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CHAPTER FOUR. WAVES IN WATER

1 Governing equations for waves on the sea surface

In this chapter we shall model the water as an inviscid and incompressible fluid, and

consider waves of infinitesimal amplitude so that the linearized approximation suffices.

Recall in the first chapter that when compressibility is included the velocity potential

defined by u = ∇Φ is governed by the wave equation:

∇2Φ =
1

c2
∂2Φ

∂t2
(1.1)

where c =
√
dp/dρ is the speed of sound. Consider the ratio

1
c2

∂2Φ
∂t2

∇2Φ
∼ ω2/k2

c2

As will be shown later, the phase speed of the fastest wave is ω/k =
√
gh where g is the

gravitational acceleration and h the sea depth. Now h is at most 4000 m in the ocean,

and the sound speed in water is c = 1400 m/sec2, so that the ratio above is at most

40000

14002
=

1

49
� 1

We therefore approximate (1.1) by

∇2Φ = 0 (1.2)

Let the free surface be z = ζ(x, y, t). Then for a gently sloping free surface the

vertical velocity of the fluid on the free surface must be equal to the vertical velocity of

the surface itself. i.e.,
∂ζ

∂t
=
∂Φ

∂z
, z = 0. (1.3)

Having to do with the velocity only, this is called the kinematic condition.
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For small amplitude motion, the linearized momentum equation reads

ρ
∂u

∂t
= −∇P − ρgez (1.4)

Now let the total pressure be split into static and dynamic parts

P = po + p (1.5)

where po is the static pressure

po = −ρgz (1.6)

which satisfies

0 = −∇po + −ρgez (1.7)

It follows that

ρ
∂u

∂t
= ρ

∂∇Φ

∂t
= −∇p (1.8)

so that

p = −ρ∂Φ
∂t

(1.9)

which relates the dynamic pressure to the velocity potential.

Let us assume that the air above the sea surface is essentially stagnant. Because of

its very small density we ignore the dynamic effect of air and assume the air pressure to

be constant, which can be taken to be zero without loss of generality. If surface tension

is ignored, continuity of pressure requires that

p = po + p = 0, z = ζ.

to the leading order of approximation, we have, therefore

ρgζ + ρ
∂Φ

∂t
= 0, z = 0. (1.10)

Being a statement on forces, this is called the dynamic boundary condition. The two

conditions (1.3) and (1.10) can be combined to give

∂2Φ

∂t2
+ g

∂Φ

∂z
= 0, z = 0 (1.11)
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If surface tension is also included then we adopt the model where there is a thin

film covering the water surface with tension T per unit length. Consider a horizontal

rectangle dxdy on the free surface. The net vertical force from four sides is

(
T
∂ζ

∂x

∣∣∣∣∣
x+dx

− T
∂ζ

∂x

∣∣∣∣∣
x

)
dy +


T

∂ζ

∂y

∣∣∣∣∣
y+dy

− T
∂ζ

∂x

∣∣∣∣∣
y


 dx = T

(
∂2ζ

∂x2
+
∂2ζ

∂y2

)
dx dy

Continuity of vertical force on an unit area of the surface requires

po + p+ T

(
∂2ζ

∂x2
+
∂2ζ

∂y2

)
= 0.

Hence

−ρgζ − ρ
∂Φ

∂t
+ T

(
∂2ζ

∂x2
+
∂2ζ

∂y2

)
= 0, z = 0. (1.12)

which can be combined with the kinematic condition (1.3) to give

∂2Φ

∂t2
+ g

∂Φ

∂z
− T

ρ
∇2 ∂Φ

∂∂z
= 0, z = 0 (1.13)

When viscosity is neglected, the normal fluid velocity vanishes on the rigid seabed,

n · ∇Φ = 0 (1.14)

Let the sea bed be z = −h(x, y) then the unit normal is

n =
(hx, .hy, 1)√
1 + h2

x + h2
y

(1.15)

Hence
∂Φ

∂z
= −∂h

∂x

∂Φ

∂x
− ∂h

∂y

∂Φ

∂y
, z = −h(x, y) (1.16)

2 Progressive waves on a sea of constant depth

2.1 The velocity potential

Consider the simplest case of constant depth and sinusoidal waves with infinitively long

crests parallel to the y axis. The motion is in the vertical plane (x, z). Let us seek a

solution representing a wavetrain advancing along the x direction with frequency ω and

wave number k,

Φ = f(z)eikx−iωt (2.1)
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In order to satisfy (1.2), (1.13) and (1.16) we need

f ′′ + k2f = 0, − h < z < 0 (2.2)

−ω2f + gf ′ +
T

ρ
k2f ′ = 0, z = 0, (2.3)

f ′ = 0, z = −h (2.4)

Clearly solution to (2.2) and (2.4) is

f(z) = B cosh k(z + h)

implying

Φ = B cosh k(z + h)eikx−iωt (2.5)

In order to satisfy (2.3) we require

ω2 =

(
gk +

T

ρ
k3

)
tanh kh (2.6)

which is the dispersion relation between ω and k. From (1.3) we get

∂ζ

∂t
=
∂Φ

∂z

∣∣∣∣∣
z=0

= (Bk sinh kh)eikx−iωt (2.7)

Upon integration,

ζ = Aeikx−iωt =
Bk sinh kh

−iω
eikx−iωt (2.8)

where A denotes the surface wave amplitude, it follows that

B =
−iωA
k sinh kh

and

Φ =
−iωA
k sinh kh

cosh k(z + h)eikx−iωt

=
−igA
ω

(
1 +

Tk2

gρ

)
cosh k(z + h)

cosh kh
eikx−iωt (2.9)
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2.2 The dispersion relation

Let us first examine the dispersion relation (2.6), where three lengths are present : the

depth h, the wavelength λ = 2π/k, and the length λm = 2π/km with

km =

√
gρ

T
, λm =

2π

km
= 2π

√
T

gρ
(2.10)

For reference we note that on the air-water interface, T/ρ = 74 cm3/s2, g = 980 cm/s2,

so that λm = 1.73cm. The depth of oceanographic interest ranges from O(10cm) to

thousand of meters. The wavelength ranges from a few centimeters to hundreds of

meters.

Let us introduce

ω2
m = 2gkm = 2g

√
gρ

T
(2.11)

then (2.6) is normalized to

ω2

ω2
m

=
1

2

k

km

(
1 +

k2

k2
m

)
tanh kh (2.12)

Consider first waves of length of the order of λm. For depths of oceanographic

interest, h� λ, or kh� 1, tanh kh ≈ 1. Hence

ω2

ω2
m

=
1

2

k

km

(
1 +

k2

k2
m

)
(2.13)

or, in dimensional form,

ω2 = gk +
Tk3

ρ
(2.14)

The phase velocity is

c =
ω

k
=

√√√√g

k

(
1 +

Tk2

gρ

)
(2.15)

Defining

cm =
ωm

km
(2.16)

the preceding equation takes the normalized form

c

cm
=

√√√√1

2

(
km

k
+

k

km

)
(2.17)

Clearly

c ≈
√
Tk

ρ
, if k/km � 1, or λ/λm � 1 (2.18)
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Figure 1: Phase speed of capillary-gravity waves in water much deeper than λm.

