
DIVERSIFIED CHEMICAL PRODUCTS

Specialty Products Division

Cambridge, MA 02139

MEMO #5

TO: U.R. Engineer

FROM: A.I. Jockey (Technical Services Group)

DATE: Sep 13, 2007

SUBJECT: Instructions for using the JACOBIAN batch reactor model on Windows

This memo explains how to access JACOBIAN, a Dynamic Simulation and Optimization Soft-
ware developed by Numerica Technology LLC (spin-off from MIT). JACOBIAN will be used to
simulate the distillation tasks and the first reaction task during the design of the Lucretex monomer
process. You will be using JACOBIAN’s dynamic simulation features. Dynamic simulation is the
use of mathematical models to predict the time dependent or dynamic behavior of a chemical pro-
cess (as opposed to steady-state simulation which is only concerned with predicting the steady-state
of a process).

Accessing JACOBIAN on Windows

The latest distribution of JACOBIAN (version 4.0) is available only for Windows. You will be
able to run JACOBIAN either in the PC cluster in the DeGregory room (RM 66-064, basement)
or your own computers (Laptop or Desktop). The following instructions will explain how to access
JACOBIAN in the DeGregory room and how to obtain JACOBIAN for your personal use.

Accessing Jacobian in the PC cluster in the DeGregory room

The PC cluster in the DeGregory room is a Windows Athena cluster. This basically means that
you log on with your Athena account information and you work in the Windows environment. Your
information is stored in a remote server and no matter which computer of the cluster you are using
you will have access to the files in you account. You have access to the drive H: in these machines.
The C: drive is locked and you don’t have access to it. Don’t store files in your Desktop, this makes
your computer slower. Instead create folders in My Documents folder.

Accessing JACOBIAN in your own Laptop or Desktop

To get JACOBIAN in your computer you need to follow these steps:

• Go to http://www.numericatech.com/register academic.htm

• Fill your personal information and include the following:

– Advisor = Paul Barton

– Research Area = 10.490

1

– Company = MIT

– Software = Jacobian

• you will receive an email from Numerica Technology with a license file (jac.lic) and information
how to download the software.

• download the software and run the installer. Accept the default options. This will install
JACOBIAN in the folder C:\Program Files\Jacobian,

• at the end copy jac.lic and paste it in the folder C:\Program Files\Jacobian\System.

• Now JACOBIAN is installed in your computer.

Creating a project and getting the example files

Figure 1 shows the layout of the JACOBIAN IDE, which has five areas: a Menu bar across the top,
a Toolbar below the Menu, a Project Explorer panel on the left, a Messages panel at the bottom,
and an empty space taking up the rest of the window which will serve as the Main Workspace.

Figure 1: JACOBIAN Graphical User Interface

JACOBIAN helps to organize your problem (input files and results) by creating separate
projects. This time we are going to create a new project for the examples discussed in this tutorial.
This can be done by selecting New from the Project menu (or clicking the New Project button). In
the pop-up window, enter the name the location for the new project. For example, we can name
this project as ICEExamples and select the H:\My Documents\Jacobian folder as the location for

2

this project (Figure 2). Once this is done, the Project Explorer tree will be updated with the new
project named ICEExamples and empty Input and Output nodes.

Figure 2: Pop-up window for creating a new JACOBIAN project

Download the example files from the 10.490 Stellar website. They are located in the Examples
subsection in the Materials section. Download all of them into a folder in your drive.

You can create JACOBIAN input files from scratch or you can import input files into a project.
In this case we are going to import files that are already written. This can be done by selecting the
input node under the project name in the Project Explorer tree, right-clicking to display the pop-
up menu, selecting Import and then selecting JACOBIAN Input File from the submenu (Figure
3). In the following pop-up window, the users can browse over the folders to select the existing
JACOBIAN input file. Import all the downloaded example files.

Figure 3: Pop-up menu for addding/importing JACOBIAN input file

Tutorial Example: Simple Mass Action Kinetics

This section guides you through a simple tutorial introduction to the JACOBIAN input language,
and how to run an JACOBIAN simulation. We consider the following system of sequential irre-
versible elementary reactions:

A → B

B → C

3

We will assume that the reactions are conducted under isothermal conditions, and that the mixture
is sufficiently dilute that volume changes on reaction are negligible. A mass balance under these
assumptions yields the equations:

dCA

dt
= −r1 (1)

dCB

dt
= r1 − r2 (2)

dCC

dt
= r2 (3)

where the reaction rates r1 and r2 are given by the equations:

r1 = k1CA (4)

r2 = k2CB (5)

This complete system of equations forms a simple mathematical model for our reaction system.
The goal of this exercise is translate this mathematical model into a format that JACOBIAN can
recognize, and then use JACOBIAN to predict the variation of the concentrations with time as the
reaction progresses.

The engineer describes a mathematical model of a chemical process to JACOBIAN by preparing
an ASCII file in the JACOBIAN input language. This is a high level computer programming
language specifically designed to express mathematical models of chemical processes. The input
language is basically used to describe the equations and variables in a mathematical model to
JACOBIAN. This capability to add new models as equations makes JACOBIAN a very flexible
and powerful modeling system. Simulators like JACOBIAN are known as equation-oriented or
simultaneous process simulators.

The JACOBIAN input file for our mass action kinetics example is shown in figures 4 and 5. It
is already in your JACOBIAN Input Files and it is called Series Reactions.JAC.

To open the file in the editor, select the file Series Reactions.JAC in your input folder and right
click on it. Then click Open. Let’s go through what the input means (see also figures 4 and 5).

