
Homework 2: Problem 3.26

February 22, 2008

A steam turbine accepts 4500 kg/hr of steam at 60 bar and 500 ◦C, and ex-
hausts it at 10 bar. Heat transfers to the surroundings (Tsurr = 300 K) at 69.86 kW.

(a) What is the maximum power?

The maximum power occurs when the process is reversible. We assume that
the system is at a steady state. Since there is no accumulation of mass, ṁin =
ṁout = ṁ. We can neglect the changes in potential and kinetic energy, so the
energy balance simplifies to:

ṁ
(
ĥin− ĥout

)
+ Q̇+Ẇrev = 0

From the Gibbs Phase Rule, since we have one component and one phase,
we need two intensive properties to define the system completely. For the inlet
stream, those two properties are the temperature and pressure. At 60 bar and 500
◦C, the entropy is ŝin = 6.8802 kJ/kg K, and the enthalpy is ĥin = 3422.1 kJ/kg.
For the outlet stream, we are given only the pressure, so we need to calculate one
more intensive property. To determine this property, we use the entropy balance.
Since the system is reversible, the total change in entropy must be zero:

∆Suniv = ∆Ssys +∆Ssurr

= 0

From which it follows that ∆Ssys =−∆Ssurr. Since the system is not adiabatic,
we cannot assume that ∆Ssurr = 0. Instead we note that the change in entropy
for the surroundings is related to the heat transfer between the system and the
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surroundings: ∆Ssurr = −Q/Tsurr. The minus sign is because the heat transfer to
the surroundings is the negative of the heat transfer to the system. Putting it all
together, we can solve for the entropy of the exit stream:

ŝout = ŝin−∆Ssys

= ŝin− −Q̇
ṁTsurr

= 6.8802 [ kJ/kg-K ]− 69.86 [ kW ]
4500 [ kg/hr ]300 [ K ]

= 6.8802 [ kJ/kg-K ]−0.1863 [ kJ/kg-K ]
= 6.6939 [ kJ/kg-K ] [ + 2 point ]

Check the signs. The surroundings are getting warmer, so it makes sense that
∆Ssurr > 0. In order for the total entropy to be zero, it follows that ∆Ssys < 0,
which it is. Now that we have two intensive properties for the outlet stream, we
can calculate the other properties, namely Tout and ĥout . Either by interpolation
from the steam tables or from NIST, we find that:

ĥout,NIST = 2827.5 [ kJ/kg ]
ĥout,s.t. = 2827.9 [ kJ/kg ]

Solving the energy balance for the power yields:

Ẇrev = ṁ
(
ĥout − ĥin

)− Q̇
= (4500 [ kg/hr ] )(2827.9−3422.1 [ kJ/kg ] )−−69.86 [ kW ]
= −672.9 [ kW ] [ + 2 points ]

The work should be negative, since hopefully we are extracting work from the
turbine.

(b) In the same way that we determined the exit enthalpy, the exit temperature
is:

Tout,NIST = 199.7 [ K ] [ + 1 point ]
Tout,s.t. = 200 [ K ]
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(c) If the isentropic efficiency is actually 66.5%, then the actual power pro-
duced is:

Ẇ = ηturbineẆrev

= −447.5 [ kW ] [ + 1 points ]

(d) You would expect the exit temperature to increase. Return to the energy
balance: Assuming that the heat loss term is constant, then the only way for the
work to be decreased is if ĥout is increased, which would require a warmer tem-
perature. Thus, the inefficiency implies that less enthalpy is being converted to
usable work. [ + 2 points ]

(e) To determine the final temperature, rearrange the energy balance to solve
for the final enthalpy:

ĥout = ĥin +
Q̇+Ẇ

ṁ

= 3422.1 [ kJ/kg ] +
−69.86 [ kW ] −447.5 [ kW ]

4500 [ kg/hr ]
= 3008.2 kJ/kg

which, according to NIST, occurs at Tout = 279.8◦C, or by interpolation at
Tout = 280.2◦C [ + 2 points ]
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