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CHAPTER TWO

ONE DIMENSIONAL WAVES

1 General solution to wave equation

It is easy to verify by direct substitution that the most general solution of the one

dimensional wave equation:
∂2φ

∂t2
= c2

∂2φ

∂x2
(1.1)

can be solved by

φ(x, t) = f(x− ct) + g(x+ ct) (1.2)

where f(ξ) and g(ξ) are arbitrary functions of ξ. In the x, t (space,time) plane f(x− ct)
is constant along the straight line x − ct = constant. Thus to the observer (x, t) who

moves at the steady speed c along the positivwe x-axis., the function f is stationary.

Thus to an observer moving from left to right at the speed c, the signal described

initially by f(x) at t = 0 remains unchanged in form as t increases, i.e., f propagates

to the right at the speed c. Similarly g propagates to the left at the speed c. The lines

x− ct =constant and x+ ct = contant are called the characteristic curves (lines) along

which signals propagate. Note that another way of writing (1.2) is

φ(x, t) = F (t− x/c) +G(t+ x/c) (1.3)

Let us illustrates an application.

2 Branching of arteries

References: Y C Fung : Biomechanics, Circulation. Springer1997

M.J. Lighthill : Waves in Fluids, Cambridge 1978.
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Recall the governing equations for pressure and velocity

∂2p

∂t2
= c2

∂2p

∂x2
(2.1)

∂2u

∂t2
= c2

∂2u

∂x2
(2.2)

The two are related by the momentum equation

ρ
∂u

∂t
= −∂p

∂x
(2.3)

The general solutions are :

p = p+(x− ct) + p−(x+ ct) (2.4)

u = u+(x− ct) + u−(x+ ct) (2.5)

Since
∂p

∂x
= p′+ + p′−,

and

ρ
∂u−
∂t

= −ρcu′+ + ρcu′−

where primes indicated ordinary differentiation with repect to the argument. Equation

(2.3) can be satisfied if

p+ = ρcu+, p− = −ρcu− (2.6)

Denote the discharge by Q = uA then

ZQ± = u±A = ±p± (2.7)

where

Z = ± p±
Q±

=
ρc

A
(2.8)

is the ratio of pressure to flux rate and is call the impedance. It is the property of the

tube.

Now we examine the effects of branching; Referening to figure x, the parent tubes

branches into two charaterized by wave speeds C1 and C2 and impedaces Z1 and Z2.

An incident wave approaching the junction will cause reflection in the same tube

p = pi(t− x/c) + pr(t+ x/c) (2.9)
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and transmitted waves in the branches are p1(t−x/c1) and p2(t−x/c2). At the junction

x = 0 we expect the continuity of pressure and fluxes, hence

pi(t) + pr(t) = p1(t) = p2(t) (2.10)

pi − pr

Z
=
p1

Z1

+
p2

Z2

(2.11)

Define the reflection coefficient R to be the amplitude ratio of reflected wave to incident

wave, then

R =
pr(t)

pi(t)
=

1
Z
−
(

1
Z1

+ 1
Z2

)

1
Z

+
(

1
Z1

+ 1
Z2

) (2.12)

Similarly the tranmission coefficients are

T =
p1(t)

pi(t)
=
p2(t)

pi(t)
=

2
Z

1
Z

+
(

1
Z1

+ 1
Z2

) (2.13)

Note that both coefficients are constants depending only on the impedances. Hence the

transmitted waves are similar in form to the incident waves except smaller by the factor

T . The total wave on the incidence side is however very different.

3 Waves in an infinite domain due to initial distur-

bances

Recall the governing equation for one-dimensional waves in a taut string

∂2u

∂t2
− c2

∂2u

∂x2
= 0, −∞ < x <∞. (3.1)

Let the initial transverse displacement and velocity be given along the entire string

u(x, 0) = f(x) (3.2)

∂u

∂t
(x, t) = g(x), (3.3)

where f(x) and g(x) are non-zero only in the finite domain of x. At infinities x→ ±∞, u

and ∂u/∂t are zero for any finite t. These conditions are best displayed in the space-time

diagram as shown in Figure 1.
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Figure 1: Summary of the initial-boundary-value problem

In (3.1.1) the highest time derivative is of the second order and initial data are

prescribed for u and ∂u/∂t. Initial conditions that specify all derivatives of all orders

less than the highest in the differential equation are called the Cauchy initial conditions.

Recall that the general solution is

u = φ(ξ) + ψ(η) = φ(x+ ct) + ψ(x− ct), (3.4)

where φ and ψ are so far arbitrary functions of the characteristic variables ξ = x + ct

and η = x− ct respectively.

From the initial conditions we get

u(x, 0) = φ(x) + ψ(x) = f(x)

∂u

∂t
(x, 0) = cφ′(x) − cψ′(x) = g(x). (3.5)

The last equation may be integrated with respect to x

φ− ψ =
1

c

∫ x

x0

g(x′)dx′ +K, (3.6)

where K is an arbitrary constant. Now φ and ψ can be solved from (3.1.6) and (3.1.7)

as functions of x,

φ(x) =
1

2
[f(x) +K] +

1

2c

∫ x

x0

g(x′)dx′

ψ(x) =
1

2
[f(x) −K] − 1

2c

∫ x

x0

g(x′)dx′,
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Figure 2: Domain of dependence and range of influence

where K and x0 are some constants. Replacing the arguments of φ by x + ct and of ψ

by x− ct and substituting the results in u, we get

u(x, t) =
1

2
f (x− ct) − 1

2c

∫ x−ct

x0

g dx′

+
1

2
f (x + ct) +

1

2c

∫ x+ct

x0

g dx′

=
1

2
[f(x− ct) + f(x+ ct)] +

1

2c

∫ x+ct

x−ct
g(x′) dx′, (3.7)

which is d’Alembert’s solution to the homogeneous wave equation subject to general

Cauchy initial conditions.

To see the physical meaning, let us draw in the space-time diagram a triangle formed

by two characteristic lines passing through the observer at x, t, as shown in Figure 2.

The base of the triangle along the initial axis t = 0 begins at x− ct and ends at x+ ct.

The solution (3.1.9) depends on the initial displacement at just the two corners x − ct

and x + ct, and on the initial velocity only along the segment from x − ct to x + ct.

