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CHAPTER TWO

ONE-DIMENSIONAL PROPAGATION

Since the equation
@2�

@t2
= c2r2�

governs so many physical phenomena in nature and technology, its properties are basic

to the understanding of wave propagation. This chapter is devoted to its analysis when

the extent of the medium is in�nite and the motion is one dimensional. To be be

speci�c, physical discussions are made for shallow-water waves in the sea. The results

are however readily transferable or modi�ed for sound, waves in blood vessels and other

types of waves.

1 General solution to wave equation

Recall that for waves in an artery or over shallow water of constant depth, the governing

equation is of the classical form
@2�

@t2
= c2

@2�

@x2
(1.1)

It is easy to verify by direct substitution that the most general solution of the one

dimensional wave equation (1.1) is

�(x; t) = F(x� ct) + G(x+ ct) (1.2)

where F and g are arbitrary functions of their arguments. In the x; t (space,time) plane

F(x � ct) is constant along the straight line x � ct = constant. Thus to the observer

(x; t) who moves at the steady speed c along the positive x-axis, the function F is

stationary. Thus to an observer moving from left to right at the speed c, the signal

described initially by F(x) at t = 0 remains unchanged in form as t increases, i.e., F is

a wave propagating to the right at the speed c. Similarly G propagates to the left at the
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speed c. The lines x� ct =constant and x + ct = constant are called the characteristic

curves (lines) along which signals propagate. Note that another way of writing (1.2) is

�(x; t) = F̂(t� x=c) + Ĝ(t+ x=c) (1.3)

Let us illustrates an application of this simple result.

2 Branching of arteries

References: Y C Fung : Biomechanics, Circulation. Springer1997

M.J. Lighthill : Waves in Fluids, Cambridge 1978.

Recall that (1.1) governs both the pressure and the velocity in the blood

@2p

@t2
= c2

@2p

@x2
(2.1)

@2u

@t2
= c2

@2u

@x2
(2.2)

The two unknowns are related by the momentum equation

�
@u

@t
= �@p

@x
(2.3)

The general solutions are :

p = p+(x� ct) + p�(x+ ct) (2.4)

u = u+(x� ct) + u�(x+ ct) (2.5)

Since
@p

@x
= p0+ + p0

�
;

and

�
@u�
@t

= ��cu0+ + �cu0
�

where primes indicated ordinary di�erentiation with respect to the argument. Equation

(2.3) can be satis�ed if

p+ = �cu+; p� = ��cu� (2.6)
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Denote the discharge by Q = uA then

Q� = u�A = �Zp� (2.7)

where

Z =
�c

A
(2.8)

is the property of the tube and is call the impedance.

Now we examine the e�ects of branching; Referring to �gure 1, the parent tube,

characterized by wave speed c and impedance Z, branches into two characterized by c1

and c2 and Z1 and Z2. An incident wave approaching the junction will cause re
ection

p = pi(t� x=c) + pr(t + x=c); x > 0 (2.9)

and transmitted waves in the branches are p1(t � x=c1) and p2(t � x=c2) in x > 0. At

the junction x = 0, continuity of pressure and 
uxes requires

pi(t) + pr(t) = p1(t) = p2(t) (2.10)

and
pi � pr
Z

=
p1
Z1

+
p2
Z2

(2.11)

De�ne the re
ection coeÆcient R to be the amplitude ratio of re
ected wave to incident

wave, then

R =
pr(t)

pi(t)
=

1
Z
�
�

1
Z1

+ 1
Z2

�
1
Z
+
�

1
Z1

+ 1
Z2

� (2.12)

Similarly the tranmission coeÆcients are

T =
p1(t)

pi(t)
=
p2(t)

pi(t)
=

2
Z

1
Z
+
�

1
Z1

+ 1
Z2

� (2.13)

Note that both coeÆcients are constants depending only on the impedances. Hence the

transmitted waves propagate in the direction of increasing x and are similar in form

to the incident waves except smaller by the factor T . On the incidence side waves the

incident and re
ected waves propagate in opposite directions.
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Figure 1: Branching of arteries

3 Shallow water waves in an in�nite sea due to ini-

tial disturbances

Recall for one-dimensional long waves in a shallow sea of depth h(x), the linearized

conservation laws of mass and momentum are

@�

@t
+
@(uh)

@x
= 0 (3.1)

and
@u

@t
= �g @�

@x
(3.2)

where �(x; t) is the vertical displacement of the free surface and u(x; t) the horizontal

velocity. The atmospheric pressure over the entire free surface is uniform and constant.

