
2. Conservation of Mass

The equation of mass conservation expresses a budget for the addition and removal of
mass from a defined region of fluid.  Consider a fixed, non-deforming volume of fluid,
V , called the control volume (cv), which has a defined surface boundary, called the
control surface (cs).  Conservation of mass requires that the time rate of change of mass
within the control volume equals the rate at which mass enters the control volume plus
the rate at which mass is gained or lost within the control volume due to sources and
sinks.  A mathematical expression of this law is described below.

Within the control volume there is a distribution of some species defined by the
concentration field, C(x,y,z).  The total mass within the control volume is

(1) M  C dV= ∫cv .

M can change over time due to sources and sinks located within the volume, or due to
fluxes of mass across the control volume boundaries.  In a fluid system there are two
forms of mass flux, advection and diffusion.  The net flux of mass out of the control
volume due to advection is described by the integral,
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Here, 
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V = (u,v,w) is the velocity vector and 
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nis the outward pointing normal for surface

segment dA.  
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V n⋅  represents the velocity component perpendicular to the area segment

dA.  The definition of 
v
n as the outward facing normal makes (2) the net flux out of V .

That is, flow out of V  (same direction as 
v
n) contributes positively to the integral, and

flows into V  (opposite to 
v
n) contribute negatively.  The net flux out of the control

volume due to diffusion is defined using Fick's Law.
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Note that the concentration gradients are defined along the axis 
v
n, i.e. everywhere

perpendicular to the surface, and position outward.  Denoting Dn as the diffusion
coefficients along the axis 

v
n allows for anisotropy in D.  For molecular diffusion and/or

isotropic turbulence D is not a function of direction and the subscript may be dropped.
The final mathematical expression for conservation of mass combines (1), (2), and (3).

Conservation of Mass in Integral (Control Volume) Form
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Example problems using integral form of Conservation of Mass (open from mainpage to view in new window)

Differential Form of Conservation of Mass
The differential form of conservation of mass is derived by evaluating (4) for an infinitely
small, cubic volume.  The volume is sufficient small that we assume the concentration
within the volume is essential uniform.  The volume is rigid, so that the dimensions ∂x,
∂y, and ∂z are constant.  The two surface integrals (terms 2 and 3 in (4)) reduce to a sum
of fluxes across each of the six cube faces.
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As an example, consider fluxes in the x-direction across the faces numbered 1 and 2, and
located at x = x1 and x2, respectively.
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On face 1 
v
n points in the negative x direction, such that 

v v
V n = -u⋅ , and ∂C/∂n = -∂C/∂x.

The evaluation of the surface integral for face 1 is then,

(6) Flux across 1 = (uC)1 ∂y∂z - (Dx ∂C/∂x)1 ∂y∂z.

Similarly for face 2, but noting that 
v
n points in the positive x direction,

(7) Flux across 2 = -(uC)2 ∂y∂z + (Dx ∂C/∂x)2 ∂y∂z

The net x-direction flux into the control volume is the sum of (6) and (7).

(8) Net flux in x =  ( (uC)1 -(uC)2 - (Dx ∂C/∂x)1  + (Dx ∂C/∂x)2 )∂y∂z.

If we assume that C, u, ∂C/∂x, and Dx are continuous functions of x, a Taylor expansion
may be used to express each parameter at x2 as a function of the same parameter at x1.
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If we drop the higher order terms and replace (uC)2 and (Dx∂C/∂x)2 in (8) with the
expressions in (9) and (10), then (8) becomes,
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Similar expressions can be found for flux across the remaining four faces.  Combining
these in (5) and noting ∂ ∂ ∂ ∂V = x y z,

Conservation of Mass in Differential Form
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This expression can be simplified under the following conditions.
First, consider the expansion of the advective fluxes in (12),
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If the flow field is incompressible, then from continuity
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This eliminates the bracketed term in (13).  Thus, conservation of mass for
incompressible flow may be expressed as follows.  By convention, advective terms are
brought to the left.

Conservation of Mass for Incompressible Flow
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Furthermore, when the coefficients of diffusion are homogeneous, Di ≠ f(x, y, or z),
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If the diffusion coefficients are additionally isotropic, Dx = Dy = Dz, then
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For laminar flow molecular diffusion controls the diffusive flux.  In general, molecular
diffusion is both homogeneous and isotropic, such that (14b) is appropriate for laminar
flow.  For turbulent flow turbulent transport dominates the diffusive flux.  Commonly the
turbulence field is both heterogeneous and anisotropic and the diffusion coefficients will
be as well.