Thus for wavelengths much shorter than 1.7 cm, capillarity alone is important, These

are called the capillary waves. On the other hand

c ≈
√
g

k
, if k/km � 1, or λ/λm � 1 (2.19)

Thus for wavelength much longer than 1.73 cm, gravity alone is important; these are

called the gravity waves. Since in both limits, c becomes large, there must be a minimum

for some intermediate k. From

dc2

dk
= − g

k2
+
T

ρ
= 0

the minimum c occurs when

k =

√
gρ

T
= km, or λ = λm (2.20)

The smallest value of c is cm. For the intermediate range where both capillarity and

gravity are of comparable importance; the dispersion relation is plotted in figure (1).

Next we consider longer gravity waves where the depth effects are essential.

ω =
√
gk tanh kh (2.21)
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Figure 2: Phase speed of capillary-gravity waves in water of constant depth

For gravity waves on deep water, kh� 1, tanh kh→ 1. Hence

ω ≈
√
gk, c ≈

√
g

k
(2.22)

Thus longer waves travel faster. These are also called short gravity waves. If however

the waves are very long or the depth very small so that kh� 1, then tanh kh ∼ kh and

ω ≈ k
√
gh, c ≈

√
gh (2.23)

Form intermediate values of kh, the phase speed decreases monotonically with increasing

kh. All long waves with kh� 1 travel at the same maximum speed limited by the depth,
√
gh, hence there are non-dispersive. The dispersion relation is plotted in figure (??).

2.3 The flow field

For arbitrary k/km and kh, the velocities and dynamic pressure are easily found from

the potential (2.9) as follows

u =
∂Φ

∂x
=
gkA

ω

(
1 +

Tk2

gρ

)
cosh k(z + h)

cosh kh
eikx−iωt (2.24)

w =
∂Φ

∂z
=

−igkA
ω

(
1 +

Tk2

gρ

)
sinh k(z + h)

cosh kh
eikx−iωt (2.25)

p = −ρ∂Φ
∂t

= ρgA

(
1 +

Tk2

gρ

)
cosh k(z + h)

cosh kh
eikx−iωt (2.26)
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Note that all these quantities decay monotonically in depth.

In deep water, kh� 1,

u =
gkA

ω

(
1 +

Tk2

gρ

)
ekzeikx−iωt (2.27)

w =
∂Φ

∂z
=

−igkA
ω

(
1 +

Tk2

gρ

)
ekzeikx−iωt (2.28)

p = −ρ∂Φ
∂t

= ρgA

(
1 +

Tk2

gρ

)
ekzeikx−iωt (2.29)

All dynamical quantities diminish exponentially to zero as kz → −∞. Thus the fluid

motion is limited to the surface layer of depth O(λ). Gravity and capillary-gravity waves

are therefore surface waves.

For pure gravity waves in shallow water, T = 0 and kh� 1, we get

u =
gkA

ω
eikx−iωt (2.30)

w = 0, (2.31)

p = −ρ∂Φ
∂t

= ρgAeikx−iωt = ρgζ (2.32)

Note that the horizontal velocity is uniform in depth while the vertical velocity is neg-

ligible. Thus the fluid motion is essentially horizontal. The total pressure

P = po + p = ρg(ζ − z) (2.33)

is hydrostatic and increases linearly with depth from the free surface.

2.4 The particle orbit

In fluid mechanics there are two ways of describing fluid motion. In the Lagrangian

scheme, one follows the trajectory x, z of all fluid particles as functions of time. Each

fluid particle is identified by its static or initial position xo, zo. Therefore the instan-

taneous position at time t depends parametrically on xo, zo. In the Eulerian scheme,

the fluid motion at any instant t is described by the velocity field at all fixed positions

x, z. As the fluid moves, the point x, z is occupied by different fluid particles at different

times. At a particular time t, a fluid particle originally at (xo, zo) arrives at x, z, hence

its particle velocity must coincide with the fluid velocity there,

dx

dt
= u(x, z, t),

dz

dt
= w(x, z, t) (2.34)
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Once u, w are known for all x, z, t, we can in principle integrate the above equations to

get the particle trajectory. This Euler-Lagrange problem is in general very difficult.

In small amplitude waves, the fluid particle oscillates about its mean or initial posi-

tion by a small distance. Integration of (2.34) is relatively easy. Let

x(xo, zo, t) = xo + x′(xo, zo, t), andz(xo, zo, t) = zo + x′(xo, zo, t) (2.35)

then x′ � x, z′ � z in general. Equation (2.34) can be approximated by

dx′

dt
= u(xo, zo, t),

dz′

dt
= w(xo, zo, t) (2.36)

From (2.24) and (2.25), we get by integration,

x′ =
gkA

−iω2

(
1 +

Tk2

gρ

)
cosh k(zo + h)

cosh kh
eikxo−iωt

= −gkA
ω2

(
1 +

Tk2

gρ

)
cosh k(zo + h)

cosh kh
sin(kxo − ωt) (2.37)

(2.38)

z′ =
gkA

ω2

(
1 +

Tk2

gρ

)
sinh k(zo + h)

cosh kh
eikxo−iωt

=
gkA

ω2

(
1 +

Tk2

gρ

)
sinh k(zo + h)

cosh kh
cos(kxo − ωt) (2.39)

(2.40)

Letting 

a

b


 =

gkA

ω2 cosh kh

(
1 +

Tk2

gρ

)


cosh k(zo + h)

sinh k(zo + h)


 (2.41)

we get
x′2

a2
+
z′2

b2
= 1 (2.42)

The particle trajectory at any depth is an ellipse. Both horizontal (major) and vertical

(minor) axes of the ellipse decrease monotonically in depth. The minor axis diminishes

to zero at the seabed, hence the ellipse collapses to a horizontal line segment. In deep

water, the major and minor axes are equal

a = b =
gkA

ω2

(
1 +

Tk2

gρ

)
ekzo, (2.43)

therefore the orbits are circles with the radius diminishing exponentially with depth.
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Also we can rewrite the trajectory as

x′ =
gkA

ω2

(
1 +

Tk2

gρ

)
cosh k(zo + h)

cosh kh
sin(ωt− kxo) (2.44)

z′ =
gkA

ω2

(
1 +

Tk2

gρ

)
sinh k(zo + h)

cosh kh
sin(ωt− kxo −

π

2
) (2.45)

When ωt − kxo = 0, x′ = 0 and z′ = b. A quarter period later, ωt − ko = π/2, x′ = a

and z′ = 0. Hence as time passes, the particle traces the elliptical orbit in the clockwise

direction.