Nothing outside the triangle matters. Therefore, to the observer at x, t, the domain

of dependence is the base of the characteristic triangle formed by two characteristics

passing through x, t. On the other hand, the data at any point x on the initial line t = 0

must influence all observers in the wedge formed by two characteristics drawn from x, 0

into the region of t > 0; this characteristic wedge is called the range of influence.

Let us illustrate the physical effects of initial displacement and velocity separately.
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x

Figure 3: Waves due to initial displacement

Case (i): Initial displacement only: f(x) 6= 0 and g(x) = 0. The solution is

u(x, t) =
1

2
f(x− ct) +

1

2
f(x+ ct)

and is shown for a simple f(x) in Figure 3 at successive time steps. Clearly, the initial

disturbance is split into two equal waves propagating in opposite directions at the speed

c. The outgoing waves preserve the initial profile, although their amplitudes are reduced

by half.

Case (ii): Initial velocity only: f(x) = 0, and g(x) 6= 0. Consider the simple example

where

g(x) = g0 when |x| < b, and

= 0 when |x| > 0.

Referring to Figure 4, we divide the x ∼ t diagram into six regions by the characteristics

with B and C lying on the x axis at x = −b and +b, respectively. The solution in various

regions is:

u = 0

in the wedge ABE;

u =
1

2c

∫ x+ct

−b
g0 dx

′ =
go

2c
(x+ ct + b)

in the strip EBIF ;

u =
1

2c

∫ x+ct

x−ct
godx

′ = got
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Figure 4: Waves due to initial velocity

in the triangle BCI;

u =
1

2c

∫ b

−b
g0 dx

′ =
gob

c

in the wedge FIG;

u =
1

2c

∫ b

x−ct
g0 dx

′ =
go

2c
(b− x+ ct)

in the strip GICH; and

u = 0

in the wedge HCD. The spatial variation of u is plotted for several instants in Figure

4. Note that the wave fronts in both directions advance at the speed c. In contrast to

Case (i), disturbance persists for all time in the region between the two fronts.

4 Reflection from the fixed end of a string

Let us use the d’Alembert solution to a problem in a half infinite domain x > 0. Consider

a long and taut string stretched from x = 0 to infinity. How do disturbances generated

near the left end propagate as the result of initial displacement and velocity?

At the left boundary x = 0 must now add the condition

u = 0, x = 0, t > 0. (4.1)

In the space-time diagram let us draw two characteristics passing through x, t. For

an observer in the region x > ct, the characteristic triangle does not intersect the time
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axis because t is still too small. The observer does not feel the presence of the fixed end

at x = 0, hence the solution (3.1.9) for an infinitely long string applies,

u =
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct
g(τ)dτ, x > ct. (4.2)

But for x < ct, this result is no longer valid. To ensure that the boundary condition

is satisfied we employ the idea of mirror reflection. Consider a fictitious extension of

the string to −∞ < x ≤ 0. If on the side x < 0 the initial data are imposed such that

f(x) = −f(−x), g(x) = −g(−x), then u(0, t) = 0 is assured by symmetry. We now

have initial conditions stated over the entire x axis

u(x, 0) = F (x) and ut(x, 0) = G(x) −∞ < x <∞,

where

F (x) =




f(x) if x > 0

−f(−x) if x < 0

G(x) =




g(x) if x > 0

−g(−x) if x < 0.

These conditions are summarized in Figure 5. Hence the solution for 0 < x < ct is

u =
1

2
[F (x + ct) + F (x− ct)] +

1

2c

(∫ 0

x−ct
+
∫ x+ct

0

)
G(x′)dx′

=
1

2
[f(x + ct) − f(ct− x)] +

1

2c

(∫ 0

ct−x
+
∫ x+ct

0

)
g(x′)dx′

=
1

2
[f(x + ct) − f(ct− x)] +

1

2c

∫ ct+x

ct−x
g(x′)dx′. (4.3)

The domain of dependence is shown by the hatched segment on the x axis in Figure 6.

5 Forced waves in an infinite domain

Consider the inhomogeneous wave equation

∂2u

∂t2
= c2

∂2u

∂x2
+ h(x, t) t > 0, |x| <∞,
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Figure 5: Initial-boundary-value problem and the mirror reflection
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where h(x, t) represents forcing. Because of linearity, we can treat the effects of initial

data separately. Let us therefore focus attention only to the effects of persistent forcing

and let the initial data be zero,

u(x, 0) = 0,

[
∂u

∂t

]

t=0

= 0, (5.1)

The boundary conditions are

u→ 0, |x| → ∞. (5.2)

Let the Fourier transform of any function f(x) and its inverse f̄(α) be defined by

f̄(α) =
∫ ∞

−∞
f(x) e−iαx dx (5.3)

f(x) =
1

2π

∫ ∞

−∞
f̄(α) eiαx dα (5.4)

The transformed wave equation is now an ordinary differential equation for the transform

of u(x, t), i.e., ū(α, t),
d2ū

dt2
+ c2α2ū = h̄ t > 0

where h̄(α, t) denotes the transform of the forcing function. The initial conditions for ū

are:

ū(α, 0) = f̄(α),
dū(α, 0)

dt
= ḡ(α).

Let us hide the parametric dependence on α for the time being. The general solution

to the the inhomogeneous second-order ordinary differential equation is

ū = C1ū1(t) + C2ū2(t) +
∫ t

0

h̄(τ)

W
[ū1(τ)ū2(t) − ū2(τ)ū2(t)] dτ, (5.5)

where ū1 and ū2 are the homogeneous solutions

ū1 = e−iαct ū2 = eiαct

and W is the Wronskian

W = ū1ū
′
2 − ū2ū

′
1 = 2iαc = constant.

The two initial conditions require that C1 = C2 = 0, hence the Fourier transform is

ū =
∫ t

0

h̄(α, τ)

2iαc

[
eiαc(t−τ) − e−iαc(t−τ)

]
dτ. (5.6)
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The inverse transform is

u(x, t) =
1

2π

∫ t

0
dτ

1

2c

∫ ∞

−∞

h̄(α, τ)

iα

[
eiα(x+c(t−τ)) − eiα(x−c(t−τ))

]
dα (5.7)

The integrand can be written as an integral:

u =
1

2π

∫ t

0
dτ

1

2c

∫ ∞

−∞
dα h̄(α, τ)

∫ x−c(t−τ)

x−c(t−τ)
dξ eiαξ

By interchanging the order of integration

u =
1

2c

∫ t

0
dτ
∫ x−c(t−τ)

x−c(t−τ)
dξ

1

2π

∫ ∞

−∞
dα eiαξ h̄(α, τ)

and using the definition of Fourier inversion, we get

u(x, t) =
1

2c

∫ t

0
dτ
∫ x−c(t−τ)

x−c(t−τ)
dξ h(ξ, τ) (5.8)

The right-hand side is the integration of h over the characteristic triangle defined by

the two characteristics passing through (x, t). in the x − t plane. Thus the observer is

affected only by the forcing inside the characteristic triangle.

