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1. (Optional) Prof Ayalvadi Ganesh. “Markov Chains.” Lecture 
notes. URL.

Readings
2

https://people.maths.bris.ac.uk/~maajg/teaching/pgt/markov_chains.pdf
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Outline
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b. Container terminal problem
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Beyond the basic queues
§ In this lecture, we discuss a more general strategy for modeling and 

analyzing more sophisticated facility dynamics.
• We will introduce ideas of: transition rate matrix, global balance equations. 

We will leverage fundamental results from Markov chains.

§ Solutions will no longer be analytical (in general) and can be instead 
computed numerically.
• For now, we will still use properties of the Exponential distribution. 
• In Lecture 10, we will relax this to allow modeling of (even) more general 

facility dynamics (see Computational Lab #2).

§ Why do we need fancier tools?
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General strategy for stationary analysis
§ Time perspective (what we’ve considered so far):
• The random process X! ∈ ℕ evolves according to transition rates.
• Represented by state transition diagram and/or transition rate matrix 𝑄.

§ Distributional perspective: 𝑃! 𝑡 ≔ 𝑃 𝑋" = 𝑛  is the proportion of 
time the system spends in state n.
• Discrete-time form: 𝑃" 𝑘 ≔ 𝑃 𝑁 Δ𝑡	𝑘 = 𝑛
• 𝑃 𝑘 ≔ 𝑃" 𝑘 "∈ℕ

1. Define the evolution of 𝑃 𝑘  as:
𝑃(𝑘 + 1)# = 𝑃(𝑘)#𝑇

• Where 𝑇 ≔ 𝐼 + 𝑄Δt is the transition probability matrix

2. Invoke fundamental theorem of Markov Chains.
• Gives convergence to stationary distribution: 𝑃 𝑘 → 𝑃 

8
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Stationary analysis: in a nutshell
§ Stationary distribution: often denoted 𝑃 or 𝜋
§ In applications:

1. Define the state space
2. Define the state transition diagram or the transition rate matrix
3. Then, derive the balance equations to obtain the stationary distribution
4. Derive 3𝑁, 3𝑁%, 4𝑇, 4𝑇%

9
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Transition rate matrix

§ Define transition rate matrix 𝑄 = 𝑞$% $∈',%∈)
, =

𝑞** 𝑞*+ ⋯
𝑞+* 𝑞++ ⋯
⋮ ⋮ ⋱

	

• where 𝑞&'  is transition rate from state 𝑖 to state 𝑗
• 𝑞&& = −∑'(& 𝑞&': rate of departure from state 𝑖	
• Square matrix

• Helps describes the rate by which the system changes state, i.e., )
)*
𝑃"(𝑡)

§ Possible transitions from a given state 𝑖, with their corresponding 
rates and conditions under which these transitions can take place
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Example: M/M/1
initial state s new state j rate q i j condition

n n+1 λ always possible

n n−1 µ n≥ 1
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Global balance equations
16

§ The set of equations represented by the state transition diagram are 
called  the global balance equations. They can be written as:

3
%,$

𝑃%𝑞%$ = −𝑃$𝑞$$ 	 ∀𝑖	 ≡ 	 𝑃#𝑄 = 0

§ In other words, in steady state (when 𝑃 𝑡 = 𝑃), transitions into and 
out of states must be balanced.

§ In some cases (e.g., M/M/c), the global balance equations can be 
directly solved for 𝑃 (stationary analysis).

§ In other cases…

(equivalent)
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Container terminal
§ Arrival

• Ships arrive at a container terminal 
according to a Poisson process with 
rate 𝜆.  Each ship brings thousands of 
containers.

• There are 𝑐 berths, i.e. only 𝑐 ships 
can dock or anchor at the port 
simultaneously.

• If all berths are occupied arriving 
ships must wait at the entrance of the 
port. A maximum of 𝑟 ships can wait 
for entrance, further ships are 
redirected to another port.

§ Berth operations
• Upon arrival to the berth, a ship 

unloads its containers. The unloading 
time follows an exponential 
distribution with parameter 𝜇.

§ Departure
• Once all containers are unloaded, the 

ship can leave the port, as long as the 
exit is clear, which occurs with 
probability 𝑝! .

• Suppose each berth has its own exit. 
If the exit is occupied, it remains so 
during an exponentially distributed 
time with parameter 𝛽.
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Container terminal
Upon arrival to the port a ship (arrival rate 𝜆):

1. [queue]
2. is served (service rate 𝜇)
3. [blocked] (rate at which exit is occupied 𝛽, 

also exponentially distributed)
4. Departs (with probability 𝑝!)