JACOBIAN is a case insensitive language: it does not recognize the difference between upper
case and lower case characters. In the example input file, the convention has been adopted that
keywords of the JACOBIAN language are typed in upper case and identifiers introduced by the
user are typed in mixed case. Identifiers introduced by the user may be any sequence of the letter
characters A-Z, the number characters 0-9, and the underscore character . The sequence must
always start with a letter character, and can have a maximum of eighty characters. Note that any
text following a # symbol on a line of input is treated as comment and ignored by JACOBIAN.

Variables in an JACOBIAN model represent physical quantities (such as the temperature or
pressure of the contents of a vessel). Equations (such as a mass balance) relate these variables to
form a model of a physical system. All variables in an JACOBIAN model must have a type. The
type of a variable states certain properties held in common by all variables of that type. A variable
type declaration states the following:

• an identifier for the type (for reference in subsequent input)

• a default initial guess for the value of variables of this type (for use in iterative calculations
that require an initial guess)

• a lower bound on the value of variables of this type

• an upper bound on the value of variables of this type

4

DECLARE

TYPE

identifier # default # lower # upper
Molar Concentration = 1.0 : −1E−12 : 1E5 UNIT = "mol/m3"
Reaction Rate = 0.0 : −1E−4 : 1E9 UNIT = "mol/(m3 s)"

END # don’t forget to mark the end of the DECLARE block

MODEL Series Reactions # a MODEL must have an identifier for future reference 10

PARAMETER

Rate Constant1 AS REAL # which denotes the type
Rate Constant2 AS REAL

VARIABLE

Concentration A, Concentration B AS Molar Concentration # variable type
Concentration C AS Molar Concentration
Rate 1, Rate 2 AS Reaction Rate v

20

EQUATION

$Concentration A = −1*Rate 1 ;

$Concentration B = 1*Rate 1 − 1*Rate 2 ;

$Concentration C = 1*Rate 2 ;

Rate 1 = Rate Constant1*Concentration A ;
30

Rate 2 = Rate Constant2*Concentration B ;

END # don’t forget to mark the end of the MODEL block!!

Figure 4: JACOBIAN MODEL and DECLARE Blocks for Mass Actions Kinetics Example

5

SIMULATION Series Reactions Simulation # identifier for future reference

UNIT

Reactor AS Series Reactions

SET

Reactor.Rate Constant1 := 0.3 ;
WITHIN Reactor DO

Rate Constant2 := 0.5 ;
END # within structure 10

PRESET

WITHIN Reactor DO

identifier # guess # lower # upper
Concentration A := 2.0 : 0.0 : 5.0 ;
Concentration B := 0.0 ;
Concentration C := 0.0 : : 5.0 ;

END

INITIAL 20

WITHIN Reactor DO

Concentration A = 2 ;
Concentration B = 0.0 ;
Concentration C = 0 ;

END

SCHEDULE

CONTINUE FOR 25.0

END # and, don’t forget to end the SIMULATION block 30

Figure 5: JACOBIAN SIMULATION Block for Mass Action Kinetics Example

6

• an optional declaration of the units of measurement for variables of this type (currently only
used for display purposes)

Any calculation with an JACOBIAN model will ensure that the values of variables of a particular
type stay within these bounds. For example, absolute temperature is a positive quantity. If the
value really is outside these bounds, the calculation will fail with an appropriate error message.

JACOBIAN input is divided into a series of blocks. A DECLARE block is used to declare
variable types. Any number of DECLARE blocks may appear in an input file, but a variable
type must be declared before it is used. In our example, we need types for molar concentration
quantities and reaction rate quantities. The DECLARE block in figure 4 states that variables of
type Molar Concentration will have a default initial value of 1.0, a lower bound of −1 × 10−12

(concentrations are always positive quantities), an upper bound of 1× 105, and have units of moles
per cubic meter. The better the initial guess, and the tighter the bounds you can provide, the
better the numerical methods will perform. Note that specifying the bounds too tightly can lead
to disaster because the value of a variable will vary with time over a range during a dynamic
simulation, and this range must lie within the bounds specified.

MODEL blocks are used to state the variables and equations that make up the mathematical
model of a unit operation in a chemical process. Note that a MODEL will typically be an under
determined system of equations: there will be less equations than variables. This leaves a subset of
variables that must be specified by the user or determined by other models so that the number of
unknown variables remaining equals the number of equations. When the number of equations equals
the number of unknown variables, the model can be solved (the model is now fully determined).
The variables specified to make the model fully determined in this manner are sometimes called the
degrees of freedom of the simulation. A MODEL block for our simple example is shown in figure 4.

A MODEL may have a series of time invariant parameters, introduced in the PARAMETER
section of a MODEL. This makes a model more general and enables it to be used again in many
applications. For example, a MODEL of a cylindrical vessel that is parameterized by its cross
sectional area may be used to represent any cylindrical vessel provided a value for this area is
specified. In figure 4 we want to introduce two parameters to represent the rate constants of the
two reactions of type REAL. Parameters may also be of type INTEGER and type LOGICAL (i.e.,
values of TRUE or FALSE). Note that any attribute of a model (e.g., a parameter or a variable)
must be declared before it is referred to.

Next, we must introduce the variables that represent the various time dependent quantities in
the model. In this case, we want to introduce a variable of type molar concentration for each of the
chemical species involved in the reaction: A, B, and C; and a variable for the rate of each reaction.
If a set of variables all have the same type, they can just be listed before the type. This is done in
the VARIABLE section of figure 4.

The heart of an JACOBIAN MODEL are the equations that relate the variables. The EQUATION
section of figure 4 shows the equations (1)–(5) transformed into a form that JACOBIAN can
understand. An equation is two real expressions linked by the equality operator = and terminated
by the ; character. Equations may involve constants (e.g., 3.142), parameters, and variables as
operands, and the operators +, −, ∗, / and ^ (exponentiation – i.e., raising to a power). There
are also the built-in transcendental functions shown in table 1. You can find more functions in the
Jacobian Syntax Manual in the Materials section in the 10.490 Stellar site. In figure 4 note that
the symbol $ is used to denote the time differential operator:

$Concentration A is equivalent to
dCA

dt

7

Hence the left hand sides of the first three equations in figure 4 are the accumulation terms in the
mass balances.