2.5 Energy and Energy transport

Beneath a unit length of the free surface, the time-averaged kinetic energy density is

Ēk =
ρ

2

∫ 0

−h
dz
(
u2 + w2

)
(2.46)

whereas the instantaneous potential energy density is

Ep =
1

2
ρgζ2 + T

(ds− dx)

dx
=

1

2
ρgζ2 + T

(√
1 + ζ2

x − 1
)

=
1

2
ρgζ2 + Tζ2

x (2.47)

Hence the time-average is

Ēp =
1

2
ρgζ2 +

T

2
ζ2
x (2.48)

Let us rewrite (2.24) and (2.25) in (2.48):

u = <
{
gkA

ω

(
1 +

Tk2

gρ

)
cosh k(z + h)

cosh kh
eikx

}
e−iωt (2.49)

w = <
{
−igkA
ω

(
1 +

Tk2

gρ

)
sinh k(z + h)

cosh kh
eikx

}
e−iωt (2.50)

Then

Ēk =
ρ

4

(
gkA

ω

)2 (
1 +

Tk2

gρ

)2
1

cosh2 kh

∫ 0

−h
dz
[
cosh2 k(z + h) + sinh2 k(z + h)

]

=
ρ

4

(
gkA

ω

)2 (
1 +

Tk2

gρ

)2
sinh 2kh

2k cosh2 kh
=
ρ

4

(
gkA

ω

)2 (
1 +

Tk2

gρ

)2
sinh kh

k cosh kh

=
ρgA2

4

(
1 +

Tk2

gρ

)2
gk tanh kh

ω2
=
ρgA2

4

(
1 +

Tk2

gρ

)
(2.51)
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after using the dispersion relation. On the other hand,

Ēp =
ρgA2

4

(
1 +

Tk2

ρg

)
(2.52)

Hence the total energy density is

Ē = Ēk + Ēp =
ρgA2

2

(
1 +

Tk2

ρg

)
=
ρgA2

2

(
1 +

k2

k2
m

)
=
ρgA2

2

(
1 +

λ2
m

λ2

)
(2.53)

Note that the total energy is equally divided between kinetic and potential energies; this

is called the equipartition of energy.

We leave it as an exercise to show that the power flux (rate of energy flux) across a

station x is

dĒ

dt
=
∫ 0

−h
pu dz − Tζxζt = −ρ

∫ 0

−h
ΦtΦx dz − Tζxζt = Ēcg (2.54)

where cg is the speed of energy transport , or the group velocity

cg =
dω

dk
=
c

2





k2
m

k2 + 3
k2

m

k2 + 1
+

2kh

sinh 2kh



 =

c

2





λ2

λ2
m

+ 3

λ2

λ2
m

+ 1
+

2kh

sinh 2kh



 (2.55)

For pure gravity waves, k/km � 1 so that

cg =
c

2

(
1 +

2kh

sinh 2kh

)
(2.56)

where the phase velocity is

c =

√
g

k
tanh kh (2.57)

In very deep water kh� 1, we have

cg =
c

2
=

1

2

√
g

k
(2.58)

The shorter the waves the smaller the phase and group velocities. In shallow water

kh� 1,

cg = c =
√
gh (2.59)

Long waves are the fastest and no longer dispersive.

For capillary-gravity waves with kh� 1, we have

cg =
c

2





k2
m

k2 + 3
k2

m

k2 + 1



 =

c

2





λ2

λ2
m

+ 3

λ2

λ2
m

+ 1



 , km =

2π

λm

√
ρg

T
(2.60)
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where

c =

√
g

k
+
Tk3

ρ
(2.61)

Note that cg = c when k = km, and

cg
>
< c, if k

>
< km (2.62)

In the limit of pure capillary waves of k � km, cg = 3c/2. For pure gravity waves

cg = c/2 as in (2.58).

3 Wave resistance of a two-dimensional obstacle

Ref: Lecture notes on Surface Wave Hydrodynamics Theodore T.Y. WU, Calif. Inst.Tech.

As an application of the information gathered so far, let us examine the wave resis-

tance on a two dimensional body steadily advancing parallel to the free surface. Let the

body speed be U from right to left and the sea depth be constant.

Due to two-dimensionality, waves generated must have crests parallel to the axis of

the body (y axis). After the steady state is reached, waves that keep up with the ship

must have the phase velocity equal to the body speed. In the coordinate system fixed

on the body, the waves are stationary. Consider first capillary -gravity waves in deep

water λ∗ = λ/λm = O(1) and kh � 1. Equating U = c we get from the normalized

dispersion relation

U2
∗ = c2∗ =

1

2

(
λ∗ +

1

λ∗

)
(3.1)

where U∗ ≡ U/cm. Hence

λ2
∗ − 2c2∗λ∗ + 1 = 0 = (λ∗ − λ∗1)(λ∗ − λ∗2)

which can be solved to give



λ∗1

λ∗2


 = c2∗ ±

(
c4∗ − 1

)1/2
(3.2)

and

λ∗1 =
1

λ∗2

(3.3)
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Thus, as long as c∗ = U∗ > 1 two wave trains are present: the longer gravity wave

with length λ∗1, and the shorter capillary wave with length λ∗2. Since cg1 < c = U and

cg2 > c = U , and energy must be sent from the body, the longer gravity waves must

follow, while the shorter capillary waves stay ahead of, the body.

Balancing the power supply by the body and the power flux in both wave trains, we

get

Rc = (c− cg1)Ē1 + (cg2 − c)Ē2 (3.4)

Recalling that
cg
c

=
1

2

λ2
∗ + 3

λ2
∗ + 1

we find,

1 − cg
c

= 1 − 1

2

(
1 +

2

λ2
∗ + 1

)
=

1

2
− 1/λ∗
λ∗ + 1/λ∗

=
1

2
− 1/λ∗

2c2

For the longer wave we replace cg/c by cg∗1
/c∗ and λ∗ by λ∗1 in the preceding

equation, and use (3.2), yielding

1 −
cg∗1

c∗
=
(
1 − c−4

∗

)1/2
(3.5)

Similarly we can show that

cg∗2

c∗
− 1 =

(
1 − c−4

∗

)1/2
= 1 −

cg∗1

c∗
(3.6)

Since

Ē1 =
ρgA2

1

2

(
1 +

1

λ∗
2
1

)
=
ρgA2

1

2

1

λ∗1

(
λ∗1 +

1

λ∗1

)
= ρgA2

1λ∗2c
2
∗, (3.7)

we get finally

R =
1

2
ρg
(
λ∗2A

2
1 + λ∗1A

2
2

)
(c4∗ − 1)1/2 =

1

2
ρg
(
λ∗2A

2
1 + λ∗1A

2
2

)
(U4

∗ − 1)1/2 (3.8)

Note that when U∗ = 1, the two waves become the same; no power input from the body

is needed to maintain the single infinite train of waves; the wave resistance vanishes.