By cross-di�erentiation, � is seen to be governed by

@2�

@t2
= g

@

@x

 
h
@�

@x

!
(3.3)

In the limit of constant depth (h =constant), the above equation reduces to the classical

wave equation
@2�

@t2
= c2

@2�

@x2
; where c =

q
gh: (3.4)

Consider now a sea of in�nite extent, �1 < x <1. Let the initial surface displace-

ment and velocity be prescribed along the entire surface

�(x; 0) = F(x) (3.5)
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@�

@t
(x; t) = G(x); (3.6)

where F(x) and G(x) are non-zero only in the �nite domain of x. At in�nities x! �1;

� and @�=@t are zero for any �nite t. In (3.4 ) the highest time derivative is of the second

order and initial data are prescribed for � and @�=@t. Initial conditions that specify all

derivatives of all orders less than the highest in the di�erential equation are called the

Cauchy initial conditions. These conditions are best displayed in the space-time diagram

as shown in Figure 2.

2

tt xx

)
t

u =g(x)u=f(x

u  =c u

t

x

Figure 2: Summary of the initial-boundary-value problem

The present initial-boundary-value problem has a famous solution due to d'Alembert,

which can be derived from (1.3), i.e.,

� = �(�) +  (�) = �(x + ct) +  (x� ct); (3.7)

where � and  are so far arbitrary functions of the characteristic variables � = x � ct

and � = x + ct respectively.
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From the initial conditions we get

�(x; 0) = �(x) +  (x) = f(x)

@�

@t
(x; 0) = c�0(x)� c 0(x) = g(x): (3.8)

The last equation may be integrated with respect to x

��  =
1

c

Z x

x0
g(x0)dx0 +K; (3.9)

where K is an arbitrary constant. Now � and  can be solved from (3.8) and (3.8 as

functions of x,

�(x) =
1

2
[f(x) +K]� 1

2c

Z x

x0
g(x0)dx0

 (x) =
1

2
[f(x)�K] +

1

2c

Z x

x0
g(x0)dx0;

where K and x0 are some constants. Replacing the arguments of � by x + ct and of  

by x� ct and substituting the results in u, we get

�(x; t) =
1

2
f (x� ct)� 1

2c

Z x�ct

x0
g dx0

+
1

2
f (x+ ct) +

1

2c

Z x+ct

x0
g dx0

=
1

2
[f(x� ct) + f(x + ct)] +

1

2c

Z x+ct

x�ct
g(x0) dx0; (3.10)

which is d'Alembert's solution to the homogeneous wave equation subject to general

Cauchy initial conditions.

To see the physical meaning, let us draw in the space-time diagram a triangle formed

by two characteristic lines passing through the observer at x; t, as shown in Figure 3.

The base of the triangle along the initial axis t = 0 begins at x� ct and ends at x+ ct.

The solution (3.1.9) depends on the initial displacement at just the two corners x � ct

and x + ct, and on the initial velocity only along the segment from x � ct to x + ct.

Nothing outside the triangle matters. Therefore, to the observer at x; t, the domain

of dependence is the base of the characteristic triangle formed by two characteristics

passing through x; t. On the other hand, the data at any point x on the initial line t = 0

must in
uence all observers in the wedge formed by two characteristics drawn from x; 0

into the region of t > 0; this characteristic wedge is called the range of in
uence.