Identifier Function

ABS The absolute value (magnitude) of the argument
SIGN The sign of the argument
SQRT The square root of the argument
SIN The sine of an argument in radians
COS The cosine of an argument in radians
TAN The tangent of an argument in radians
ASIN The arcsine in radians of the argument
ACOS The arccosine in radians of the argument
ATAN The arctangent in radians of the argument
SINH The hyperbolic sine of the argument
COSH The hyperbolic cosines of the argument
TANH The hyperbolic tangent of the argument
EXP The exponential of the argument
LOG The natural logarithm of the argument
LOG10 The logarithm to base 10 of the argument
INT Truncate real argument towards negative infinity

Table 1: Table of Built-in Vector Functions

Our model is therefore a system of ordinary differential equations (ODEs) coupled with algebraic
equations (AEs). These are usually known as differential-algebraic equations (DAEs).

It is important to note the difference between the equality operator = and the assignment opera-
tor := in the JACOBIAN language. The equality operator is used to denote a general mathematical
relationship between two expressions (i.e., an equation), whereas the assignment operator is used
to denote the assignment of the value of an expression to a variable; the variable assigned a value
appearing on the left hand side of the assignment operator. Examples of the use of the assignment
operator appear in figure 5.

A SIMULATION block is used to specify a particular simulation with a MODEL previously
declared. Obviously, many different simulations may be performed with a single model, each
simulation being a different scenario in which the physical system represented by the model is
studied. An JACOBIAN dynamic simulation calls for the numerical solution of an initial value
problem (IVP) in the DAEs making up the model. In order to fully specify a simulation, we
must make the model fully determined by specifying the degrees of freedom, and define an initial
condition for the IVP.

Figure 5 shows the SIMULATION block for our example. First, we must state which MODEL(s)
we are going to use for the simulation. The UNIT section creates active instances of the models
listed during execution of the simulation.

All the time invariant parameters must be assigned values before the simulation is well-posed.
This is shown in the SET section of figure 5. Note that the particular variables of a model instance
are referenced by what is called a pathname mechanism. In its most simple form this is:

Model Instance Identifier.Variable Identifier

In other words, the model instance identifier, a . character, and then the variable identifier. In more
sophisticated models (e.g., in the ICE reactor example) there may be a whole list of model instance

8

identifiers separated by . characters prefixing the variable identifier. This occurs when models are
nested inside each other to manage the complexity of developing a large process model.

In the first line of the SET section in figure 5, the parameter is referred to by its complete
pathname. In the third through fifth lines, a WITHIN structure is used to define Reactor as the scope
within which any pathname is interpreted. This shorthand avoids the need to keep prefixing variable
identifiers with model instance identifiers. WITHIN structures may be nested. If an identifier is not
found within the current scope, the enclosing scopes are searched sequentially. If the identifier is
still not found, the compiler will issue an error message.

In many situations it is desirable to override the default initial guesses (defined in the variable
type) for specific variables. For example, we may have more specific information on the value taken
by a variable. The better the initial guess, the higher the chance that JACOBIAN will converge!
Initial guesses and bounds for variables may be changed in the PRESET section, as shown in figure
5.

The initial conditions of a simulation are defined in an INITIAL section, as shown in figure 5. The
example input states that the initial concentration of species A is 2 [mol/m3], and the concentration
of the other species is zero (i.e., they are not present initially). In general, initial conditions may
be expressed as completely general equations that are added to the MODEL equations in order to
calculate consistent initial values for all the variables in the model. Note that the WITHIN structure
may be used with equations as well as assignments.

Finally, we need to state how long the simulation should run for. This is done with a SCHEDULE
section. In general, the SCHEDULE section may be used to declare very complex sequences of
operations to be performed during the simulation (this is discussed below). This feature makes
JACOBIAN unique amongst process simulators.

An JACOBIAN input file may contain any number of DECLARE, MODEL and SIMULATION
blocks as required in any order, provided that a block is declared before its identifier is referenced
in another block. Your input may also be in several different files, but again, a file containing the
relevant declaration must be loaded and compiled before files referring to the block in question can
be loaded successfully.

Now that we can understand what the input file means, let’s execute a simulation. First you
need to load the file Series Reactions, to do that right click on the file name and then click on Load
(Figure 6). Loading a file for translation will make JACOBIAN translate the input file and perform
certain checks on the correctness of the input. If there are any syntax errors, etc. in the input file,
JACOBIAN will inform you that the translation failed in the dialog box at the bottom of the GUI.
JACOBIAN also will show where are the errors in the open file (see Figure 7). All errors must be
corrected before JACOBIAN will allow the input file to be executed. When the file is translated
successfully, the simulations names will turn green. Note, remember to unload the file if you want
to load a new file. If the two files share variable types, JACOBIAN will not load the new file.

At this point you should have a correct input file loaded into the JACOBIAN environment. The
loaded files are displayed on the lefthand side of the GUI. To execute Series Reactions Simulation,
right-click on it and then click on Execute (Figure 8). JACOBIAN will proceed to set up the problem
and integrate the differential equations numerically. For this problem, the simulation will be exe-
cuted virtually instantaneously. During execution, text output concerning the numerical solution
and possible input errors is displayed in the dialog box at the bottom of the GUI. JACOBIAN will
tell you whether the simulation was successful, or terminated prematurely. The simulation should
be successful! You are now ready to display the results generated by JACOBIAN, as described in
the next section of this memo.