For non-zero initial data u(x, 0) = f(x) and ut(x, 0) = g(x), we get by linear super-

position the full solution of D’Alambert

u(x, t) =
1

2
[f(x+ ct) + f(x− ct)] +

1

2c

∫ x+ct

x−ct
dξg(ξ)

+
1

2c

∫ t

0
dτ

∫ x+c(t−τ)

x−c(t−τ)
dξ h(ξ, τ), (5.9)

The domain of dependence is entirely within the characteristic triangle.

6 String embeded in an elastic surounding

Reference : Graff : Waves in Elastic Solids

If the lateral motion of the string is restrained by elastic springs along the entire

length, the governing equation can be found from §1.1 by replacing the external pressure

by the elastic restoring force −KV per unit length,

ρ
∂2V

∂t2
= T

∂2V

∂x2
−KV (6.1)
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which can be written as
1

c2o

∂2V

∂t2
=
∂2V

∂x2
− K

T
V (6.2)

where

co =

√
T

ρ
(6.3)

6.1 Monochromatic waves

For any linearized wave problem, if the range of the spatial corrdinate x is (−∞,∞),

and all coefficients are independent of x, t, then the first task is to examine the physics

of sinusoidal wave train of the form:

V (x, t) = |A| cos(kx− iωt− φA) = <
(
Aeikx−iωt

)
(6.4)

where A = |A|eiφA is a complex number with magnitude |A| and phase angle φA. After

examining the physical meaning of this special type of waves, it is possible to use the

principle of superposition to construct more general solutions. It is customary to omit

the symbol <= ”the real part of” for the sake of brevity, i.e.,

V (x, t) = Aeikx−iωt (6.5)

First of all a few definitions about sinusoidal waves in general. We shall call

θ(x, t) = kx− ωt (6.6)

the wave phase. Clearly the trigonometric function is periodic in phase with the period

2π. In the x, t plane, V has a constant value along a line of contant phase. In particular,

θ = 2nπ, (n = 0, 1, 2, · · ·) correspond to the wave crests where V = |A| is the greatest.

On the other hand, θ = (2n + 1)π, (n = 0, 1, 2, · · ·) correspond to the wave troughs

where V = −|A| is the smallest. |A| is half of the separation between adjacent crests

and troughs and is called the wave amplitude; we also call A the complex amplitude.

Clearly ∂θ
∂x

represents the number of phase lines per unit distance, i.e., the density of

phase lines, at a given instant; it is called the wavenumber,

wavenumber = k =
∂θ

∂x
(6.7)
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On the other hand −∂θ
∂t

represensts the number of phase lines passing across a fixed x

per unit time; it is called the wave frequency.

wave frequency = ω = −∂θ
∂t

(6.8)

To stay with a particular line of contant phase, say a crest, one must have

dθ = kdx− ωdt = 0

namely one must move at the phase velocity,

c =
dx

dt

∣∣∣∣∣
θ=constant

=
ω

k
(6.9)

Now back to the string. Substituting (6.10) in (6.1) we get

(
−k2 − K

T
+
ω2

c2o

)
V = 0 (6.10)

or

ω = co

√

k2 +
K

T
(6.11)

The phase speed is

c =
ω

|k| = co

(
1 +

K

Tk2

)1/2

> co (6.12)

See figure ??. Note that, due the stiffening by the lateral support, the phase speed

is always greater than co, and decreases monotonically with the wave number. Longer

waves (small |k|) are faster, while shorter waves (larger |k|) are slower. As |k| increases,

c approaches the finite limit co for the shortest waves. In general a sinusoidal wave whose

phase velocity depends on the wavelength, i.e., ω is a nonlinear function of k, is called

a dispersive wave, and (6.11) or its equivalent (6.20) is called the dispersion relation.

An interesting physical feature for dispersive waves in general can be found by su-

perposing two trains of sighltly different frequencies and wave numbers:

V = A
(
ei(k+x−ω+t) + Aei(k−x−ω−t)

)
(6.13)

where

k± = k ± k′, ω± = ω(k±), k′ � k. (6.14)
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Figure 7: Phase and group velocities of a string in elastic surrounding. Point of Sta-

tionary phase k0.

Let us approximate ω± by

ω± = ω(k) ± k′
dω

dk
+O(k′2)

then

V = Aeikx−iωt
(
e−ik′(x−(dω/dk)t) + e−ik′(x−(dω/dk)t)

)
= A(x, t)eikx−iωt (6.15)

where

A = 2 cos k′ (x− (dω/dk)t) (6.16)

The factor exp(ikx− iωt) is called the carrier wave and A(x, t) the envelope. Thus the

result is a sinusoidal wave train with a slowly varying envelope which has a very long

wavelength 2π/k′ � 2π/k and moves at the group velocity

cg =
dω

dk
(6.17)

which is in general different from the phase velocity for dispersive waves.

In our string problem, the group velocity is easily found from the dispersion relation

(6.11)

cg =
c2o
c

=
Tk

ρω
, hence

cg
c

=
c2o
c2
< 1 (6.18)
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Thus the group velocity is always smaller than the phase velocity, and increases with

the wavenumber from 0 for the longest wave to the finite limit co (equal to the phase

velocity) for the shortest waves.

When ω > ωc where

ωc = co

√
K

T
. (6.19)

is called the cutoff frequency ωc, k is real

k = ±|k|, with |k| =

(
ω2

c2o
− K

T

)1/2

(6.20)

being the real and positive square root. V (x, t) is a propagating wave, with the plus

(minus) sign corresponding to right- (left-) going wave. If ω < ωc, k = ±iκ is imaginary,

with κ being the postive root:

κ =

(
K

T
− ω2

c2o

)1/2

(6.21)

Then eikx = e∓κx. For boundedness one must choose the minus (plus) sign for x > 0

(x < 0). Oscillations are localized or evanecent; there is no wave radiation.