2.3. WAVES DUE TO INITIAL DISTURBANCES 7
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Figure 3: Domain of dependence and range of in
uence
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O

u, t

x

Figure 4: Waves due to initial displacement

Let us illustrate the physical e�ects of initial displacement and velocity separately.

Case (i): Initial displacement only: f(x) 6= 0 and g(x) = 0. The solution is

�(x; t) =
1

2
f(x� ct) +

1

2
f(x+ ct)

and is shown for a simple f(x) in Figure 4 at successive time steps. Clearly, the initial

disturbance is split into two equal waves propagating in opposite directions at the speed

c. The outgoing waves preserve the initial pro�le, although their amplitudes are reduced

by half.

Case (ii): Initial velocity only: f(x) = 0; and g(x) 6= 0. Consider the simple example

where

g(x) = g0 when jxj < b; and
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O

u, t

A B C D

I

E F G H

x

Figure 5: Waves due to initial velocity

= 0 when jxj > 0:

Referring to Figure 5, we divide the x � t diagram into six regions by the characteristics

with B and C lying on the x axis at x = �b and +b, respectively. The solution in various
regions is:

� = 0

in the wedge ABE;

� =
1

2c

Z x+ct

�b
g0 dx

0 =
go
2c
(x + ct+ b)

in the strip EBIF ;

� =
1

2c

Z x+ct

x�ct
godx

0 = got
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in the triangle BCI;

� =
1

2c

Z b

�b
g0 dx

0 =
gob

c

in the wedge FIG;

� =
1

2c

Z b

x�ct
g0 dx

0 =
go
2c
(b� x + ct)

in the strip GICH; and

� = 0

in the wedge HCD. The spatial variation of u is plotted for several instants in Figure

5. Note that the wave fronts in both directions advance at the speed c. In contrast to

Case (i), disturbance persists for all time in the region between the two fronts.

4 Re
ection of shallow water waves from a cli�

Let us use the d'Alembert solution to a problem in a half in�nite domain x > 0. Let

the sea be on the positive side of a cli� along x = 0 and extend to in�nity. How do

disturbances generated near the coast propagate as the result of initial displacement

and velocity?

At the left boundary x = 0 must now add the condition of zero horizontal velocity

which implies
@�

@x
= 0; x = 0; t > 0: (4.1)

In the space-time diagram let us draw two characteristics passing through x; t. For

an observer in the region x > ct, the characteristic triangle does not intersect the time

axis because t is still too small. The observer does not feel the presence of the �xed end

at x = 0, hence the solution (3.10) for an in�nite domain applies,

� =
1

2
[f(x+ ct) + f(x� ct)] +

1

2c

Z x+ct

x�ct
g(�)d�; x > ct: (4.2)

But for x < ct, this result is no longer valid. To ensure that the boundary condition

is satis�ed we employ the idea of mirror re
ection. Consider a �ctitious extension of the

sea to �1 < x � 0. If on the side x < 0 the initial data are imposed such that f(x)

and g(x) are even in x, then �(0; t) = 0 is assured by symmetry. We now have initial

conditions stated over the entire x axis

�(x; 0) = F (x) and �t(x; 0) = G(x) �1 < x <1;
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Figure 6: Initial-boundary-value problem and the mirror re
ection

where

F (x) =

8><
>:
f(x) if x > 0

f(�x) if x < 0

G(x) =

8><
>:
g(x) if x > 0

g(�x) if x < 0:

These conditions are summarized in Figure 6. Hence the solution for 0 < x < ct is

� =
1

2
[F (x + ct) + F (x� ct)] +

1

2c

�Z 0

x�ct
+
Z x+ct

0

�
G(x0)dx0

=
1

2
[f(x + ct) + f(ct� x)] +

1

2c

�Z ct�x

0
+
Z x+ct

0

�
g(x0)dx0

=
1

2
[f(x + ct) + f(ct� x)] +

1

2c

�
2
Z ct�x

0
g(x0)dx0 +

Z ct+x

ct�x
g(x0)dx0

�
`: (4.3)