9

Figure 6: Pop-up menu for loading JACOBIAN input file

Figure 7: JACOBIAN Error window

10

Figure 8: Pop-up menu for executing simulation

Plotting JACOBIAN Results

Plotting environment

The best way to view the results of a dynamic simulation is to generate graphs of the variation of
the variables with time over the simulation. After a successful simulation, the output node in the
Project Explorer tree will be updated with a highlighted node with the name of the computation
just executed (Figure 9). Simulation results for this computation node can be viewed in the Main
Workspace by:

• Double clicking the computation name,

• or right-clicking the computation name and select open from the pop-u menu (Figure 9).

The output tab which shows up in the Main Workspace has three sub-tabs: the Summary tab,
Saved Plot tab, and Visualization tab. Figure 10 shows the content of the Summary tab, which
consists of four sections: Annotation, Computation Report, Computation Input, and Executation
Summary. Each of these sections can be collapsed or expanded by clicking the triangle on the left
of the section name. The Annotation section can be used to comment the current computation; the
Computation Report section displays the computation report from JACOBIAN; the Computation
Input tab shows the simulation block extracted for this computation; and the Executation Summary
section contains a copy of the output printed by the JACOBIAN during the executation of this
computation.

Simulation results can be visualized by clicking the Visualization sub-tab of the Output tab
for current computation. This shows the JACOBIAN plotting environment. Variables to view

11

Figure 9: Pop-up menu for opening computation output.

are selected from the tree in the left panel of the Plotting Environment. The structure of this
variable selection tree is the same as the hierarchical structure of the input file. To select variables
for viewing, simply double click to select, or right click and select Select from the pop-up menu.
Multiple variables can be selected simultaneously while holding Control key, or Shift key to select
contiguous ranges of variables.

Once you have selected the variables, the trajectories for these selected variables will be displayed
in the plot panel (Figure 11). The variable table which locates under the tree will also be populated
with the selected variables. There are two checkbox columns for this variable table with the header
of the column to be Y1 and Y2, respectively. They correspond to the left and right y-axis which
you can use for the plotting purpose. When the selected variables are of very different scales, it
will be very helpful to use one y-axis for the large-scale variables and use another y-axis for the
small-scale variables.

By default, when the variables are first selected, the checkbox for the Y1 column will be checked,
which means that the primary y-axis (i.e., the left y-axis) are used for all the variables. You can
simply select the corresponding checkbox for the Y2 column for those variables onto which you want
to use the secondary y-axis (the right y-axis). In Figure 12, the variable of RATE 1 is selected to
use the secondary y-axis in the plot panel. As you can see the legends for these two y-axis variables
are displayed in separate legend boxes to help you to identify the variables. A number of plot
customizations are available by right clicking on the plotting area (Figure 11). For those variables
which are already shown in the plot panel, if you want to remove some of them from the plot, you
can simply un-check the corresponding selected checkbox. They can be put back into the plot if
you re-check their corresponding checkbox. The values for the variables displayed in the plot panel
can be viewed by clicking the Table tab (Figure 13).

12

Figure 10: The Summary tab for the opened computation output.

For the variables displayed in the plot panel, they can be saved by clicking the Save button
under the variable table. This will bring up a popup window (Figure 14) which asks for the name
of the file you want to use for the saved plot. You can also write annotation for the saved plot.

13

Figure 11: The plot showing the trajectories for the selected variables. Only the primary y-axis is
used in this plot.

Figure 12: Plot showing the trajectories for the selected variables. Both the primary y-axis and
secondary y-axis are used in the plot.

14

Figure 13: Table showing the values for the selected variables

Figure 14: The pop-up window for saving the plot

15

Tutorial Example: First Reactor in ICE Process

If necessary, unload the input file for the mass action kinetics example. ICE Reactor1 Model.JAC in
the input directory contains the MODEL of the first reactor in the ICE process and the associated
feed tanks and valves. Note that these MODELs will never change throughout this project. Hence
you should not edit this file! However, it should always be included in files with SIMULATION
blocks that represent particular operating policies applied to this physical system.

The physical property models are in the file PhysicalProperties.JAC in the input directory and
you will always need to include PhysicalProperties.JAC in the models for the reaction and distillation
tasks of the ICE process. At your leisure, take a look at the contents of this file, but you don’t
really need to understand it to proceed with the tutorial.

To simulate a particular operating policy for the first reactor, you must write a SIMULATION
block describing your operating policy. We have prepared one for you already. Load HW21A.JAC.
This file contains the initial conditions, values for the inputs to the system (degrees of freedom),
and a schedule that describes any changes to these inputs as well as the conditions that define the
end of the simulation. This SIMULATION block represents an operating policy that is uncannily
similar to that of the first part of the homework problem. We strongly suggest that you copy this
file and edit it in order to experiment with different operating policies for the first reactor.

To perform the simulation, we need to execute the SIMULATION block that was declared in
the file HW21A.JAC. The simulation takes less than 10 seconds on any of the computers in the PC
ChemE cluster. JACOBIAN will report on how far it has advanced the simulation time. Once
the simulation is complete, you can start to answer the homework problem by using the plot
environment. Don’t forget to copy this file before editing it for the other parts of the homework.

Getting Help

The most current syntax manual for JACOBIAN is posted on the 10.490 Stellar website. This
contains a detailed description of the complete syntax.

Using existing MODELs

There are many ways of using an existing MODEL. One way is to use INHERITS which copies all
the contents of the MODEL in the new MODEL (see Figure 15). Another way is to use a UNIT
that is a copy of the MODEL (see Figure 16). Note the different path of the variables in the two
options.