As a simple application, (6.4) is the response in a semi-infinite string forced to

oscillate at the left end x = 0,

y(0, t) = Ae−iωt (6.22)

If ω > ωc, then

V (x, t) = <
(
Aei|k|x−iωt

)
(6.23)

where |k| is defined by (6.20). The requirement that waves due to a local disturbance

can only radiate outwards is called the radiation condition. More will be said on it later.

If ω < ωc, we must require boundedness at infinity so that

V (x, t) = <Ae−κx−iωt, x > 0 (6.24)

At the cutoff frequency, k = 0, V is constant in x; the infinitely long string would

oscillate in unison. This absurd result signfies the breakdown of the the linearized

theory.
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6.2 Energy transport

Along a unit length of the string the densities of kinetic energy per unit length is,

KE =
ρ

2

(
∂V

∂t

)2

(6.25)

The potential energy in any segment dx of the string is the work needed to deform it

from static equilibrium. The part due to lengthening of the string against tension is

T (ds− dx) = T

√√√√1 +

(
∂V

∂x

)2

dx− Tdx ≈ T

2

(
∂V

∂x

)2

dx

Adding the part against the springs, the total potential energy per unit length is

PE =
T

2

(
∂V

∂x

)2

+
K

2
V 2 (6.26)

We now calculate their time averages. If two time-harmonic functions are written in the

complex form:

a = <
(
Ae−iωt

)
, b = <

(
Be−iωt

)
(6.27)

the time average of their product is given by

ab ≡ ω

2π

∫ t+ 2π
ω

t
ab dt =

1

2
<(AB∗) =

1

2
<(A∗B) (6.28)

Using this formula, the period-averaged energy densities are,

KE =
ρ

2
< (−iωAeiθ)2 =

ρ

4
ω2|A|2

PE =
T

2
< (ikAeıθ)2 +

K

2
(<Aeıθ)2 =

(
T

4
k2 +

K

4

)
|A|2

where θ ≡ |k|x− ωt is the wave phase. Hence

E = KE + PE =
T

4

(
ρω2

T
+ k2 +

K

T

)
|A|2 =

ρ

2
ω2|A|2 (6.29)

after using the dispersion relation.

Now the averaged rate of energy influx across any station x is

−T ∂V
∂x

∂V

∂t
= −T <(ikV )<(−iωV ) =

T

2
kω|A|2 =

(
ρ

2
ω2|A|2

)(
Tk

ρω

)
= Ecg

Thus the speed of energy transport is the group velocty;. This result is quite general

for many physical problems and is not limited to the springs.
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7 Dispersion from a localized initial disturbance

The solution for monochromatic waves already shows that waves of different wavelengths

move at different velocities. What then is the consequence of an initial disturbance?

Since a general initial disturbance bounded in space can be represented by a Fourier

integral which amounts to the sum of infinitely many sinusoids with a wide spectrum,

we shall employ the tools of Fourier transform.

In addition to the governing equation:

1

c2
∂2V

∂t2
=
∂2V

∂x2
− KV

T
, −∞ < x <∞, t > 0 (7.1)

we add the initial (Cauchy) conditions

V (x, 0) = f(x),
∂V (x, 0)

∂t
= 0 (7.2)

Let us define the Fourier transform and its inverse by

f̄(k) =
∫ ∞

−∞
e−ikxf(x) dx, f(x) =

1

2π

∫ ∞

−∞
eikxf̄(k) dk (7.3)

The transforms of (7.1) is

1

c2
d2V̄

dt2
= −k2V̄ − KV̄

T
, t > 0 (7.4)

and of the intitial conditions are,

V̄ (k, 0) = f̄(k),
dV̄ (k, 0)

dt
= 0 (7.5)

The solution for the tranform is

V̄ (k, t) = f̄(k) cosωt (7.6)

where

ω = co

√

k2 +
K

T
(7.7)

The Fourier inversion is

V (x, t) =
1

2π

∫ ∞

−∞
dkf̄(k)eikx cosωt (7.8)
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Figure 8: Neighborhood of Stationary Phase

Any real function f(x) can be expressed as the sum of an even and an odd function

of x. For simplicity let us assume that f(x) is even in x so that f̄(k) is real and even in

k, then

V (x, t) =
1

π

∫ ∞

0
dkf̄(k) cos kx cosωt

which can be manipulated to

V (x, t) =
1

2π
<
∫ ∞

0
dkf̄(k)

(
eikx−iωt + eikx+iωt

)
dk (7.9)

The first term in the integand represents the right-going wave while the second, left-

going. Each part correponds to a superposition of sinusoidal wave trains over the entire

range of wave numbers, within the small range (k, k+dk) the amplitude is f̄(k)/2. The

function f̄(k)/2 is called the Fourier amplitude spectrum. In general explicit evalua-

tion of the Fourier integrals is not feasible. We shall therefore only seek approximate

information. The method of stationary phase is particularly useful here. It aims at the

asymptotic approximation of the integral

I(t) =
∫ b

a
F (k)eitφ(k) dk (7.10)
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for large t. Let us first give a quick derivation of the mathematical result. Assume that

F (k), φ(k) are ordinary functions of k. If t is large, then as k increases along the path

of integration both the real and imaginary parts of the exponential function

cos(tφ(k)) + i sin(tφ(k))

oscillates rapidly between -1 to +1, unless there is a point of stationary phase ko within

(a,b) so that
dφ(ko)

dk
= φ′(ko) = 0, a < ko < b. (7.11)

Then important contribution to the Fourier integral comes only from the neighborhood

of ko. Near the point of stationary phase, we approximate the phase by

φ(k) = φ(ko) +
1

2
(k − ko)

2φ′′(ko) + · · ·

and the integral by

I(t) ≈ F (ko)e
itφ(ko)

∫ b

a
exp

(
it

2
(k − ko)

2φ′′(ko)
)
dk

With an error of O(1/t), we also replace the limits of the last integral by ±∞; the

justification is omitted here. Now it is known that

∫ ∞

−∞
e±itk2

dk =

√
π

t
e±iπ/4

It follows that

I(t) =
∫ b

a
F (k)eitφ(k) dk ≈ F (ko)e

itφ(ko)±iπ/4

[
2π

t|φ′′(ko)|

]1/2

+O
(

1

t

)
, if ko ∈ (a, b),

(7.12)

where the sign is + (or −) if φ′′(ko) is positive (or negative). It can be shown that if

there is no stationary point in the range(a,b), then the integral I(t) is small

I(t) = O
(

1

t

)
, if ko /∈ (a, b). (7.13)

