Solution for P5-24 10.21
3

Come up with an expression for the enthalpy and entropy departure
functions for a gas that follows the Redlich-Kwong equation of
state.

A. Entropy departure function
This problem is similar to Example 5.6 in Koretsky.
The Redlich-Kwong equation of state:

RT a

Cv-b - T"*v(v +b)

As the Redlich-Kwong equation is explicit in pressure, it is convenient to
choose T and v as the independent variables. Thus infinite volume is used as
the limit of a ideal gas.

Dy =y, = byt = (b, = h ) = (R =B )
For an ideal gas, enthalpy is only a function of temperature. Thus
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To find QT/ , use the Equation 5.7 and Equation 5.18,
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To find §7 and Q—V , integrate the RK EQOS,
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Substitute expressions for E—T and E—V into (2) and simplify
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Substitute the above expression into Equation (1).
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Integrate the above expression using Mathematica or MATLAB.

RTD 54 +3a(b+(b+v)(1nv—1n(v+b)))
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B. Entropy departure function

dep _ _ oldeal  _ _ oideal ~N __ ¢ ideal  __ _ideal
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v T yideal

Note that vi“ js the volume of the gas at ideal condition. It is not equal to v.

v v

Asir = 2 av- = v (3)
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Using Maxwell Relations Equation 5.18
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Thus Equation (3) becomes
v yideal ideal
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’ y= T v y= v
(1 point)
. P
From earlier part, E7 for real gas:
P _ R + a
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For an ideal gas,
P ideal R
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Substitute the above expressions into Equation (4) and integrate
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To eliminate the problem of singularity in the second integral, add and

R
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Note on the infinity limit:

To eliminate the problem of singularity in the second integral, add and
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v[deal

R
——dv — Edv
\% |%

v= v v

v
dep — P
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You can combine the two terms in the first integral

Asj? = — P—E dv - Edv
T 1% LV
o RT . .
At the limit of v, P v Thus the integral goes to zero at limit of v—oeo.
This is why the first integral can have infinity as a limit but not the second
integral.