When U∗ < 1, no waves are generated; the disturbance is purely local and there is

also no wave resistance. To get the magnitude of R one must solve the boundary value

problem for the wave amplitudes A1, A2 which are affected by the size (relative to the

wavelengths), shape and depth of submergence.
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Figure 3: Dependence of wave resistance on speed for pure gravity waves

When the speed is sufficiently high, pure gravity waves are generated behind the

body. Power balance then requires that

R =
(
1 − cg

U

)
Ē =

ρgA2

2

(
1

2
− kh

sinh 2kh

)
(3.9)

The wavelength generated by the moving body is given implicitly by

U√
gh

=

(
tanh kh

kh

)1/2

(3.10)

When U ≈
√
gh the waves generated are very long, kh � 1, cg → c =

√
gh, and the

wave resistance drops to zero. When U �
√
gh, the waves are very short, kh� 1,

R ≈ ρgA2

4
(3.11)

For intermediate speeds the dependence of wave resistance on speed is plotted in figure

(3).
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4 Narrow-banded dispersive waves in general

In this section let us discuss the superposition of progressive sinusoidal waves with the

amplitudes spread over a narrow spectrum of wave numbers

ζ(x, t) =
∫ ∞

0
|A(k)| cos(kx− ωt− θA)dk = <

∫ ∞

0
A(k)eikx−iωtdk (4.1)

whereA(k) is complex denotes the dimensionless amplitude spectrum of dimension

(length)2. The component waves are dispersive with a general nonlinear relation ω(k).

Let A(k) be different from zero only within a narrow band of wave numbers centered at

ko. Thus the integrand is of significance only in a small neighborhood of ko. We then

approximate the integral by expanding for small ∆k = k − ko and denote ωo = ω(ko),

ω′
o = ω′(ko), and ω′′

o = ω′′(ko),

ζ = <
{
eikox−iωot

∫ ∞

0
A(k) ei∆kx−i(ω−ωo)tdk

}

= <
{
eikox−iωot

∫ ∞

0
dkA(k) exp

[
i∆kx− i

(
ω′

o∆k +
1

2
ω′′

o (∆k)
2
)
t + · · ·

]}

= <
{
A(x, t)eikox−iωot

}
(4.2)

where

A(x, t) =
∫ ∞

0
dkA(k) exp

[
i∆kx− i

(
ω′

o∆k +
1

2
ω′′

o(∆k)
2
)
t+ · · ·

]
(4.3)

Although the integration is formally extends from 0 to ∞, the effective range is only

from ko − (∆k)m to ko + (∆k)m, i,.e., the total range is O((∆k)m), where (∆k)m is the

bandwidth. Thus the total wave is almost a sinusoidal wavetrain with frequency ωo and

wave number ko, and amplitude A(x, t) whose local value is slowly varying in space and

time. A(x, t) is also called the envelope. How slow is its variation?

If we ignore terms of (∆k)2 in the integrand, (4.3) reduces to

A(x, t) =
∫ ∞

0
dkA(k) exp [i∆k(x− ω′

ot)] (4.4)

Clearly A = A(x − ω′
ot). Thus the envelope itself is a wave traveling at the speed ω′

o.

This speed is called the group velocity,

cg(ko) =
dω

dk

∣∣∣∣∣
ko

(4.5)
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Figure 4: Envelope of waves with a rectangular band of wavenumbers

Note that the characteristic length and time scales are (∆km)−1 and (ω′
o∆km)−1 respec-

tively, therefore much longer than those of the component waves : k−1
o and ω−1

o . In other

words, (4.3) is adequate for the slow variation of Ae in the spatial range of ∆km x = O(1)

and the time range of ω′
o∆km t = O(1).

As a specific example we let the amplitude spectrum be a real constant within the

narrow band of ko − κ, ko + κ,

ζ = A
∫ ko+κ

ko−κ
eikx−iω(k)tdk, κ� ko (4.6)

then

ζ = koAeikox−iωot
∫ κ

−κ
dξeikoξ(x−cgt) + · · ·

=
2A sin κ(x− cgt)

x− cgt
eikox−iωot = Aeikox−iωot (4.7)

where ξ = k − ko/ko and

A =
2A sin κ(x− cgt)

(x− cgt)
(4.8)

as plotted in figure (4).

By differentiation, it can be verified that

∂A

∂t
+ cg

∂A

∂x
= 0, (4.9)
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Multiplying (4.9) by A∗,

A∗∂A

∂t
+ cgA

∗∂A

∂x
= 0,

and adding the result to its complex conjugate,

A
∂A∗

∂t
+ cgA

∂A∗

∂x
= 0,

we get
∂|A|2

∂t
+ cg

∂|A|2

∂x
= 0 (4.10)

We have seen that for a monochromatic wave train the energy density is proportional

to |A|2. Thus the time rate of change of the local energy density is balanced by the net

flux of energy by the group velocity.

Now let us examine the more accurate approximation (4.3). By straightforward

differentiation, we find

∂A

∂t
=

∫ ∞

0

[
−iω′(ko)∆k −

iω′′(ko)

2
(∆k)2

]
A(k)eiSdk

∂A

∂x
=

∫ ∞

0
(i∆k)A(k)eiSdk

∂2A

∂x2
=

∫ ∞

0

(
−(∆k)2

)
A(k)eiSdk

where

S = ∆k x− ω′
o∆k t−

1

2
ω′′

o(∆k)
2 t (4.11)

is the phase function. It can be easily verified that

∂A

∂t
+ ω′

o

∂A

∂x
=
iω′′

o

2

∂2A

∂x2
(4.12)

By keeping the quadratic term in the expansion, (4.12) is now valid for a larger spatial

range of (∆k)2x = O(1). In the coordinate system moving at the group velocity, ξ =

x− cgt, τ = t, we easily find

∂A(ξ, τ)

∂t
=
∂A

∂τ
− cg

∂A

∂ξ
,

∂A(ξ, τ)

∂x
=
∂A

∂x

so that (4.12) simplifies to the Schrödinger equation:

∂A

∂τ
=
iω′′

o

2

∂2A

∂ξ2
(4.13)
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By manipulations similar to those leading to (4.10), we get

∂|A|2

∂τ
=
iω′′

o

2

∂

∂ξ

(
A∗∂A

∂ξ
− A

∂A∗

∂ξ

)
(4.14)

Thus the local energy density is not conserved over a long distance of propagation.

Higher order effects of dispersion redistribute energy to other parts of the envelope.

For either a wave packet whose envelope has a finite length ( A(±∞) = 0), or for a

periodically modulated envelope (A(x) = A(x + L)), we can integrate (4.14) to give

∂

∂τ

∫
|A|2dξ = 0 (4.15)

where the integration extends over the entire wave packet or the group period. Thus

the total energy in the entire wave packet or in a group period is conserved.

5 Radiation of surface waves forced by an oscillating

pressure

We demonstrate the reasoning which is typical in many similar radiation problems.