Note that the point (ct� x; 0) on the x axis is the mirror re
ection (with respect to the

cli� x = 0) of left tip (x� ct; 0) of the characteristic triangle . The e�ect of the initial

velocity in the region (0; ct� x) is doubled.
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x ,t 00

ct -x
0 0

(
0
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x -ct
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t
x+ct=x +ct

0 0

(
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( ,0) O
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Figure 7: Re
ection of long water waves from a cli�
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5 Forced waves in an in�nite domain

If there is a nonuniform distribution of atmospheric pressure P (x; t) on the free surface,

the 
uid pressure is p = P + g(� � z) and momentum conservation should read

@u

@t
= �g @�

@x
� g

@P

@x
(5.1)

The wave equation is now inhomogeneous

@2�

@t2
= c2

@2u

@x2
+ q(x; t) t > 0; jxj <1; (5.2)

with the forcing term equaling

q(x; t) = gh
@P

@x

Because of linearity, we can treat the e�ects of initial data separately. Let us therefore

focus attention only to the e�ects of persistent forcing and let the initial data be zero,

�(x; 0) = 0;

"
@�

@t

#
t=0

= 0; (5.3)

The boundary conditions are

� ! 0; jxj ! 1: (5.4)

The inhomogeneous initial-boundary-value problem can be solved by Fourier trans-

form. Let the transform of any function f(x) be de�ned by

�f(�) =
Z
1

�1

f(x) e�i�x dx (5.5)

and the inverse transform by

f(x) =
1

2�

Z
1

�1

�f(�) ei�x d� (5.6)

The transformed wave equation is now an ordinary di�erential equation for u(x; t), i.e.,

��(�; t),
d2��

dt2
+ c2�2�� = �q t > 0

where �q(�; t) denotes the transform of the forcing function. The initial conditions for ��

are:

��(�; 0) = �f(�);
d��(�; 0)

dt
= �g(�):
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Let us hide the parametric dependence on � for the time being. The general solution

to the the inhomogeneous second-order ordinary di�erential equation is

�� = C1
��1(t) + C2

��2(t) +
Z t

0

�q(�)

W

h
��1(�)��2(t)� ��2(�)��2(t)

i
d�; (5.7)

where �u1 and �u2 are the homogeneous solutions

��1 = e�i�ct ��2 = ei�ct

and W is the Wronskian

W = ��1��
0

2 � ��2��
0

1 = 2i�c = constant:

The two initial conditions require that C1 = C2 = 0, hence

�� =
Z t

0

�q(�; �)

2i�c

h
ei�c(t��) � e�i�c(t��)

i
d�: (5.8)

To get the inverse transform of the integral in (5.8), observe thatZ b

a
d� q(�; �) =

1

2�

Z b

a
d�
Z
1

�1

d� �q ei��

=
1

2�

Z
1

�1

d� �q(�; �)
ei�b � ei�a

i�

after changing the order of integration. If we let b = x+ c(t� �) and a = x� c(t� �),

the following
1

2c

Z t

0
d�

Z x+c(t��)

x�c(t��)
d� h(�; �)

is easily seen to be the inverse transform of the double integral. The �nal result if the

inverse transform is

�(x; t) =
1

2c

Z t

0
d�

Z x+c(t��)

x�c(t��)
d� h(�; �); (5.9)

Thus the observer is a�ected only by the forcing inside the characteristic triangle

de�ned by the two characteristics passing through (x; t).

For non-zero initial data �(x; 0) = f(x) and �t(x; 0) = g(x), we get by linear super-

position the full solution of D'Alambert

�(x; t) =
1

2
[f(x+ ct) + f(x� ct)] +

1

2c

Z x+ct

x�ct
d�g(�)

+
1

2c

Z t

0
d�

Z x+c(t��)

x�c(t��)
d� q(�; �); (5.10)

The domain of dependence is entirely within the characteristic triangle.

