇 #

𝑘!
𝑃), 𝑘 = 1, 2, … , 𝑐 − 1

𝜆/𝜇 #

𝑐! 𝑐#32 𝑃), 𝑘 = 𝑐, 𝑐 + 1,…

𝑃) =
𝜆/𝜇 2

𝑐! 1 − 𝜌
+?

#()

23%
𝜆/𝜇 #

𝑘!

3%

§ Expected queue length (in the buffer)?
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𝑀/𝑀/𝑐 queue
§ Little’s formula: 𝑇* =

<4
-

§ 𝑇 = 𝑇* +
+
,

§ To obtain 𝑁:
1. Little’s formula: 𝑁 = 𝜆𝑇
2. 𝑁 = 𝑁$ +

1
&
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𝑀/𝑀/𝑐/𝐾 
§ Finite capacity queue: 𝑀/𝑀/1/𝐾

𝑃! =
1 − 𝜌

1 − 𝜌*+,
𝜌!	 𝑛 = 0, 1, … , 𝐾

§ The queue is always stable (∀𝜌), so steady state is always reached
§ When system is full: arrivals are lost
§ Effective arrival rate (i.e. rate of arrivals that actually enter the system): 𝜆(

)
1

− 𝑃*
§ Careful when applying Little’s Law! Count only the vehicles that actually join 

the system:
𝜆- = 𝜆 1 − 𝑃*(𝑁 = 𝜆- *𝑇
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𝑀/𝑀/𝑐/𝑐 - Erlang loss model
§ 𝑀/𝑀/𝑐/𝑐: Erlang loss model
§ First queueing model to be investigated
§ Agner Krarup Erlang
• Danish telephone engineer, who investigated it in the early 1900’s 

as a model for telephone switch which can handle only c calls
• Queueing theory pioneer
• The theory of stochastic processes was not yet developed at the 

time
• Erlang derived a formula for the proportion of lost calls, Erlang loss 

formula:

𝑃2 =
λ/µ 5/c!

∑!()2 𝜆/𝜇 !/𝑖!
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𝑀/𝑀/𝑐/𝑐 - Insensitivity
§ Erlang assumed exponential service times, but conjectured that it 

would hold for generally distributed service times
§ Insensitivity: the loss probability is insensitive to the form of the 

service time distribution; it depends only on its expectation.
§ This was not proved until the 1960’s

𝑃= =
λ/µ >/c!

∑?/0= 𝜆/𝜇 ?/𝑖!
§ Loss probability holds for 𝑀/𝐺/𝑐/𝑐 queues
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𝑀/𝐺/𝑐/𝑐 - Erlang loss model
§ Actually, the insensitivity property also holds for the stationary 

distribution
§ Insensitivity: the stationary distribution is insensitive to the form of 

the service time distribution; it depends only on its expectation.

𝑃. =
λ/µ @/n!

∑?/0= 𝜆/𝜇 ?/𝑖!
, ∀𝑛 ∈ [0, 𝑐]

§ Insensitivity property à Erlang loss model is of wide interest
• Model is commonly used for the analysis of telecommunication systems, 

also:  urban service systems, inventory, reliability
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𝑀/𝐷/1 queue
§ Has been used to model vehicles on a lane at signalized urban 

intersections
§ Exponentially distributed inter-arrival times
§ Deterministic service distribution
§ One server

§ Recall the traffic intensity: 𝜌 = -
,

• 𝜌: traffic intensity
• 𝜆: arrival rate [veh/unit time]
• 𝜇: service rate [veh/unit time]
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𝑀/𝐷/1 queue
§ For a stable queue (𝜌 < 1):

• Expected number of vehicles in the buffer [veh]:

𝑁! =
𝜌2

2 1 − 𝜌
• Expected waiting time in the buffer (per veh)

𝑇! =
𝜌

2𝜇 1 − 𝜌
• Expected time in the system: sum of the expected waiting time and the  expected 

service time:

𝑇 =
2 − 𝜌

2𝜇 1 − 𝜌
§ Note: traffic intensity: 𝜌 < 1, then:

• the 𝐷/𝐷/1 queue predicts no queue formation,
• models with probabilistic arrivals/departures (e.g. 𝑀/𝐷/1) predict queue  

formations under such conditions.
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