The governing equations are

∇2φ = φxx + φyy = 0, −∞ < z < 0. (5.1)

with the kinematic boundary condition

φz = ζt, z = 0 (5.2)

and the dynamic boundary condition

pa

ρ
+ φt + gζ = 0 (5.3)

where pa is the prescribed air pressure. Eliminating the free surface displacement we

get

φtt + gφz = −(pa)t

ρ
, z = 0. (5.4)

Let us consider only sinusoidal time dependence:

pa = P (x)e−iωt (5.5)
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and assume

φ(x, z, t) = Φ(x, z)e−iωt, ζ(x, t) = η(x)e−iωt (5.6)

then the governing equations become

∇2Φ = Φxx + Φyy = 0, −∞ < z < 0. (5.7)

Φz = −iωη, z = 0 (5.8)

and

Φz −
ω2

g
Φ =

iω

ρg
P (x), z = 0. (5.9)

Define the Fourier transform and its inverse by

f̄(α) =
∫ ∞

−∞
dx e−iαxf(x), f(x) =

1

2π

∫ ∞

−∞
dα eiαxf̄(α), (5.10)

We then get the transforms of (5.1) and (5.4)

Φ̄zz − α2Φ̄ = 0, z < 0 (5.11)

subject to

Φ̄z −
ω2

g
Φ̄ =

iω

ρg
P̄ (α), z = 0. (5.12)

The solution finite at z ∼ −∞ for all α is

Φ̄ = Ae|α|z

To satisfy the free surface condition

|α|A− ω2

g
A =

iωP̄ (α)P (α)

ρg

hence

A =

iωP̄ (α)
ρg

|α| − ω2/g

or

Φ =
1

2π

∫ ∞

−∞
dαeiαxe|α|z

iωP̄ (α)
ρg

|α| − ω2/g

=
iω

ρg

1

2π

∫ ∞

−∞
dαeiαxe|α|z

∫ ∞

−∞
dx′ e−iαx′

P (x′)
1

|α| − ω2/g
,

=
iω

ρg

∫ ∞

−∞
dx′ P (x′)

1

2π

∫ ∞

−∞
dα eiα(x−x′)e|α|z

1

|α| − ω2/g
(5.13)
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Let

k =
ω2

g
(5.14)

we can rewrite (5.13) as

Φ =
iω

ρg

∫ ∞

−∞
dx′ P (x′)

1

π

∫ ∞

0
dα eαz cos(α(x− x′))

α− k
(5.15)

The final formal solution is

φ =
iω

ρg
e−iωt

∫ ∞

−∞
dx′ P (x′)

1

π

∫ ∞

0
dα eαz cos(α(x− x′))

α− k
(5.16)

If we chose

P (x′) = Poδ(x
′) (5.17)

then

Φ → G(x, z) =
iωPo

ρg

1

π

∫ ∞

0
dα eαz cos(αx)

α− k
(5.18)

is clearly the response to a concentrated surface pressure and the response to a pressure

distribution (5.16) can be written as a superposition of concentrated loads over the free

surface,

φ =
∫ ∞

−∞
dx′ P (x′)G(x− x′, z). (5.19)

where

G(x, z, t) =
iωPo

ρg
e−iωt 1

π

∫ ∞

0
dα eαz cos(αx)

α− k
(5.20)

In these results, e.g., (5.20), the Fourier integral is so far undefined since the integrand

has a real pole at α = k which is on the path of integration. To make it mathematically

defined we can chose the principal value, deform the contour from below or from above

the pole as shown in figure (5). This indefiniteness is due to the assumption of quasi

Figure 5: Possible paths of integration

steady state where the influence of the initial condition is no longer traceable. We must

now impose the radiation condition that waves must be outgoing as x → ∞. This

20



Figure 6: Closed contour in the upper half plane

condition can only be satisfied if we deform the contour from below. Denoting this

contour by Γ, we now manipulate the integral to exhibit the behavior at infinity, and to

verify the choice of path. For simplicity we focus attention on G. Due to symmetry, it

suffices to consider x > 0. Rewriting,

G(x, z, t) =
iωPo

ρg
e−iωt 1

2π
(I1 + I2)

=
iωPo

ρg
e−iωt 1

2π

∫

Γ
dα eαz

[
eiαx

α− k
+
e−iαx

α− k

]
(5.21)

Consider the first integral in (5.21). In order that the first integral converges for

large |α|, we close the contour by a large circular arc in the upper half plane, as shown

in figure (6), where =α > 0 along the arc. The term

eiαx = ei<αxe−=αx

is exponentially small for positive x. Similarly, for the second integral we must chose

the contour by a large circular arc in the lower half plane as shown in figure (7).

Back to the first integral in (5.21)

I1 =
∫

Γ
dα
eiαxeαz

α− k
(5.22)

The contour integral is

∮
dα
eiαxeαz

α− k
=

∫

Γ
dα
eiαxeαz

α− k
+
∫

C
dα
eiαxeαz

α− k
+
∫ 0

i∞
dα
eiαxeαz

α− k

= I1 + 0 +
∫ 0

i∞
dα
eiαxeαz

α− k
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Figure 7: Closed contour in the lower half plane

The contribution by the circular arc C vanishes by Jordan’s lemma. The left hand side

is

LHS = 2πieikxekz (5.23)

by Cauchy’s residue theorem. By the change of variable α = iβ, the right hand side

becomes

RHS = I1 + i
∫ 0

∞
dβ
e−βxeiβz

iβ − k

Hence

I1 = 2πieikxekz + i
∫ ∞

0
dβ
e−βxeiβz

iβ − k
(5.24)

Now consider I2

I2 =
∫

Γ
dα
e−iαxeαz

α− k
(5.25)

and the contour integral along the contour closed in the lower half plane,

−
∮
dα
e−iαxeαz

α− k
= I2 + 0 +

∫ ∞

0
dα
e−iαxeαz

α− k

Again no contribution comes from the circular arc C. Now the pole is outside the

contour hence LHS = 0. Let α = −iβ in the last integral we get

I2 = −i
∫ ∞

0
dβ
e−βxe−iβy

−iβ − k
(5.26)

Adding the results (5.24) and (5.26).,

I1 + I2 = 2πieikxekz +
∫ ∞

0
dβ

(
ie−βxeiβz

iβ − k
− ie−βxe−iβz

−iβ − k

)

= 2πieikxekz + 2
∫ ∞

0
dβ

e−βx

β2 + k2
(β cos βy + k sin βy) (5.27)
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Finally, the total potential is, on the side of x > 0,

G(x, z, t) = − ω

ρg
e−iωt

(
1

2πi
(I1 + I2)

)
e−iωt

= − ω

ρg
e−iωt

{
eikxekz +

1

π

∫ ∞

0
dβ

e−βx

β2 + k2
(β cos βz + k sin βz)

}
(5.28)

The first term gives an outgoing waves. For a concentrated load with amplitude

Po, the displacement amplitude is Po/ρg. The integral above represent local effects

important only near the applied pressure. If the concentrated load is at x = x′, one

simply replaces x by x− x′ everywhere.