16

MODEL Plant1 INHERITS Series Reactions #INHERITS makes a copy of the previous model

VARIABLE

Extra rate AS Reaction Rate

EQUATION

Extra rate=Rate 1+Rate 2;

END

SIMULATION ex1

UNIT

Plant AS Plant1

SET 10

Plant.Rate Constant1 := 0.3 ;

Plant.Rate Constant2 := 0.5 ;

INITIAL

WITHIN Plant DO

Concentration A = 2 ;

Concentration B = 0.0 ;

Concentration C = 0 ;

END

SCHEDULE

SEQUENCE 20

CONTINUE FOR 25.0

DISPLAY Plant.Extra rate

END

END

Figure 15: Using INHERITS

MODEL Plant2

UNIT

Reac AS Series Reactions #Reac is an object in Plant2

VARIABLE

Extra rate AS Reaction Rate

EQUATION

Extra rate=Reac.Rate 1+Reac.Rate 2;

END

SIMULATION ex2 # identifier for future reference 10

UNIT

Plant AS Plant2

SET

Plant.Reac.Rate Constant1 := 0.3 ;

Plant.Reac.Rate Constant2 := 0.5 ;

INITIAL

WITHIN Plant.Reac DO

Concentration A = 2 ;

Concentration B = 0.0 ;

Concentration C = 0 ; 20

END

SCHEDULE

SEQUENCE

CONTINUE FOR 25.0

DISPLAY Plant.Extra rate

END

END

Figure 16: Using UNIT

17

Usefull features

Getting numerical values of variables without plotting

The easiest way of getting the value of a few variables at a particular point in the simulation is to
use a DISPLAY followed by the path to a variable, as shown for the Simple Mass Action Kinetics.

...

...

SCHEDULE

SEQUENCE

CONTINUE FOR 25.0

DISPLAY Reactor.Concentration A

END

END

If you want to access or process all the values of all variables at all simulation times you can
incorporate them in a spreadsheet, such as Microsoft Excel. In the OPTIONS section of the SIMU-
LATION block turn the option of CSVOUTPUT (Comma Separated Value) to be TRUE. JACOBIAN
will write a file called SIMULATION-NAME.csv in the directory /PROJECT-NAME/output. For
the Simple Mass Action Kinetics:

...

...

SIMULATION Series Reactions Simulation # identifier for future reference

OPTIONS

CSVOUTPUT:=TRUE;

...

...

JACOBIAN will write a file called SERIES REACTIONS SIMULATION.csv. By the extension
Excel will recognize the format of the file and create a spreadsheet where each column corresponds
to one variable and each row to a time value.

Printing the JACOBIAN input files

Common errors and problems in simulations

All examples in this section are based on the Simple Mass Action Kinetics example.

How to avoid errors in the first place

Both inexperienced and experienced users run into problems when using software for complex
models and most of the time it is their own fault, rather than a software bug.

Some things to keep in mind for your simulations:

1. If possible, gradually write models or change simulations. After each change run your simu-
lation, and check the results.

2. Take your time when writing the equations (first think, then type).

3. Try to be as explicit as possible (e.g 50 kmol/hr should be written as 50*1000/3600 and not
as 1/0.072 or 13.88889). Put lots of comments explaining to yourself and others changes to
the input file.

4. When defining types, be careful with the bounds and default values. Having tight bounds
and good defaults helps the solver to converge, but if the bounds are too tight the equations
will have no solution.

18

5. When good guesses for the variable values are available, use them in the PRESET section.

6. Remember to take breaks and get enough sleep ,.

Variable type already used, model identifier previously used

If you are trying to upload two files which have conflicting models or variables identifiers,JACOBIAN
will complain in the error log (Figure 17). You have to unload the previous file (right-click on File
→ Unload).

Figure 17: Types already used.

Could not find a value for . . .

If you forget to set a value for a parameter, JACOBIAN will translate the file without complaints,
but when you try to execute it, you will get an error message in the error log. You have to set
a value for each parameter (even if the parameter is not used). Figure 18 shows an example of a
simulation with a missing parameter value.

SIMULATION no set # forgot to set a parameter

UNIT

Reactor AS Series Reactions

SET

Reactor.Rate Constant1 := 0.3 ; #did not set this

Reactor.Rate Constant2 := 0.5 ;

INITIAL

WITHIN Reactor DO 10

Concentration A = 2 ;

Concentration B = 0.0 ;

Concentration C = 0 ;

END

SCHEDULE

CONTINUE FOR 25.0

END

Figure 18: Forgetting to assign a parameter value

19

Wrong number of initial conditions, There is 1 overdetermined block, There is
1 underdetermined block

In complex models it is very difficult to have a well defined system of equations. Because of a typo
or a conceptual error you may have wrong number (Figure 19) or wrong combination (Figure 20)
of equations or initial conditions. JACOBIAN will complain about that in the error log.

SIMULATION Wrong init num # wrong number of initial conditions

UNIT

Reactor AS Series Reactions

SET

Reactor.Rate Constant1 := 0.3 ;

Reactor.Rate Constant2 := 0.5 ;

INITIAL

WITHIN Reactor DO

Concentration A = 2 ; 10

Concentration B = 0.0 ;#did not provide initial condition

Concentration C = 0 ;

END

SCHEDULE

CONTINUE FOR 25.0

END

Figure 19: Wrong number of initial conditions

SIMULATION Wrong init comb # wrong combination of initial conditions

UNIT

Reactor AS Series Reactions

SET

Reactor.Rate Constant1 := 0.3 ;

Reactor.Rate Constant2 := 0.5 ;

INITIAL

WITHIN Reactor DO

Concentration A = 2 ; 10

$Concentration A=0.6; #thought I should calculate the derivative at TIME=0

Concentration B = 0.0 ;#did not provide initial condition

Concentration C = 0 ;