Let us apply this result to the right-going wave

V+(x, t) =
1

4π
<
∫ ∞

0
dkf̄(k)eit(kx/t−iω)dk (7.14)
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For a fixed x/t =constant, we have

φ(k) = kx/t− ω(k), with x/t = ξ, ω = co

√

k2 +
K

T
(7.15)

For an observer travelling at the speed x/t, there is a stationary point ko at the root of

x/t = ω′(ko) =
Tko

ρω(ko)
=

coko√
k2

o + K
T

(7.16)

which increases from zero for long waves to the maximum co for very short waves. For

any observer slower than co, there is a stationary point ko. If the observer is faster than

co, there is no stationary point.

Since

φ′′(ko) = −ω′′(ko) < 0, (7.17)

the final result is that

V+(x, t) ∼ 1

2π
<
{
f̄(ko)

√
2π

tω′′(ko)
eitφ(ko)−iπ/4

}

=
1

2π
<
{
f̄(ko)

√
2π

tω′′(ko)
eikox−ω(ko)t−iπ/4

}
(7.18)

The transform f̄(k) depends on the specific profile of the initial disturbance. For the

special case where

f(x) =
Sb

π(x2 + b2)
(7.19)

which has an area S and characteristic width b, the Fourier transform is

f̄(k) = Se−|k|b (7.20)

To a specific observer identified by the speed of travel x/t, the approximate result

can be viewed as a simple harmonic wave train with wave number ko, frequency ω(ko)

and amplitude

A =
f̄(ko)

2π

√
2π

tω′′(ko)
(7.21)

Since ω′(k) increases from 0 with increasing k to the finite maximum T/ρco = co, an

observer faster than co sees no waves. However any observer slower than co is accom-

panied by a train of progressive sinusoidal waves. The local wavelength ko is such that

the group velocty matches the observer’s speed. The faster the observer, the shorter
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Figure 9: Snapshots of wave field on the side x > 0.

the waves. If a snapshot is taken, then the shortest wave, whose phase velocity is the

lowest are seen at the front which moves as fast as the crests of the shortest waves. The

crests of longer waves advance much faster than the local envelope. Because f̄(k) is the

greatest at k = 0, the envelope of the longest waves which stays near the source, is the

biggest. The envelope of the shortest waves is lower in amplitude and spreads out with

the wave front. The entire disturbance attenuates in time as t−1/2. See figure 7 for an

overview.

Note also that very near the wave front, cg → co; the second derivative φ′′(ko) =

−ω′′(ko) vanishes. Hence the asymptotic formula breaks down. A better approximation

is needed, but is omitted here. (See C. C. Mei, 1989, Applied Dynamics of Ocean Surface

Waves). Finally we examine the propagation of wave energy in this transient problem.

Using (7.21) the local energy density is:

E =
1

2
ρω2|A|2 =

ρω2

4πt

f̄(ko)
2

ω′′(ko)

At any given t, the waves between two observers moving at slightly different speeds,
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cg(k1) and cg(k2), i.e., between two points x1/t = cg(k1) and x2/t = cg(k2) are essentially

simple harmonic so that the total energy is

∫ x2

x1

dxE =
∫ x2

x1

dx
ρω2

4πt

(f̄(ko))
2

ω′′(ko)

Since x = ω′(ko)t for fixed t, we have

dx

t
= ω′′(ko)dko

Now for x2 > x1, k2 > k1, it follows that
∫ x2

x1

dxE =
∫ k2

k1

dko
ρω2

4π
(f̄(ko))

2 = constant

Therefore the total energy between two observers moving at the local group velocity

remains the same for all time. In other words, waves are transported by the local group

velocity even in transient dispersion.

8 Scattering of sinusoidal waves

If along a long rod there are some localized inhomogeneities, an incoming train of sinu-

soidal waves will be partly reflected and partly transmitted. The scattered signals tell

us something about the scatterer. To determine the scattering properties for a known

scatterer is called the scattering problem. To determine the scatterer from the scattering

data is called the inverse scattering problem. We shall only study the former.

Various mathematical techniques are needed for different cases: (i) Weak scatterers

characterized by small amplitude relative to the wavelength, or slow variation within a

wavelength, (ii) Strong scatterers if their dimensions are comparable to the wave length.

8.1 Weak scattering

Let the long rod have a slightly nonuniform cross section,

S(x) = So(1 + εa(x)), ε� 1. (8.1)

where a(x) diminishes to zero at x ∼ ±∞. The wave equation reads

ρS(x)
∂2u

∂t2
= E

∂

∂x

(
S(x)

∂u

∂x

)
(8.2)
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For sinusoidal waves

u(x, t) = <
[
U(x)e−iωt

]

the spatial factor is governed by

d

dx

(
S
dU

dx

)
+ ρω2SU = 0 (8.3)

Then the solution can be sought by the perturbation method

U(x) = U0(x) + εU1(x) + ε2U2(x) + · · · (8.4)

Substituting this into the governing equation

ESo
d

dx

{
(1 + εa(x))

d

dx

[
U0(x) + εU1(x) + ε2U2(x) + · · ·

]}

+ρω2So(1 + εa(x))
[
U0(x) + εU1(x) + ε2U2(x) + · · ·

]
= 0 (8.5)

and equating the coefficients of like powers of ε to zero, we get from the terms of order

O(ε0):

ESo
d2U0

dx2
+ ρω2S0U0 = 0 (8.6)

The solution is simply the incident wave

U0 = Aeikx, with k = ω
√
ρ/E (8.7)

At the order O(ε) we get

ESo
d2U1

∂x2
+ ρω2S0U1 + a(x)

(
ESo

d2U0

∂x2
+ ρω2S0U0

)
+ ESo

da

dx

dU0

dx
= 0

or,
d2U1

dx2
+ k2U1 = −da

dx

dU0

dx
(8.8)

Thus the scattered wave is at most of the order ε and is governed by an inhomogeneous

equation. Let us define the fundamental solution (Green’s function) by

d2G(x, x′)

dx2
+ k2G(x, x′) = δ(x− x′) (8.9)