Homework
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6 Scattering of monochromatic waves by an obstacle

If the sea depth changes signi�cantly, an incoming train of waves will be partly re
ected

and partly transmitted. In wave physics the determination of the scattering properties

for a known scatterer is an important task. Various mathematical techniques are needed

for di�erent cases: (i) Strong scatterer if it height is comparable to the sea depth and

the length to the wave length. (ii) Weak scatterers characterized by small amplitude

relative to the wavelength, or slow variation within a wavelength.

Consider an ocean bottom with a step-wise variation of depth.

h =

8>>>><
>>>>:

h1; x < �a;
h2; �a < x < a;

h3 = h1; x > a

(6.1)

If a sinusoidal wave train of frequency ! arrives from x � �1, how does the step change

the propagation ?

In each zone of constant depth (i = 1; 2; 3), the shallow water equations read:

@�i
@t

+ hi
@ui
@x

= 0 (6.2)

@ui
@t

+ g
@�i
@x

= 0 (6.3)

A monochromatic wave of frequency ! can be written in the form

�i = �ie
�i!t; ui = Uie

�i!t (6.4)

therefore,

�i!�i + hi
@Ui

@x
= 0 (6.5)

�i!Ui + g
@�i
@x

= 0 (6.6)

which can be combined to

d2�i
dx2

+ k2i �i = 0; where k=
!p
ghi

(6.7)

The most general solution is a linear combination of terms proportional to

eikx and e�ikx;
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Together with the time factor e�i!t, the �rst term is a wave train propagating from

left to right, while the second from right to left. The free-surface displacement of the

incident wave therefore can be written as

�I = eik1x�i!t (6.8)

where the amplitude is taken to be unity for brevity. At a junction, the pressure and

the 
ux must be equal, hence we impose the following boundary conditions,

�1 = �2; and h1
d�1
dx

= h2
d�2
dx

; ; x = �a; (6.9)

�2 = �3; and h2
d�2
dx

= h1
d�3
dx

; ; x = a: (6.10)

Far from the step, sinusoidal disturbances caused by the presence of the step must be

outgoing waves. Physically, this so-called radiation condition implies that, to the left

of the step, there must be a re
ected wavetrain traveling from right to left. To the

right of the step, there must be a transmitted wavetrain traveling from left to right.

Accordingly, the wave heights in each zone of constant depth are:

�1 = eik1(x+a) +Re�ik1(x+a); x < �a; (6.11)

�2 = Aeik2x +Be�ik2x; � a < x < a (6.12)

�3 = Teik1(x�a); x > a (6.13)

The re
ection and transmission coeÆcients R and T as well as A and B are yet unknown.

Applying the matching conditions at the left junction, we get two relations

1 +R = Aeik2a +Beik2a (6.14)

k1h1(1� R) = k2h2(Ae
�ik2a � Beik2a): (6.15)

Similarly the matching conditions at x = a gives

Ae�ik2a +Be�ik2a = T (6.16)

k2h2(Ae
�ik2a �Beik2a) = k1h1T: (6.17)
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These four equations can be solved to give

T =
4s

(1 + s)2e2ik2a � (1� s)2e�2ik2a
(6.18)

R =
�(1� s)2(e�2ik2a � e2ik2a

(1 + s)2e2ik2a � (1� s)2e�2ik2a
(6.19)

A =
T

2
e�ik2a (1 + s) (6.20)

B =
T

2
eik2a (1� s) (6.21)

where

s =
k1h1
k2h2

=

s
h1
h1

=
c1
c2

(6.22)

The energy densities associated with the transmitted and re
ected waves are :

jT j2 = 4s2

4s2 + (1� s2)2 sin2 2k2a
(6.23)

jRj2 = (1� s2) sin2 2k2a

4s2 + (1� s2)2 sin2 2k2a
(6.24)

It is evident that jRj2 + jT j2 = 1, meaning that the total energy of the scattered waves

is equal to that of the incident wave.