END

SCHEDULE

CONTINUE FOR 25.0

END

Figure 20: Wrong combination of initial conditions

Debugging

JACOBIAN has an analysis tool that will help you find which equations are underdetermined or
overdetermined. Right click on the Simulation name and click on Analyze. A new window will
pop up (Figure 21). JACOBIAN divides the analysis task in three steps and each time tries to
break down the equation system in as many blocks as possible. You can use the analysis tool even
without understanding the underlying mathematics. By clicking on the different analysis options
(DAE, High Index, Initialization) you can study the different analysis. If you click on one of the

20

Permuted options then you can get information about the blocks of equations and where are the
errors. To do this go to the Information window and expand the blocks saying Overdetermined or
Undetermined. You will find two trees for the corresponding variables and equations. By expanding
these trees and double clicking their components you can see the equations and the variables in the
Variables and Equations window. Usually the blocks are not too big and it is relatively easy to find
out where the mistake is. An ovedetermined block is a system of equations with more equations
than variables; remove one or more equations. An underdetermined block is a system of equations
with more variables than equations; add more equations.

Figure 21: Using the analysis tool.

Consistent initialization failed or Integration failed

Common reasons

1. Typo or error in EQUATIONS, SET, INPUT. Example 50 kmol/s instead of 50 kg/hr

2. Big changes in the course of the SIMULATION in the RESETS and REINITIAL sections. An
example is a step-change in pressure, instead of a ramp-change or feeding a large amount of
a reagent instantaneously. Note that changes like that are often physically impossible or very
dangerous.

3. Too tight bounds in type definition.

4. Bad initial guesses.

Figure 22 shows an example for a simulation where the consistent initialization will fail, because
of a typo that makes a variable value out of bounds.

21

SIMULATION ConsIn # the consistent initialization fails

UNIT

Reactor AS Series Reactions

SET

Reactor.Rate Constant1 := 0.3 ;

Reactor.Rate Constant2 := 0.5 ;

INITIAL

WITHIN Reactor DO

Concentration A = 2e6 ; #2e6 instead of 2 10

Concentration B = 0.0 ;

Concentration C = 0 ;

END

SCHEDULE

CONTINUE FOR 25.0

END # and, don’t forget to end the SIMULATION block

Figure 22: Simulation example where the consistent initialization will fail

Debugging

Take a break and think about the problem and your input file. Use the analysis tool 21. In
the OPTIONS section of the SIMULATION block you can turn the option of INIT PRINT LEVEL,
REINIT PRINT LEVEL or DYNAMIC PRINT LEVEL to be a number greater than zero. The larger
the number, the more information you get. Depending on where the error is generated, you can
select the appropriate option and get more information. For the Simple Mass Action Kinetics:

...

...

SIMULATION Series Reactions Simulation # identifier for future reference

OPTIONS

INIT PRINT LEVEL:=100;

REINIT PRINT LEVEL:=100;

DYNAMIC PRINT LEVEL:=100;

...

...

22

Problems with JACOBIAN or the plotting environment

Freezing of JACOBIAN

JACOBIAN may seem to freeze when running a big simulation on a slow machine. You will have
to be patient and wait for the simulation to end.

Segmentation fault (crash) of JACOBIAN

Reasons

1. Pressing buttons or key combinations too quickly

2. Bug in program, or underlying packages.

What to do

1. Don’t press buttons or key combinations quickly.

2. Often save your files if you make many changes without executing (each time you press the
Update button the file is saved anyway).

3. If the segmentation fault is reproducible, contact the TAs with the exact sequence of steps
and the files. If there is a bug in the program, the developers might be able to identify and
fix the problem.

JACOBIAN Language Reference

This section provides more detailed information on the JACOBIAN input language so that you can
change input files for the homework problem.

SIMULATION Blocks – Modeling Operating Policies

The conditions characterizing a particular dynamic simulation in JACOBIAN are given in the
specification of a SIMULATION block. The block refers to the mathematical model that will be
used, and adds the information necessary to use the model for a simulation. This information
includes the following:

• initial conditions for the simulation.

• a specification of the input variables (of degrees of freedom) for the simulation.

• a schedule that describes any changes to the inputs at later times in the simulation. This is
how control actions imposed upon the system are modeled.

The description of a SIMULATION block is divided up into the following sections:

• OPTION: this section enables you to set a number of parameters related to numerical options,
convergence criteria, output, etc. For details see the syntax manual. You should not need to
change these options.

• UNIT: this section declares the MODEL blocks that will be used during the simulation.

23

• SET: this sections assigns values to any model parameters not already assigned values in
the MODEL blocks. JACOBIAN will not execute a simulation until all the time invariant
parameters are assigned values.

• INPUT: this section specifies inputs or degrees of freedom for the simulation. The inputs
may be assigned constants or functions of time. The degrees of freedom must be satisfied for
JACOBIAN to execute a simulation.

• PRESET: this optional section allows the specification of initial guesses for some or all of the
simulation variables that override the defaults associated with a variable’s type.

• INITIAL: this section is used to specify the initial condition of the system for the simulation.
JACOBIAN will not execute a simulation unless the correct number of initial conditions are
specified.

• SCHEDULE: this section specifies the stopping criteria as well as any changes to the inputs
to the system during the course of the simulation.

You will need to modify the INPUT, INITIAL, and SCHEDULE sections in order to run the distillation
and reaction tasks through more sophisticated operating policies.