Note: Blocking after service: blocking mechanism 
used to describe how congestion arises and propagates
State space of port :

𝑆 = { 𝐴, 𝐵,𝑊 ∈ 𝑁!, 𝐴 + 𝐵 ≤ 𝑐,𝑊 ≤ 𝑟}
• A = ships being served
• B = ships waiting to depart
• W = ships waiting to be served

Stationary distribution:
𝑃 = 𝑃 𝐴, 𝐵,𝑊 = 𝑎, 𝑏, 𝑤 , 𝑎, 𝑏, 𝑤 ∈ 𝑆

Problem: For c = 2, 𝑟 = 2, define the possible transitions and their corresponding rates (tabulate).
Reminder (Departure): Once all containers are unloaded, the ship can leave the port, as long as the 
exit is clear, which occurs with probability 𝑝". Suppose each berth has its own exit. If the exit is 
occupied, it remains so during an exponentially distributed time with parameter 𝛽.
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Container terminal
21
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Outline

1. Transition rate matrix

2. Markov chains
a. Python demo
b. Application: (Simple) multi-lane modeling
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Markov chain
• The sequence 𝑋* , 𝑡 ≥ 0  that goes from state 𝑖 to 𝑗 with probability 𝜏&', 

independently of the states visited before, is a Markov chain.
• 𝜏&'  is also called a transition probability.
• Markov property: the current state contains all information for predicting the 

future of the process/chain.

Preview (Unit 4): Markov decision processes (MDP)
• Extension of Markov chains, where, in addition to the current state, the 

transition is also affected by decisions (control), i.e. 𝜏&'..
• Example of sequential decisions in transportation: traffic signal phase change, 

autonomous vehicle steering & acceleration, dynamic speed limits, rideshare 
matching
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Transition probability matrix
§ 𝑇 = 𝜏AB A∈C,B∈D
§ How come 𝑃(𝑘 + 1)# = 𝑃(𝑘)#𝑇, where 𝑇 ≔ 𝐼 + 𝑄Δt?
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Fundamental theorem of Markov chains
Distribution after 𝑘 steps (each Δ𝑡, i.e. 𝑡 = Δ𝑡	𝑘) 

𝑃# 𝑘 + 1 =H
$∈&

𝑃$ 𝑘 𝜏$#

Stationary distribution

𝑃# =H
$∈&

𝑃$𝜏$#

Definitions:
• Finite: finite number of possible states (𝑁 < ∞)
• Irreducible: can reach any state from any state, possibly after many steps
• Aperiodic: no state transitions back to itself only under cycle lengths of integer multiples > 1

Theorem (Fundamental theorem of Markov chains)
1. If the Markov chain is finite and irreducible, it has a unique invariant distribution 𝑃 and 𝑃# is the 

long-term fraction that 𝑋 𝑡 = 𝑛.
2. If the Markov chain is also aperiodic, then the distribution 𝑃 𝑘  of 𝑋 𝑡  converges to 𝑃.

29

Often written in other texts 
(different notation) as: 𝜋𝑃 = 𝜋.
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Example: Markov chains

Introduction to Probability by Hossein Pishro-Nik
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1. Transition rate matrix

2. Markov chains
a. Python demo
b. Application: (Simple) multi-lane modeling

33



Wu

Outline

1. Transition rate matrix

2. Markov chains
a. Python demo
b. Application: (Simple) multi-lane modeling
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(Simple) multi-lane modeling
Goal: Enable analysis of vehicle controllers for more complex traffic, in 
particular for multi-lane roads.

Key challenges:
1. Driver behavior models too complex.
2. Steady-state analysis of car following

models is less useful amidst frequent 
perturbations.

Contributions:
• Multi-lane roads: Reduction of a multi-lane model into a stochastic single-

lane model.
• Multi-lane counts: Markov chain describing macroscopic multi-lane traffic, 

derived from microscopic vehicle dynamics.
• Enables analysis of variance of velocity, for understanding energy use.

Wu, Cathy, Eugene Vinitsky, Aboudy Kreidieh, and Alexandre Bayen. "Multi-lane reduction: A stochastic single-lane model for lane changing." IEEE ITSC, 2017.
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Dynamical System Lane Changing
§ Major source of instability
§ Focus on discretionary changes
§ Multifactorial
• Gap size
• Lead and lag speed
• Speed of adjacent lane
• Braking distance
• Cooperation
• Driver politeness
• Traffic density

Recent developments and research needs in modeling lane changing, Zuduo Zheng
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Modeling for 
multi-lane roads

Calibration

Pre-processing

Modeling

Reduction

NGSIM
dataset

Wu, Cathy, Eugene Vinitsky, Aboudy Kreidieh, and Alexandre Bayen. "Multi-lane reduction: A stochastic single-lane model for lane changing." IEEE ITSC, 2017.
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Pdisappear high

Pappear high

Pappear low

Pdisappear low

hi(k)

xi-1(k), vi-1(k)

xi(k), 
vi (k)

This distribution of differences in adjacent gap 
lengths from the NGSIM dataset indicates that 
there is plenty of probability mass with positive 
gap differences (the right side), providing 
opportunity for lane changes into the lane. 