6 The Kelvin pattern of ship wave

The action of the ship’s propeller

Has a thrust pattern

To which the ship reacts by moving forward,

Which also results secondarily,

In the ship’s bow elevated waves,

And its depressed transverse stern wave,

Which wave disturbances of the water

Are separate from the propeller’s thrust waves.

–R.Buckminster Fuller, Intuition- Metaphysical Mosaic. 1972.

−−−−−−−−−−−−−−−

Anyone flying over a moving ship must be intrigued by the beautiful pattern in the

ship’s wake. The theory behind it was first completed by Lord Kelvin, who invented

the method of stationary phase for the task. Here we shall give a physical/geometrical

derivation of the key results (lecture notes by T. Y. Wu, Caltech).

Consider first two coordinate systems. The first r = (x, y, z) moves with ship at the

uniform horizontal velocity U. The second r′ = (x′, y′, z) is fixed on earth so that water

is stationary while the ship passes by at the velocity U. The two systems are related by

the Galilean transformation,

r′ = r + Ut (6.29)
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A train of simple harmonic progressive wave

ζ = <{A exp[i(k · r′ − ωt)]} (6.30)

in the moving coordinates should be expressed as

ζ = <{A exp[ik · (r − Ut) − iωt]} = <{A exp[ik · r − i(ω − k.U)t]}

= <{A exp[ik · r − iσt]} (6.31)

in the stationary coordinates. Therefore the apparent frequency in the moving coordi-

nates is

σ = ω − k ·U (6.32)

The last result is essentially the famous Doppler’s effect. To a stationary observer, the

whistle from an approaching train has an increasingly high pitch, while that from a

leaving train has a decreasing pitch.

If a ship moves in very deep water at the constant speed −U in stationary water,

then relative to the ship, water appears to be washed downstream at the velocity U.

A stationary wave pattern is formed in the wake. Once disturbed by the passing ship,

a fluid parcel on the ship’s path radiates waves in all directions and at all frequencies.

Wave of frequency ω spreads out radially at the phase speed of c = g/ω according to

the dispersion relation. Only those parts of the waves that are stationary relative to the

ship will form the ship wake, and they must satisfy the condition

σ = 0, (6.33)

i.e.,

ω = k ·U, or c =
ω

k
=

k

k
· U (6.34)

Referring to figure 8, let O, (x = 0) represents the point ship in the ship-bound

coordinates. The current is in the positive x direction. Any point x1 is occupied by

a fluid parcel Q1 which was disturbed directly by the passing ship at time t1 = x1/U

earlier. This disurbed parcel radiates waves of all frequencies radially. The phase of

wave at the frequency ω reaches the circle of radius ct1 where c=g/ω by the deep water

dispersion relation. Along the entire circle however only the point that satisfies (6.34)
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Figure 8: Waves radiated from disturbed fluid parcel

can contribute to the stationary wave pattern, as marked by P . Since OQ1 = x1 = Ut1,

Q1P = ct1 and OP = Ut1 · k/k, where k is in the direction of ~Q1P . It follows that

4OPQ1 is a right triangle, and P lies on a semi circle with diameter OQ1. Accounting

for the radiated waves of all frequencies, hence all c, every point on the semi circle

can be a part of the stationary wave phase formed by signals emitted from Q1. Now

this argument must be rectified because wave energy only travels at the group velocity

which is just half of the phase velocity in deep water. Therefore stationary crests due

to signals from Q1 can only lie on the semi-circle with the diameter O1Q1 = OQ1/2.

Thus P1 instead of P is one of the points forming a stationary crest in the ship’s wake,

as shown in figure 8.

Any other fluid parcel Q2 at x2 must have been disturbed by the passing ship at time

t2 = x2/U earlier. Its radiated signals contribute to the stationary wave pattern only

along the semi circle with diameter O2Q2 = OQ2/2. Combining the effects of all fluid

parcels along the +x axis, stationary wave pattern must be confined inside the wedge

which envelopes all these semi circles. The half apex angle βo of the wedge, which defines

the wake, is given by

sin βo =
Ut/4

3Ut/4
= 1/3, (6.35)

hence βo = sin−1 1/3 = 19.5◦, see figure 9.

Now any point P inside the wedge is on two semicircles tangent to the boundary

of the wedge, i.e., there are two segments of the wave crests intersecting at P : one

perpendicular to PQ1 and one to PQ2, as shown in figure 9.

Another way of picturing this is to examine an interior ray from the ship. In figure
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Figure 9: Wedge angle of the ship wake

O O Q

P1

M1
M2

P2

b

'

Figure 10: Geometrical relation to find Points of dependence

(10), draw a semi circle with the diameter O′Q = OQ/2, then at the two intersections P1

and P2 with the ray are the two segments of the stationary wave crests. In other words,

signals originated from Q contribute to the stationary wave pattern only at the two

points P1 and P2, as shown in figure 10. Point Q can be called the point of dependence

for points P1 and P2 on the crests.

For any interior point P there is a graphical way of finding the two points of depen-

dence Q1 and Q2. Referring to figure 10, 4O′QP1 and 4O′QP2 are both right triangles.

Draw O1M1 ‖ QP1 and O2M2 ‖ QP2 where M1 and M2 lie on the ray inclined at the an-

gle β. it is clear that OM1 = OP1/2 and OM2 = OP2/2, and 4M1O
′P1 and 4M2O

′P2

are both right triangles. Hence O′ lies on two semi circles with diameters M1P1 and

M2P2.

We now reverse the process, as shown in figure 11. For any point P on an interior

ray, let us mark the mid point M of OP and draw a semi circle with diameter MP .

The semi circle intersects the x axis at two points S1 and S2. We then draw from P two

lines parallel to MS1 and MS2, the two points of intersection Q1 an Q2 on the x axis

are just the two points of dependence.
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Figure 11: Points of dependence

Let 6 PQ1O = 6 MS1O = θ1 and 6 PQ2O = 6 MS2O = θ2. then

tan(θi + β) =
PSi

MSi
=

PSi

PQi/2
= 2 tan θi i = 1, 2.

hence

2 tan θi =
tan θi + tan β

1 − tan θi tanβ

which is a quadratic equation for θi, with two solutions:




tan θ1

tan θ2





=
1 ±

√
1 − 8 tan2 β

4 tanβ
(6.36)

They are real and distinct if

1 − 8 tan2 β > 0 (6.37)

These two angles define the local stationary wave crests crossing P , and they must

be perpendicular to PQ1 and PQ2. There are no solutions if 1 − 8 tan2 β < 0, which

corresponds to sin β > 1/3 or β > 19.5◦, i.e., outside the wake. At the boundary of the

wake, β = 19, 5◦ and tan β =
√

1/8, the two angles are equal

θ1 = θ2 = tan−1

√
2

2
= 55◦. (6.38)

By connecting these segments at all points in the wedge, one finds two systems of wave

crests, the diverging waves and the transverse waves, as shown in figure div-trans.