G ∼ outgoing waves at ±∞ (8.10)



2.8. SCATTERING OF SINUSOIDAL WAVES 25

It will be shown in Appendix A that

G(x, x′) =
eik|x−x′|

2ik
(8.11)

By straightforward differentiation, it can be verified that

U1(x) = −
∫ ∞

−∞

da(x′)

dx′
dU0(x

′)

dx′
G(x, x′)dx′ = − 1

2ik

∫ ∞

−∞

da(x′)

dx′
dU0(x

′)

dx′
eik|x−x′|dx′ (8.12)

Since U0(x
′) = eikx′

, we have

U1 = −A
2

∫ ∞

−∞

da(x′)

dx′
eikx′

eik|x−x′|dx′

= −A
2

{
eikx

∫ x

−∞

da

dx′
dx′ + e−ikx

∫ ∞

x

da

dx′
e2ikx′

dx′
}

(8.13)

= −A
2

{
eikxa(x) + e−ikx

∫ ∞

x

da

dx′
e2ikx′

dx′
}

= −A
2

{
a(x)eikx + e−ikx

∫ ∞

x

[
d

dx′

(
a(x′)e2ikx′)

dx′ − a2ike2ikx′
]
dx′
}

= ikAe−ikx
∫ ∞

x
a(x′)e2ikx′

dx′ (8.14)

Far to the right we get

U1 = 0, x→ ∞. (8.15)

Thus on the transmission side modification of the incident waves can at most be of the

order O(ε2). Far to the left x ∼ −∞,

U ∼= εU1 = Ae−ikx
(
iεk

∫ ∞

−∞
a(x′)e2ikx′

dx′
)
, x→ −∞. (8.16)

Let us define the reflection coefficient by

R = iεk
∫ ∞

−∞
a(x′)e2ikx′

dx′, (8.17)

For instance if a is a hump of unit total dimensionless area and length b,

a(x) =
b

π(x2 + b2)
(8.18)

then

R = iεkbe−2kb (8.19)

Hence reflection is small if kb is large, i.e., long and gentle obstacles are not effective

in reflecting short waves . For very long waves or a short obstacle, reflection is also



2.8. SCATTERING OF SINUSOIDAL WAVES 26

Figure 10: Reflection coefficient given by ( 8.19).

vanishingly small. The maximum reflection coefficient is R = iεao/2 when kb = 1/2.

Note that far to the right, U1(x) → 0 as x→ ∞. The transmission vwave is

U ∼= U0 + εU1 = Aeik0x(1 +O(ε2)). (8.20)

The tranmission coefficient is T = 1 + O(ε2). This is consistent with the general law of

energy conservation |R|2 + |T |2 = 1 to be proven later.

Homework: Check if the governing equation at O(ε2) for U2 is:

ESo
d2U2

∂x2
+ ρω2S0U2 = ESo

[
a
da

dx

dU0

dx
− da

dx

dU1

dx

]
(8.21)

Carry out the solution to find the transmission coefficient T from the amplitude of

U0 + εU1 + ε2U2 at x ∼ ∞, and show that energy is conserved to the order O(ε2).

8.2 Strong scattering of long water-waves by a shelf

Consider an ocean bottom with a step-wise variation of depth.

h =





h1, x < −a;
h2, −a < x < a;

h3 = h1, x > a

(8.22)
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How does the step interupt the propagation of an incident wave of unit amplitude

arriving from x ∼ −∞?

In each zone of contant depth (i = 1, 2, 3), the shallow water equations read:

∂ζi
∂t

+ hi
∂ui

∂x
= 0 (8.23)

∂ui

∂t
+ g

∂ζi
∂x

= 0 (8.24)

For sinusoidal waves

ζi = ηie
−iωt, ui = Uie

−iωt (8.25)

we get

−iωηi + hi
∂Ui

∂x
= 0 (8.26)

−iωUi + g
∂ηi

∂x
= 0 (8.27)

or
d2ηi

dx2
+ k2

i ηi = 0, where ki =
ω√
ghi

(8.28)

At a junction, the pressure and the flux must be equal, hence

η1 = η2, and h1
dη1

dx
= h2

dη2

dx
, x = −a; (8.29)

η2 = η3, and h2
dη2

dx
= h1

dη3

dx
, x = a. (8.30)

The forms of the solutions in each zone of constant depth are:

η1 = eik1(x+a) +Re−ik1(x+a), x < −a; (8.31)

η2 = Aeik2x +Be−ik2x, − a < x < a (8.32)

η3 = Teik1(x−a), x > a (8.33)

The reflection and transmission coefficients R and T as well as A and B are yet unknown.

Applying the matching conditions at the left junction, we get two relations

1 +R = Aeik2a +Beik2a (8.34)

k1h1(1 − R) = k2h2(Ae
−ik2a − Beik2a). (8.35)
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Similarly the matching conditions at x = a gives

Ae−ik2a +Be−ik2a = T (8.36)

k2h2(Ae
−ik2a −Beik2a) = k1h1T. (8.37)

These four equations can be solved to give

T =
4s

(1 + s)2e2ik2a − (1 − s)2e−2ik2a
(8.38)

R =
−(1 − s)2(e−2ik2a − e2ik2a)

(1 + s)2e2ik2a − (1 − s)2e−2ik2a
(8.39)

A =
T

2
e−ik2a (1 + s) (8.40)

B =
T

2
eik2a (1 − s) (8.41)

where

s =
k1h1

k2h2
=

√
h1

h1
=
c1
c2

(8.42)

The energy associated with the tranmsitted and reflected waves are :

|T |2 =
4s2

4s2 + (1 − s2)2 sin2 2k2a
(8.43)

|R|2 =
(1 − s2) sin2 2k2a

4s2 + (1 − s2)2 sin2 2k2a
(8.44)

It is evident that |R|2 + |T |2 = 1.