Over the shelf the free surface is given by

�2 =
2s
h
(1 + s)eik2(x�a) + (1� s)e�ik2(x�a)

i
(1 + s)2e�ik2a � (1� s)2eik2a

(6.25)

Recalling the time factor e�i!t, we see that the free surface over the shelf consists of two

wave trains advancing in oppopsite directions. Therefore along the shelf the two waves

can interfere each other constructively, with the crests of one coinciding with the crests

of the other at the same moment. At other places the interference is destructive, with

the crests of one wave train coinciding with the troughs of the other. The envelope of

energy on the shelf is given by

j�j2 =
4s2

h
cos2 k2(x� a) + s2 sin2 k2(x� a)

i
4s2 + (1� s)2 sin2 2k2a

(6.26)

At the downwave edge of the shelf, x = a, the envelope is

j�j2 = 4s2

4s2 + (1� s)2 sin2 2k2a
(6.27)
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Note that the re
ection and transmission coeÆcients are oscillatory in k2a. In par-

ticular for 2k2a = n�; n = 1; 2; 3:::, that is, 4a=� = n, jRj = 0 and jT j = 1 ; the shelf is

transparent to the incident waves. It is the largest when 2k2a = n�, corresponding to

the most constructive interference and the strongest transmission Minimum transmis-

sion and maximum re
ection occur when 2k2a = (n� 1=2)�, or 4a=� = n� 1=2, when

the interference is the most destructive. The corresponding transmission and re
ection

coeÆcients are

minjT j2 = 4s2

(1 + s2)2
; maxjRj2 = (1� s2)2

(1 + s2)2
: (6.28)

See �gure 8.

The features of interference can be explained physically. When a crest �rst strikes

the left edge at x = a, part of the it is transmitted onto the shelf and part is re
ected

towards x � �1. After reaching the right edge at x = a, the tranmitted crest has a

part re
ected to the left and re-re
ected by the edge x = �a to the right. When the

remaining crest arrives at the right edge the second time, its total travel distance is an

integral multiple of the wave length �2, hence is in phase with all the crests entering

the shelf either before or after. Thus all the crests reinforce one another at the right

edge. This is constructive interference, leading to the strongest tranmission to the right

x � 1. On the other hand if 2k2a = (n� 1=2)� or 4a=� = n� 1=2, some crests will be

in opposite phase to some other crests, leading to the most destructive interference at

the right edge, and smallest transmission.

7 Refraction by a slowly varying seabed

For time-harmonic waves over a seabed of variable depth, the governing equation can

be derived from (3.3),
d

dx

 
h
d�

dx

!
+
!2

g
� = 0 (7.1)

Consider a sea depth which varies slowly within a wavelength, i.e.,

1

kh

dh

dx
= O(�)� 1 (7.2)

Earlier analysis suggests and will be demonstrated below re
ection is negligibly small.

Thus the solution is expected to be a locally progressive wave with both the wavenumber
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Figure 8: Scattering coeÆcients for a step

and amplitude varying much more slowly than the wave phase in x . Hence we try the

solution

� = A(x)ei�(x) (7.3)

where �(x)� !t is the phase function and

k(x) =
d�

dx
(7.4)

is the local wave number. Let us calculate the �rst derivative:

d�

dx
=

 
ikA+

dA

dx

!
ei�

and assume
dA
dx

kA
= O(kL)�1 � 1

In fact we shall assume each derivative of h;A or k is � times smaller than kh; kA or

k2. Furthermore,

d

dx

 
h
d�

dx

!
+
!2

g
� =

"
ik

 
ikh+ h

dA

dx

!
+

d

dx

 
h
dA

dx

!
+ i

d(khA)

dx
+
!2A

g

#
ei� = 0

Now let us expand

A = A0 + A1 + A2 + � � � (7.5)
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with A1=A0 = O(�); A2=A0 = O(�2); � � �. From O(�0) the dispersion relation follows:

!2 = ghk2; or k =
!p
gh

(7.6)

Thus the local wave number and the local depth are related to frequency according

to the well known dispersion relation for constant depth. As the depth decreases, the

wavenumber increases. Hence the local phase velocity

c =
!

k
=
q
gh (7.7)

also decreases.