2.1. Material Derivative

Fluid motion and any constituent (temperature, concentration) transported by fluid
motion can be described from two frames of reference, one which is stationary or one
which is moving along with the flow.  In the Eulerian perspective, the flow and its scalar
constituents are described with respect to fixed spatial positions, 

v
X =(x,y,z) and with

respect to time (t), and are written,  e.g. 
v v
V X t( , )and C tX( , )

v
.  In the Lagrangian

perspective moves with the flow, and traces the history of individual fluid particles.
Unlike the Eulerian description, in which spatial position is a fixed reference, in the



Lagrangian perspective, the spatial position is another variable of the particle.  The flow
variables are written with respect to time (t) and to a single, initial reference position, e.g.v
X0 the particle position at t = 0, such that the variables are recorded as 

v v
X(X , t)0  and

C (X , t)0

v
.

The Eulerian perspective is generally easier to represent, and therefore is more
common in analysis and flow description.  However, the physics and transport of flow are
more fundamentally related to the Lagrangian perspective.   For example, the Navier-
Stokes equations essentially represent Newton's Second Law (

v v
F ma= ) applied to fluid

particles.  For transport problems, e.g., tracking the evolution of a phytoplankton patch as
is grows (source), is preyed upon (sink) and diffuses, one again sees the conceptual
advantage of a Lagrangian perspective - predicting concentration following the patch.
Because both perspectives are important, it is important to understand how they are
related.

Consider F(x,y,z,t) to be any variable of the flow described in terms of fixed Eulerian
coordinates, (x, y, z).  We wish to relate this description to a Lagrangian perspective,
specifically to describe the rate of change in F observed while following an individual
particle through the flow.  First, we can describe a change in F, namely dF, due to a small
change in spatial position (dX

v
) and/or time (dt), as
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Next, we constrain the increments dt anddX
v

such that they follow the trajectory of an
individual particle,  specifically, dx = u dt, dy=v dt, and dz=w dt.  Then (15) becomes,
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Dividing by dt produces a derivative that represents the rate of change in F observed
when following the trajectory of a fluid particle.  To emphasize this special definition the
derivative is given the notation DF/Dt, i.e.
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The notation DF/Dt is called the material derivative  (also the particle derivative, the
substantial derivative, and the total derivative) to emphasize that it is taken following a
fluid particle.  The material derivative has two parts.  First, ∂F/∂t, called the local
derivative, represents the rate of change at any fixed point.  For steady flow, ∂/∂t = 0.
The remaining terms, u∂F/∂x + v∂F/∂y + w∂F/∂z, are called the advective derivative,
because they record changes in F which arise as the fluid element advects through a
spatial gradients in F.  The following animations help to demonstrate the material
derivative.



Steady Temperature Field: This animation shows a one-dimensional system with a spatial
gradient of temperature, T(x).  A temperature probe (white dot) moves with the flow,
making a Lagrangian observation.  The probe records the material (total) derivative,
which in one dimension is,
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Probes located at the fixed positions A, B, and C make Eulerian observations.  They show
a steady temperature field, i.e. ∂T/∂t =0, such that the material derivative is equal to the
advective derivative, DT/Dt = u ∂T/∂x.  This is quantified in the lower right corner of the
animation.  The temperature field shown here could result from a steady, uniform flow
through a heating element.  The temperature of the fluid rises steadily as heat is added
along the flow path.

Unsteady Temperature Field: This animation shows a one-dimensional system with an
unsteady temperature field, T(x, t).  One temperature probe is moving with the flow
(white dot) at velocity u, and it records the material derivative given in (18).  Three
additional probes are located at the fixed positions A, B, and C.  These probes record the
local derivative, ∂T/∂t, which is non-zero (unsteady), but is the same at each position.
The value of each derivative is given in the lower right hand corner.

Steady, Spatially Accelerating Flow in a Pipe: In this animation, flow through a pipe
accelerates downstream as the pipe cross-section decreases, i.e. ∂u/∂x > 0.  Three probes
measuring the flow at fixed positions, A, B, and C, show that the flow is steady, ∂u/∂t = 0
at every position.  Another velocity probe is moving with the flow (blue dot) and records
the material (total) derivative, Du/Dt.  Within each section of the pipe, Du/Dt = 0, as
shown by the blue trace in the Velocity vs. Time graph.  At the step changes in cross-
sectional area, the fluid locally accelerates, ∂u/∂x > 0, and at these positions Du/Dt = u
∂u/∂x.

What is the mean velocity in this system?  From the perspective of transport, the best
definition of mean velocity is a Lagrangian definition, i.e. the mean velocity experienced
by a probe moving with the flow.  The probe takes 109 seconds to traverse the pipe which
is 90-m in length.  This gives a velocity of  90/109 = 0.83 ms-1. One is tempted to define a
mean Eulerian velocity based on the spatial average of the velocity within the three
sections.  As the segment lengths are equal within this one-dimensional system, the
average is straightforward, (0.50 + 0.89 + 2.0)/3 = 1.13 m/s.  This value is meaningless,
however, from the perspective of transport, because it does not predict the travel time
through the system, i.e. 90-m/1.13-ms-1 = 80 s ≠ 109 s.
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