Over the shelf the free surface is given by

η2 =
2s
[
(1 + s)eik2(x−a) + (1 − s)e−ik2(x−a)

]

(1 + s)2e−ik2a − (1 − s)2eik2a
(8.45)

Recalling the time factor e−iωt, we see that the free surface over the shelf consists of two

wave trains advancing in oppopsite directions. Therefore along the shelf the two waves

can interfere each other constructively, with the crests of one coinciding with the crests

of the other at the same moment. At other places the interference is destructive, with

the crests of one wave train coinciding with the troughs of the other. The envelope of

energy on the shelf is given by

|η|2 =
4s2

[
cos2 k2(x− a) + s2 sin2 k2(x− a)

]

4s2 + (1 − s)2 sin2 2k2a
(8.46)
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Figure 11: Transmission and reflection coefficients for a rectangular shelf. From Mei,

C.C., Applied Dynamics of Ocean Surface Waves.

At the downwave edge of the shelf, x = a, the envelope is

|η|2 =
4s2

4s2 + (1 − s)2 sin2 2k2a
(8.47)

Note that the reflection and transmission coefficients are oscillatory in k2a. In par-

ticulatr for 2k2a = nπ, n = 1, 2, 3..., that is 4a/λ = n, |R| = 0 and |T | = 1. The

shelf is transparent to the incident waves, correspoinidng to the most constructive inter-

ference and the strongest transmission Mininum transmision and maximum reflection

occur when 2k2a = (n − 1/2)π, or 4a/λ = n − 1/2, when the interference is the most

destructive. The corresponding transimssion and reflection coefficients are

min|T |2 =
4s2

(1 + s2)2
, max|R|2 =

(1 − s2)2

(1 + s2)2
. (8.48)

See Figure 11

The features of interference can be explained physically. The incident wave train

consists of periodic crests and troughs. When one of the crests first strikes the left

edge at x = a, part of the it is transmitted onto the shelf and part is reflected towards

x ∼ −∞. After reaching the right edge at x = a, the tranmitted crest has a part

reflected to the left and re-reflected by the edge x = −a to the right again. When the
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re-reflected crest arrives at the right edge the second time, its total travel distance is

4a. If 4a is an integral multple of the wave length λ2, the crest is in phase with all

the other crests entering the shelf either before (the third, fourth, fifth, ... time) or

after. Thus all the crests reinforce one another at the right edge. This is constructive

interference, leading to the strongest tranmission to the right x ∼ ∞. On the other

hand if 2k2a = (n− 1/2)π or 4a/λ = n− 1/2, some crests will be in opposite phase to

some other crests, leading to the most destructive interference at the right edge, and

smallest transmission.

9 General identities in scattering by arbitrary inho-

mogeneities

Scattering due to inhomogeneities, caused by nonuniformities either in geometry or in

material properties, requires the solution of ordinary differential equations with variable

coefficients. In general one must resort to numerical means. For the sake of checking

numerical accuracy and for gaining physical insight, identities which must be true are

useful. They are often deduced by arguments typical in the derivation or the use of

Green’s theorem.

We illustrate these identities by the example of an infinitely long rod with variable

cross section S(x),
∂

∂x

(
S
∂u

∂x

)
=
ρS

E

∂2u

∂t2
(9.1)

E and ρ are taken to be constants. S(x) is nonuniform only in a finite neighborhood

around x = 0. Elsewhere S = So =constant. Consider monochromatic waves

u(x, t) = U(x)e−iωt (9.2)

so that U(x) is governed by the ordinary differential equation

(SU ′)
′
+ b2SU = 0, b2 =

ω2ρ

E
(9.3)

The boundary conditions depend on the source of the incident waves.
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If the incident waves arrive from x ∼ −∞, the asymptotic form of the solution must

be

U1(x) ∼ A−e
ikx +B−e

−ikx = A−
(
eikx +R1e

−ikx
)
, kx ∼ −∞ (9.4)

and

U1(x) ∼ A+e
ikx = A−T1e

ikx kx ∼ ∞ (9.5)

where T1 and R1 are the transmission and reflection coefficients which ar a part of the

unknown solution of the left-incidence problem. Let us define the Jost function by

f1(x) =
U1

A−T1
(9.6)

then

f1(x) ∼
1

T1

eikx +
R1

T1

e−ikx kx� −1 (9.7)

and

f1(x) ∼ eikx kx� 1 (9.8)

On the other hand, if the incident waves arrive from x ∼ ∞, the asymptotic form of

the solution must be

U2(x) ∼ b−e
−ikx = b+T2e

−ikx, kx ∼ −∞ (9.9)

and

U2(x) ∼ a+e
ikx + b+e

−ikx = b+
(
R2e

ikx + e−ikx
)
, kx ∼ ∞ (9.10)

where T2 and R2 are the unknown transmission and reflection coefficients of the right-

incidence problem. Similarly we define the Jost function by the following asymptotic

solution

f2(x) ∼ e−ikx, kx ∼ −∞ (9.11)

and

f2(x) ∼
1

T2

e−ikx +
R2

T2

eikx, kx ∼ ∞ (9.12)

Since both f1 and f2 satisfy (9.3), we have

(Sf ′
1)

′
+ b2Sf1 = 0, and (Sf ′

2)
′
+ b2Sf2 = 0, (9.13)
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Multiplying the first by f2 and the second by f1, then taking the difference, we get after

partial integration,
d

dx
(S(f1f

′
2 − f2f

′
1)) = 0,

or

W (f1, f2) = (f1f
′
2 − f2f

′
1) =

C

S(x)
(9.14)

The constant C can be related to the asymptotic limits at k|x| � 1 where S → So. Far

on the incident side, the Wronskian is

(f1f
′
2 − f2f

′
1)x∼−∞

=
(

1

T1

eikx +
R1

T1

e−ikx
)

(−ik)e−ikx − e−ikx

(
ik

T1

eikx − ikR1

T1

e−ikx

)

= −2ik

T1

Far on the transmission side, the Wronskian is

(f1f
′
2 − f2f

′
1)x∼∞

= eikx

(
−ik
T2

e−ikx +
ikR2

T2
eikx

)
−
(

1

T2
e−ikx +

R2

T2
eikx

)
(ik)eikx

= −2ik

T2

Since the two Wronskians are equal, we conclude that

T1 = T2 (9.15)

Thus, the complex transmission coefficients are equal for incident waves coming from

either side, no matter how asymmetric the geometry may be in the near field!