Wu, Cathy, Eugene Vinitsky, Aboudy Kreidieh, and Alexandre Bayen. "Multi-lane reduction: A stochastic single-lane model for lane changing." IEEE ITSC, 2017.
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Model Calibration - NGSIM
§ Two highways 
§ 1 1/2 hours of camera footage
§ Filter out trucks
§ Extract left two lanes 

Slide credit: Eugene Vinitsky
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Model Calibration - Probabilities
§ Extract	headways	when	lane	
changes	occur

§ Fit	to	log-normal	distribution

§ 𝑝 𝑙𝑐 ℎ = O ℎ 𝑙𝑐 ∗O(RS)
O(T)

Slide credit: Eugene Vinitsky

Fit of log-normal distribution for the total distribution of headways and the 
conditional distribution of headways when a vehicle lane changes into a lane, 
respectively, computed for 7:50 am on the US 101. 
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Single lane model

Wu, Cathy, Eugene Vinitsky, Aboudy Kreidieh, and Alexandre Bayen. "Multi-lane reduction: A stochastic single-lane model for lane changing." IEEE ITSC, 2017.
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Lane change out
Closing the gap

Lane change in
Gap opening

slope = velocity

Time-space diagram

Wu, Cathy, Eugene Vinitsky, Aboudy Kreidieh, and Alexandre Bayen. "Multi-lane reduction: A stochastic single-lane model for lane changing." IEEE ITSC, 2017.
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Time step (deterministic car following) = 0.025 sec
Time step (stochastic lane changing) = 6 sec

Wu, Cathy, Eugene Vinitsky, Aboudy Kreidieh, and Alexandre Bayen. "Multi-lane reduction: A stochastic single-lane model for lane changing." IEEE ITSC, 2017.
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Two reductions

Pdisappear high

Pappear high

Pappear low

Pdisappear low

hi(k)

xi-1(k), vi-1(k)

xi(k), 
vi (k)

k

k+1

k-1

…
…

Stochastic single-lane model Macroscopic multi-lane traffic

Wu, Cathy, Eugene Vinitsky, Aboudy Kreidieh, and Alexandre Bayen. "Multi-lane reduction: A stochastic single-lane model for lane changing." IEEE ITSC, 2017.
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Macroscopic multi-lane model

Theorem (Stationary)
This Markov chain converges to a stationary distribution.

𝑇!,!/ = '
$U*

!VW
𝑛

𝑖 + Δ
𝑝X ℎ!∗ WY$ 1 − 𝑝X ℎ!∗ !V WY$

	 ×
𝑛
𝑖 𝑝Z ℎ!∗ $ 1 − 𝑝Z ℎ!∗ !V$

Δ	 ≔ 𝑛[ − 𝑛 

k

k+1

k-1

…
…

vehicles appeari+�

i vehicles disappear

Wu, Cathy, Eugene Vinitsky, Aboudy Kreidieh, and Alexandre Bayen. "Multi-lane reduction: A stochastic single-lane model for lane changing." IEEE ITSC, 2017.
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# vehicles at iteration i+1

Transition probability

E[n] = 11 vehicles

Transition matrix for the number of vehicles in the lane

Wu, Cathy, Eugene Vinitsky, Aboudy Kreidieh, and Alexandre Bayen. "Multi-lane reduction: A stochastic single-lane model for lane changing." IEEE ITSC, 2017.
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# vehicles at iteration i+1

E[n] = 11 vehicles

Transition matrix for the number of vehicles in the lane

Wu, Cathy, Eugene Vinitsky, Aboudy Kreidieh, and Alexandre Bayen. "Multi-lane reduction: A stochastic single-lane model for lane changing." IEEE ITSC, 2017.
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Variance analysis
Observation: Variance of velocity is related to energy consumption.

Insight: Discretionary lane changes may aid in reducing stop-and-go 
traffic waves rather than increase them.

Experiment Type �2
h �2

v

Lane Changing Simulation 61 80
No Lane Changing Simulation 58 97

Markov Chain 61 41

Variance of 
headway Variance of velocity

Wu, Cathy, Eugene Vinitsky, Aboudy Kreidieh, and Alexandre Bayen. "Multi-lane reduction: A stochastic single-lane model for lane changing." IEEE ITSC, 2017.
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(Does not model transients, stop-and-go traffic)
(Does not model lane changing)
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