A beautiful photograph is shown in Figure 13

Knowing that waves are confined in a wedge, we can estimate the behavior of the

wave amplitude by balancing in order of magnitude work done by the wave drag R and

the steady rate of energy flux

RU = (Ēcg)r ∼ (|A|2cg)r (6.39)
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Figure 12: Diverging and transverse waves in a ship wake

hence

A ∼ r1/2 (6.40)

This estimate is valid throughout the wedge except near the outer boundaries, where

A ∼ r−1/3 (6.41)

by a more refined analysis (Stoker, 1957, or Wehausen & Laitone, 1960).

7 Basic theory for two-dimensional Internal waves

in a stratified fluid

[References]:

C.S. Yih, 1965, Dynamics of Inhomogeneous Fluids, MacMillan.

O. M. Phillips, 1977, Dynamics of the Upper Ocean, Cambridge U. Press.

P. G. Baines, 1995, Topographical Effects in Stratified Flows Cambridge U. Press.

M. J. Lighthill 1978, Waves in Fluids , Cambridge University Press.

28



Figure 13: Ships in a straight course. From Stoker, 1957.p. 280.
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Due to seasonal changes of temperature, the density of water or atmosphere can have

significant variations in the vertical direction. Variation of salt content can also lead to

density stratification. Freshwater from rivers can rest on top of the sea water. Due to

the small diffusivity, the density contrast remains for a long time.

Consider a calm and stratified fluid with a static density distribution ρo(z) which

decreases with height (z). If a fluid parcel is moved from the level z upward to z + ζ, it

is surrounded by lighter fluid of density ρ(z+ dz). The upward buoyancy force per unit

volume is

g(ρ(z + ζ) − ρ(z)) ≈ g
dρ

dz
ζ

and is negative. Applying Newton’s law to the fluid parcel of unit volume

ρ
d2ζ

dt2
= g

dρ

dz
ζ

or
d2ζ

dt2
+N2ζ = 0 (7.1)

where

N =

(
−g
ρ

dρ

dz

)1/2

(7.2)

is called the Brunt-Väisälä frequency. This elementary consideration shows that once

a fluid is displaced from its equilibrium position, gravity and density gradient provides

restoring force to enable oscillations. In general there must be horizontal nonunifomities,

hence waves are possible.

We start from the exact equations for an inviscid and incompressible fluid with

variable density.

For an incompressible fluid the density remains constant as the fluid moves,

ρt + q · ∇ρ = 0 (7.3)

where q = (u, w) is the velocity vector in the vertical plane of (x, z). Conservation of

mass requires that

∇ · q = 0 (7.4)

The law of momentum conservation reads

ρ(qt + q · ∇q) = −∇p− ρgez (7.5)

and ez is the unit vector in the upward vertical direction.
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7.1 Linearized equations

Consider small disturbances

p = p+ p′, ρ = ρ(z) + ρ′, ~q = (u′, w′) (7.6)

with

ρ� ρ′, p� p′ (7.7)

and u′, v′, w′ are small. Linearizing by omitting quadratically small terms associated

with the fluid motion, we get

ρ′t + w′dρ

dz
= 0. (7.8)

u′x + w′
z = 0 (7.9)

ρu′t = −p′x (7.10)

ρw′
t = −pz − p′z − gρ− gρ′ (7.11)

In the last equation the static part must be in balance

0 = −pz − gρ, (7.12)

hence

p(z) =
∫ z

0
ρ̄(z)dz. (7.13)

The remaining dynamically part must satisfy

ρw′
t = −p′z − gρ′ (7.14)

Upon eliminating p′ from the two momentum equations we get

dρ

dz
u′t + ρ(u′z − w′

x)t = gρ′x (7.15)

Eliminating ρ′ from (7.8) and (7.15) we get

dρ

dz
u′tt + ρ(u′z − w′

x)tt = gρ′xt = −gdρ
dz
w′

x (7.16)

Let us introduce the disturbance stream function ψ:

u′ = ψz, w′ = −ψx (7.17)
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It follows from (7.16) that

ρ (ψxx + ψzz)tt =
dρ

dz
(gψxx − ψztt) (7.18)

by virture of Eqns. (7.8) and (7.17). Note that

N =

√
−g
ρ

dρ

dz
(7.19)

is the Brunt-Väisälä frequency. In the ocean, density gradient is usually very small (

N ∼ 5×10−3 rad/sec). Hence ρ can be approximated by a constant reference value, say,

ρ0 = ρ(0) in (7.10) and (7.14) without much error in the inertia terms. However density

variation must be kept in the buoyancy term associated with gravity, which is the only

restoring force responsible for wave motion. This is called the Boussinesq approximation

and amounts to taking ρ to be constant in (Eq:17.1) only. With it (7.18) reduces to

(ψxx + ψzz)tt +N2(z)ψxx = 0. (7.20)

Note that because of linearity, u′ and w′ satisfy Eqn. (7.20) also, i.e.,

(w′
xx + w′

zz)tt +N2w′
xx = 0 (7.21)

etc.

7.2 Linearized Boundary conditions on the sea surface

Dynamic boundary condition : Total pressure is equal to the atmospheric pressure

(p+ p′)z=ζ = 0. (7.22)

On the free surface z = ζ, we have

p ≈ −g
∫ ζ

0
ρ(0)dz = −gρ(0)ζ

Therefore,

−ρgζ + p′ = 0, z = 0, (7.23)

implying

−ρgζxxt = −p′xxt, z = 0. (7.24)
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Kinematic condition :

ζt = w, z = 0. (7.25)

The left-hand-side of (7.24) can be written as

−ρgζxxt = −ρg w′
xx

Using 7.10, the right-hand-side of 7.24 may be written,

−pxxt = ρ u′xtt = −ρw′
ztt

hence

w′
ztt − gw′

xx = 0, on z = 0. (7.26)

Since w′ = −ψx, ψ also satisfies the same boundary condition

ψztt − gψxx = 0, on z = 0. (7.27)

On the seabed, z = −h(x) the normal velocity vanishes. For a horizontal bottom we

have

ψ(x,−h, t) = 0. (7.28)

8 Internal waves modes for finite N

Consider a horizontally propagating wave beneath the sea surface. Let

ψ = F (z) e±ikxe−iωt. (8.1)

From Eqn. (7.21),

−ω2

(
d2F

dz2
− k2F

)
+N2

(
−k2

)
F = 0

or,
d2F

dz2
+
N2 − ω2

ω2
k2F = 0 z < 0. (8.2)

On the (horizontal) sea bottom

F = 0 z = −h. (8.3)
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Figure 14: Typical variation of Brunt-Väisälä frequency in the ocean. From O. M.

Phillips, 1977

From Eqn. (7.27),
dF

dz
− g

k2

ω2
F = 0 z = 0. (8.4)

Equations (8.2), (8.3) and (8.4) constitute an eigenvalue condition.