From O(�) we get,

ikh
dA0

dx
+ i

d(khA0)

dx
= 0

or
d

dx
(khA2

0) = 0 (7.8)

which means

khA2
0 = C2 = constant

or, q
ghA2

0 = constant =
q
gh1A

2
1

(7.9)

Since in shallow water the group velocity equals the phase velocity, the above result

means that the rate of energy 
ux is the same for all x and is consistent with the

original assumption of unidirectional propagation. Furthermore, the local amplitude

increases with depth as

A0(x)

A1
=

 
h1
h

!1=4

(7.10)

This result is called Green's law.

In summary, the leading order solution is

� = A1

 
h1
h

!1=4

ei��i!t = A1

 
h1
h

!1=4

exp
�
i
Z x

k(x0)dx0 � i!
�

(7.11)

We also provide an example to illustrate that the wave re
ected by a slowly varying

topography is negligibly small, actually exponentially small. The depth function h(x)

is taken in the form
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h(x) = h0 � Ab tanh(x=�); (7.12)

where � is the length scale of the bottom variation, h0 is the average bottom depth and

Ab is the bottom variation amplitude. We discretized the shallow water equation (7.1)

using the �nite di�erence method. We computed numerically the re
ection coeÆcient

as a function of the ratio between the wavelength of the incident wave and the length

scale of the bottom variation (parameter �). We label this ratio as �. Figures 9 and

10 show the modulus of the re
ection and transmission coeÆcients as a function of the

parameter � for the bottom topography with depth function h(x) de�ned by equation

(7.12). The modulus of the re
ection and transmission coeÆcients displayed in �gures

9 and 10 are, respectively, for the cases of wave incidence from the deep side of the

bottom (wave incidence from left) and the shallow side of the bottom (wave incidence

from right).

Notice that for the case of wave incidence from the deep region (wave incidence from

left) we have a transmission coeÆcient with modulus greater than one, as illustrated in

�gure 9. For wave incidence from the shallow region (wave incidence from right), the

modulus of the transmission coeÆcient is less than one (see �gure 10), and the re
ection

coeÆcient is the same for both cases.
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Figure 9: Modulus of the re
ection and transmission coeÆcients as a function of the

parameter � = �
�
(� - wavelength) for wave incidence from the deep side of the bottom

(wave incidence from left). Ab = 0:5 in equation (7.12) for the depth function h(x).
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Figure 10: Modulus of the re
ection and transmission coeÆcients as a function of the

parameter � = �
�
(� - wavelength) for wave incidence from the deep side of the bottom

(wave incidence from left). Ab = 0:5 in equation (7.12) for the depth function h(x).
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According to both �gures 9 and 10, the re
ection coeÆcient is of the order of O(10�6)

for � around 1. We check the validity of Green's formula given by equation (7.10). In

�gure 11 we display the ratio A(x)=A1 computed numerically and by using Green's law

for two values of �. A(x) is the wave amplitude along the topography and A1 is the

wave amplitude at x! +(�)1 for the case of wave incidence from the shallow (deep)

side of the bottom. In �gure 12, we display the free-surface displacement computed

numerically and given by Green's law for two values of the parameter �. In part (A) of

�gures 11 and 12, we display results for � = 5, and in part (B) of �gures 11 and 12, we

display results for � = 1. In the case where � = 1, the re
ected wave is exponentially

small, so we should observe basically wave refraction and the Green's law is veri�ed, as

is con�rmed in �gures 11 and 12 below.
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position normalized by the wavelength
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Figure 11: Wave amplitude along the bottom topography computed through the �nite

di�erence scheme and through the Green's law given by equation (7.10) for: (A) - � = 5,

(B) - � = 1. Depth function h(x) given by equation (7.12).
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position normalized by the wavelength
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(A) numerical evaluation
Green’s law

position normalized by the wavelength
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Figure 12: Surface wave displacement along the bottom topography computed through

the �nite di�erence scheme and through the equation (7.11) for: (A) - � = 5, (B) -

� = 1. Depth function h(x) given by equation (7.12).