The INPUT Section

The INPUT section sets the values of a subset of the variables in the process model. For instance,
the vapor rate, reflux ratio and column pressure of the distillation tasks are specified as inputs.
Note that each of the variables that is specified is referred to by the full pathname of models that
denotes its location. The values assigned in the INPUT section may be changed as part of the
SCHEDULE; later on in the simulation, these can be changed by using a RESET task that will
assign a new value to the variable. Note that the assignment operator (:=) is used rather than the
equality operator (=) for all specifications in the INPUT section. The values assigned to a variable
in the INPUT section may be expressed as a constant, or a function of time. The keyword TIME is
used to denote the time since the start of the simulation (at the start, TIME = 0)

The INITIAL Section

The INITIAL section defines the initial conditions for the simulation. The mathematical model of
the reactor is a set of differential-algebraic equations, and an initial value problem in these equations
is not fully defined without a set of initial conditions. In the SIMULATION block given to you the
initial number of moles in the still pot and the accumulators are required as initial conditions.
These initial conditions fully define the initial state of the column flowsheet; the model equations
define all other quantities in terms of this subset. Note that the equality operator (=) is used
rather than the assignment operator (:=), since JACOBIAN treats initial conditions as additional
equations that are required to fully specify the system of differential-algebraic equations in order
to determine consistent initial conditions.

The SCHEDULE Section

The SCHEDULE section allows the simulation to represent sophisticated operating policies. The
SCHEDULE describes the sequence of external actions that are imposed on the model, and varying
the sequence of external actions imposed upon the reactor allows us to simulate the reactor with
different operating policies. Basically, these features of JACOBIAN allow you to experiment with
and design an optimal operating policy for the reactor without experimenting with the real plant.

24

Clearly, electronic experiments with JACOBIAN are safer, cheaper, and produce no waste when
compared with pilot plant experiments.

The distillation and reaction simulations you may want to perform will make use of several
features of the SCHEDULE language. These features will be briefly described below, and some of
their potential uses will be given. A SCHEDULE block is written in a similar fashion to a computer
programming language. The individual statements in a SCHEDULE are known as tasks.

SEQUENCE <list of tasks> END The SEQUENCE task encloses a list of other tasks, and specifies
that the next task in the list will be started only after the preceding task has been completed. It
is used to describe sequences of primitive operations.

CONTINUE FOR <real expression> The CONTINUE FOR task directs the computer to continue the
simulation for the length of time specified by the real expression. The real expression is evaluated
at the simulation time at which the task is executed.

CONTINUE UNTIL <logical proposition> The CONTINUE UNTIL task is used to direct the com-
puter to advance the simulation until the state of the system satisfies the condition defined by the
logical proposition. Note that if this condition is never satisfied, the simulation will run forever (or
until some limit is reached, such as a tank becoming empty, at which point the simulation fails).
The atomic propositions of a logical proposition are relational expressions of the following form:

<real expression> <relational operator> <real expression>

where <relational operator> is one out of the set of operators { <,>,<=,>=,<>,= }. <> means not
equal. One has to be careful with the use of <> and = because the simulations are done with finite
precision arithmetic on a computer. An example of a relational expression is:

CONTINUE UNTIL Reactor.Temp >= 373.15

A logical proposition may involve one or more relational expressions linked by the logical operators
AND, OR and NOT. For example:

CONTINUE UNTIL (Temp > Bub Temp) OR (Temp < Dew Temp)

The brackets are not strictly necessary, but they show the logic more clearly. A common problem
is not to use the full pathname to the variables in a CONTINUE UNTIL task. For example, you
must code:

CONTINUE UNTIL Plant.ProcessSystem.Reactor1.No Mols(7) < 1E-6

You must always use the full pathname in CONTINUE UNTIL tasks (this is a feature (!?) of
JACOBIAN). There is also a hybrid form of the CONTINUE UNTIL and CONTINUE FOR tasks:

CONTINUE FOR <real expression> <logical op> UNTIL <logical proposition>

where <logical op> is AND or OR. The OR will continue for a fixed period, or until the logical
condition is satisfied, whichever occurs first. The AND form will continue until both criteria are
satisfied. The OR form is particularly useful if you are not sure if a certain logical proposition will
ever be satisfied and want the simulation to time out as a precaution.

25

RESET <variable assignments> END The RESET task is used to reset the value of variables that
have been originally specified in the INPUT section at some later point in time during the simulation.
For example, a RESET task may be used to change the flowrate through a valve by manipulating
the variable that represents its stem position. The following would change the stem position of
Valve 1 after 3600 seconds:

SEQUENCE

CONTINUE FOR 3600

RESET

WITHIN Plant.Valve_1 DO

Stem_Position := 1 ;

END # Within

END # Reset

END # Sequence

This has the effect of opening the valve if the original value for this variable was zero (corresponding
to a closed valve). The assignments inside a RESET task are expressed in an identical fashion to
those in the INPUT section.

REINITIAL <variable list> WITH <equation list> END The REINITIAL task can be used to define
discontinuities in a set of the model variables. For example, a REINITIAL task may be used to
indicate the instantaneous addition of a particular reactant to the vessel:

CONTINUE FOR 3600

REINITIAL

Plant.Reactor1.No_Mols(8)

WITH

Plant.Reactor1.No_Mols(8) = OLD(Plant.Reactor1.no_Mols(8)) + 2 ;

END # Reinitial

This task states that variable Plant.Reactor1.No Mols(8) is discontinuous, and that its new value
is calculated by the equation that follows (i.e., the number of moles of species no. 8 jumps by 2
moles on execution of the REINITIAL task). Note the use of the built-in OLD function to refer to
the value of a variable immediately before the discontinuity. In general, the discontinuous variables
listed must be differential state variables (i.e., their time derivatives appear explicitly in the process
model. For example, mole numbers of each species in the reactor). The number of equations must
exactly equal the number of discontinuous variables.

MODEL Blocks – Modeling Physical Behavior

This information is here for reference purposes in order to help you understand the input.