If ω2 < N2, then F is oscillatory in z within the thermocline. Away from the

thermocline, ω2 > N2, W must decay exponentially. Therefore, the thermocline is a

waveguide within which waves are trapped. Waves that have the greatest amplitude

beneath the free surface is called internal waves.

Since for internal waves, ω < N while N is very small in oceans, oceanic internal

waves have very low natural frequencies. For most wavelengths of practical interests

ω2 � gk so that

F ∼= 0 on z = 0. (8.5)

This is called the rigid lid approximation, which will be adopted in the following.

With the rigid-lid approximation, if N=constant (if the total depth is relataively

small compared to the vertical scale of stratification, the solution for F is

F = A sin

(
k(z + h)

√
N2 − ω2

ω

)
(8.6)

where

kh

√
N2 − ω2

ω
= nπ, n = 1, 2, 3... (8.7)
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This is an eigen-value condition. For a fixed wave number k, it gives the eigen-frequencies,

ωn =
N√

1 +
(

nπ
kh

)2
(8.8)

For a given wavenumber k, this dispersion relation gives the eigen-frequency ωn. For a

given frequency ω, it gives the eigen-wavenumbers kn,

kn =
nπ

h

ω√
N2 − ω2

(8.9)

For a simple lake with vertical banks and length L, 0 < x < L, we must impose the

conditions :

u′ = 0, hence ψ = 0, x = 0, L (8.10)

The solution is

ψ = A sin kmx exp(−iωnmt) sin


km(z + h)

√
N2 − ω2

nm

ωnm


 . (8.11)

with

kmL = mπ, m = 1, 2, 3, ... (8.12)

The eigen-frequencies are:

ωnm =
N√

1 +
(

nL
mh

)2
(8.13)

9 Internal waves in a vertically unbounded fluid

Consider N = constant (which is good if attention is limited to a small vertical extent),

and denote by (α, β) the (x, z) components of the wave number vector ~k Let the solution

be a plane wave in the vertical plane

ψ = ψ0 e
i(αx+βz−ωt)

Then

ω2 = N2 α2

α2 + β2

or

ω = ±N α

k
(9.1)
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k2 = α2 + β2 (9.2)

This is the dispersion relation. Note that is

ω

N
= ± cos θ′ (9.3)

where θ′ is the inclination of ~k with repect to the x axis. For a given frequency, there

are two possible signs for α. Since the above relation is also even in β, there are four

possible inclinations for the wave crests and troughs with respect to the horizon; the

angle of inclination is

|θ′| = cos−1 ω

N
(9.4)

For ω > N , there is no wave.

To under the physics better we note first that the phase velocity is

~C = ± ω

k2
(α, β) (9.5)

while the group velocity components are

Cgx =
∂ω

∂α
= ±N

(
1

k
− α

k2

α

k

)

= ±N
k

(
1 − α2

k2

)
= ±N

k3
β2

Cgz =
∂ω

∂β
= ∓αβ

k3
. (9.6)

Thus

~Cg = ±N β

k2

(
β

k
,
−α
k

)
. (9.7)

Therefore, the group velocity is perpendicular to the phase velocity,

~Cg · ~C = 0. (9.8)

Since

~C + ~Cg = ±N
k3

(
α2 + β2, 0

)
= ±N

k2
(k, 0) (9.9)

the sum of ~C and ~Cg is a horizontal vector, as shown by any of the sketches in Figure

17. Note that when the phase velocity as an upward component, the group velocity has

a downward component, and vice versa. Now let us consider energy transport. from
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Figure 15: Phase and group velocities

(7.10) we get

−p′x = ρψzt = ρωβψoe
i(αx+βz−ωt)

hence the dynamic pressure is

p′ = iωρ
β

k
ψoe

i(αx+βz−ωt) (9.10)

The fluid velocity is easily calculated

~q′ = (u′, v′) = (ψz,−ψx) = iρ(β,−α)ψoe
i(αx+βz−ωt) (9.11)

The averaged rate of energy transport is therefore

~E =
1

2
ρ2|ψ|2β

α
(β, α) (9.12)

which is in the same direction of the group velocity.

Energy must radiate outward from the oscillating source, hence the group velocity

vectors must all be outward. Since there are 4 directions for ~k. There are four radial

beams parallel to ~cg, in four quadrants, forming St. Andrews Cross. The crests (phase

lines) in the beam in the first quadrant must be in the south-easterly direction. Similarly

the crests in all four beams must be outward and toward the horizontal axis. Let θ be

the inclination of a beam with respect to the x axis, then θ = π/2 − θ′ in the first

quadrant. The dispersion relation can be written as

ω

N
= ± sin θ (9.13)

where θ is the inclination of a beam and not of the wavenumber vector.
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Figure 16: St Andrew’s Cross in a stratified fluid. Top: ω/N = 0.7; bottom left

ω/N = 0.9; bottom right: ω/N = 1.11. From Mowbray & Rarity, 1965, JFM

Movie records indeed confirm these predictions. Within each of the four beams which

have widths comparable to the cylinder diameter, only one or two wave lengths can be

seen.

This unique property of anisotropy has been verified in dramatic experiments by

Mowbray and Stevenson. By oscillating a long cylinder at various frequencies verti-

cally in a stratified fluid, equal phase lines are only found along four beams forming St

Andrew’s Cross, see Figure (16) for ω/N = 0.7, 0.9 and 1.11. It can be verified that

angles are |θ| = 45◦ for ω/N = 0.7, and |θ| = 64◦ for ω/N = 0.9. In the last photo,

ω/N = 1.11. There is no wave. These results are all in accord with the condition (9.4).

Comparison between measured and predicted angles is plotted in Figure (17) for a

wide range of ω/N
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Figure 17: Comparison of measured and predicted angles of internal-wave beams. ω/N

vs. sin θ. From Mowbray & Rarity, 1965, JFM

10 Reflection of internal waves at boundary

For another interesting feature, consider the reflection of an internal wave from a slope.

Recall that θ′ = ± cos−1 ω
N

, i.e., for a fixed frequency there are only two allowable

directions with respect to the horizon. Relative to the sloping bottom inclined at θo the

inclinations of the incident and reflected waves must be different, and are respectively

θ′ + θo and θ′ − θo, see Figure 18.

Let ξ be along, and η be normal to the slope. Since the slope must be a streamline,

ψi + ψr must vanish along η = 0 and be proportional to ei(αξ−ωt); the total stream

function must be of the form

ψi e
i(k

(i)
t ξ−ωt) + ψr e

i(k
(r)
t ξ−ωt) ∝ sin βηei(αξ−ωt).

In particular the wavenumber component along the slope must be equal,

k
(i)
t = k

(r)
t = α

Therefore

k(i) cos(θ′ + θo) = k(r) cos(θ′ − θo),

which implies that

k(i) 6= k(r). (10.1)

as sketched in Figure 18. The incident wave and the reflected wave have different

wavelengths! If θ′ < θo, there is no reflection; refraction takes place instead.
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Figure 18: Internal wave reflected by in inclined surface.
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