Next we consider the left-incidence problem. Multiplying the first of (9.3) by the

complex conjugate of U1, i.e., U∗
1 , and taking the difference of the result with its complex

conjugate, we get

U1S(U∗
1
′)′ − U∗

1 (SU ′
1)

′ =
d

dx

(
S(U1U

∗
1
′ − U1

∗U ′
1)
)

= 0 (9.16)

hence

S(U1U
∗
1
′ − U∗

1U
′
1) = constant (9.17)
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By using the asymptotic expression (9.4) on the incidence side, we get

[
S(U1U

∗
1
′ − SU∗

1U
′
1)
]
x∼−∞

= So

(
A−e

ikx +B−e
−ikx

) (
−ikA∗

−e
−ikx + ikB∗

−e
ikx
)

−So

(
A∗

−e
−ikx +B∗

−e
ikx
) (
ikA−e

ikx − ikB−e
−ikx

)

= −2ik|A−|2 + 2ik|B−|2

Similarly by using the asymptotic expression (9.5) on the transmission side, we get

[
S(U1U

∗
1
′ − U∗

1U
′
1)
]
x∼∞

= So

(
A+e

ikx
) (

(−ik)A∗
+e

−ikx
)
− So

(
A∗

+e
−ikx

) (
(ik)A+e

ikx
)

= −2ikSo|A+|2

Equating the two limits we conclude that

|A−|2 = |B−|2 + |A+|2 (9.18)

or

|R1|2 + |T1|2 = 1. (9.19)

This is merely a statement of conservation flux : the flux rate of total scattered energy

(reflected and transmitted) is equal to the flux rate of the incident wave energy; the

speed of energy tranport being the same on both sides of the scatterer. Clearly the

same energy conservation must hold for the right-incidence problem.

|R2|2 + |T2|2 = 1 (9.20)

If the scattering problem is solved numerically by, say, finite elements, it is necesssary

that the computed scattering coefficients R and T satisfy the identities (9.15) (9.19) and

(9.20).

10 Refraction in a slowly varying medium

For time-harmonic cases, we again use shallow water waves for demonstration. The

governing equation is
d

dx

(
h
dη

dx

)
+
ω2

g
η = 0 (10.1)
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Consider a sea depth which varies slowly within a wavelength, i.e.,

1

kh

dh

dx
= O(µ) � 1 (10.2)

Earlier analysis suggests that reflection is negligibly small. Thus the solution is expected

to be a locally progressive wave with both the wavenunmber and amplitude varying much

more slowly than the wave phase in x . Hence we try the solution

η = A(x)eiθ(x) (10.3)

where θ(x) − ωt is the phase function and

k(x) =
dθ

dx
(10.4)

is the local wave number and A is the complex amplitude. Note the spatial rate of

variation of the phase function, i.e., the wave number is in gneral not small, therefore θ

itself is not a slowly varying function of x. Let us calculate the first derivative:

dη

dx
=

(
ikA+

dA

dx

)
eiθ

and assume
dA
dx

kA
= O(kL)−1 � 1

In fact we shall assume each derivative of h,A or k is µ times smaller than kh, kA or

k2. Futhurmore,

d

dx

(
h
dη

dx

)
+
ω2

g
η =

[
ik

(
ikh+ h

dA

dx

)
+

d

dx

(
h
dA

dx

)
+ i

d(khA)

dx
+
ω2A

g

]
eiθ = 0

Note that the complex amplitude A can be written as

A = |A(x)|eiθA(x) (10.5)

The phase of A: θA, is a slowly varying function of x. It can be clonsidered as a part of

the wave phase, although its spatial gradient is much smaller than k.

Now let’s expand

A = A0 + A1 + A2 + · · · (10.6)

with A1/A0 = O(µ), A2/A0 = O(µ2), · · ·. From O(µ0) the dispersion relation follows:

ω2 = ghk2, or k =
ω√
gh

(10.7)
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Thus the local wave number and the local depth are related to frequency according

to the well known dispersion relation for constant depth. As the depth decreases, the

wavenumber increases. Hence the local phase velocity

c =
ω

k
=
√
gh (10.8)

also decreases.

From O(µ) we get,

ikh
dA0

dx
+ i

d(khA0)

dx
= 0

or, after multiplication by A∗
0,

d

dx
(kh|A0|2) = 0 (10.9)

which means

kh|A0|2 = C2 = constant

or, √
gh|A0|2 = constant =

√
gh∞|A∞|2 (10.10)

Since in shallow water the group velocity equals the phase velocity, the above result

means that the rate of energy flux is the same for all x and is consistent with the

original assumption of unidirectional propagation. Furthermore, the local amplitude

increases with depth as

A0(x)

A∞
=

(
h∞
h

)1/4

(10.11)

This result is called Green’s law.

In summary, the leading order solution is

ζ = A∞

(
h∞
h

)1/4

eiθ−iωt = A∞

(
h∞
h

)1/4

exp
(
i
∫ x

k(x′)dx′ − iω
)

(10.12)

A Solution for the Green function

Let us divide the domain into two parts, corresponding to two sides of the concentrated

forcing. On the right side x > x0, we define G(x, x0) ≡ G+(x, x0) which must be

governed by :
d2G

dx2
+ k2

0G+ = 0, x > x0 (A.1)
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To satisfy the radiation condition we take the sol,ution to beTo satisfy the radiation

condition we take

G+ = Ceik0x (A.2)

On the left side we define G(x, x0) = G−(x, x0), which must be governed by

d2G−

dx2
+ k2

0G− = 0, x < x0 (A.3)

To satisfy the radiation condition we take

G+ = De−ik0x (A.4)

At x = x0 we require continuity:

G+(x0, x0) = G−(x), x)) (A.5)

Hence

Ceikox0 = De−ik0x0 (A.6)

In addition we get another matching condition at x = x0 by integrating eq(8.8) across

the concentrated forcing

∫ x0+δ

x0−δ

{
d2G

dx2
+ k2

0G

}
dx =

∫ x0+δ

x0−δ
δ(x− x0)dx = 1.

The left-hand side can be integrated to give the second matching codition,
[
dG+

dx

]

x0

−
[
dG−

dx

]

x0

= 1 (A.7)

implying that

ik0Ce
ik0x0 + ik0De

−ik0xo = 1 (A.8)

Thus

C0 =
e−ik0x0

2ik0

, D0 =
eik0x0

2ik0

, (A.9)

The final solution is

G+ =
eik0(x−x0)

2ik0

, x− x0 > 0; G− =
e−ik0(x−x0)

2ik0

, x− x0 < 0.

or more compactly,

G(x, x0) =
eik0|x−x0|

2ik0
(A.10)