Arrays

All the attributes of a MODEL block may be declared as a regular structure, or array, of a base type.
Attribute arrays may have an arbitrary number of dimensions.1 The total number of scalar quanti-
ties, or elements, represented by an attribute array is determined from the product of the number of
elements in each dimension of that array. The number of elements in each dimension is declared in

1It is important here to distinguish between the dimensions of an array or regular structure, and the fundamental

physical dimensions of a quantity, such as mass or length.

26

terms of a scalar integer expression involving integer constants and/or any previously declared inte-
ger parameters of the MODEL block in question (e.g. Flow_In AS ARRAY(3,NoStream+1) OF REAL).

References to array attributes may be made in several different fashions. For example, a refer-
ence to an entire array is made through use of the attribute identifier alone, and a reference to an
individual element of an array is made by an explicit index to the element in question. This index
is determined from a list of scalar integer expressions enclosed by brackets following the attribute
identifier (e.g. Flow_In(2,NoStream-1)). Each expression in this list represents an index into one
dimension of the array. Individual elements of a dimension are indexed from one to the number of
elements in that dimension.

A reference to a subset of the elements in one or more dimensions of an array is termed a
reference to a slice of that array. The elements that are included within a slice is again determined
by a list of references into each dimension of the array in question enclosed by brackets. A subset
of the elements in a particular dimension is denoted by two scalar integer expressions separated by
a colon, representing the lower and upper bounds of the reference into that dimension respectively
(e.g. Flow_In(2:3,1:NoStream)). The value of the upper bound must be greater than or equal to
that of the lower bound, and both values must lie with the lower and upper indices of the dimension
itself. A reference to an entire dimension is made by leaving a blank, so a list of blanks enclosed in
brackets and separated by commas is identical to the use of an attribute identifier alone. A reference
to an individual element is again made by a single scalar integer expression (e.g. Flow_In(2:3,1)).

Arrays of equation attributes are not declared explicitly, but are implied by their declaration in
terms of expressions involving references to arrays or slices of variable and/or parameter attributes.
The dimensionality2 of a unary expression is the same as that of its operand. For binary expressions,
three cases are distinguished:

• if both operands are scalar, then the expression is scalar.

• if only one operand is scalar, then the expression adopts the dimensionality of the other
operand.3

• If neither operand is scalar, then both operands must be of the same dimensionality, which
is also adopted by the expression itself.4

The dimensionality of the equation itself is obtained by applying the rules for binary expressions
to the equality operator =.

Stream Attributes

Streams attributes are subsets, not necessarily disjoint, of the variables describing the time de-
pendent behavior of a system. They represent a system’s interface with its environment, and are
useful in specifying the complex connection mechanisms that exist between different components
of a physical system.

The STREAM section is used to declare stream attributes, which must be declared as instances
of already declared stream types. This declaration also includes a specification of the subset of
variable attributes that is to be included in the stream. The number and types of the variable

2The dimensionality of any attribute is defined as the number of dimensions and the number of elements in each

dimension.
3Each element of this expression is obtained by the binary operation between the scalar operand and the corre-

sponding element of the other operand.
4Each element of the resulting expression is obtained by the binary operation between the corresponding elements

of the two operands.

27

attributes in a stream must normally match directly those in the stream type declaration. An
example of a STREAM section is shown in figure 23.

STREAM

Inlet : Flow_In, Temp_In, Press_In, Enth_In AS MainStream

Outlet : Flow_Out, Temp_Out, Press_Out, Enth_Out AS MainStream

Figure 23: Example STREAM section

It should be noted that no assumptions concerning the dimensionality of the variable attributes
included in a stream are made in a stream type declaration. Therefore, a slice or an entire array
of variable attributes may appear in any field of a stream attribute, provided the base type of the
array matches the variable type of the corresponding field in the stream type. For instance, the
following is a valid stream declaration:

STREAM

Inlet : Flow_In(1:NoComp-1),Temp_In,Press_In,Enth_In AS MainStream

Stream attributes may themselves be declared as arrays of the basic stream types. For instance, a
mixer involving several inlet streams could have a corresponding stream declaration of the form:

STREAM

Inlet : Flow_In, Press_In AS ARRAY (NoStream) OF MainStream

Each variable attribute in a k-dimensional stream must have at least k dimensions, and each of its
first k dimensions must have exactly the same number of elements as the corresponding dimension
of the stream. For instance, a possible declaration of the variables in the above example would be:

VARIABLE

Flow_In AS ARRAY (NoStream,NoComp) OF Flowrate

Press_In AS ARRAY (NoStream) OF Pressure

This rule allows a natural identification of the variable attributes to be associated with each element
of the stream array.

Functions

Expressions may include built-in functions as operands. A function performs a mathematical
operation on its arguments that would be difficult or even impossible to declare using the standard
language operators. At present, there are two categories of built-in function:

• Vector functions take a single argument and return a set of values with dimensionality equal
to that of the argument.

• Scalar functions take an arbitrary number of arguments of arbitrary dimensionality and return
a scalar value.

28

Identifier Function

SIGMA The sum of the arguments
PRODUCT The product of the arguments
MIN The smallest argument
MAX The largest argument

Table 2: Table of Built-in Scalar Functions

All function arguments may themselves be expressions of the appropriate type. Table 1 contains a
summary of the vector functions currently included in the language definition and table 2 contains
a summary of scalar functions.

If any of the arguments of a scalar function are references to an array or a slice, the operation
is applied to the entire array or slice. For example, if an array is passed as an argument to the
function SIGMA, a scalar value equal to the sum of all the elements of that array will be returned (e.g.
Total_Flow_Out = SIGMA(Flow_Out);). All function identifiers may be used in the declaration of
model attributes, thereby locally overriding the built-in function definitions.

29

