Homework#1

Given: September 19, 2002 Due: October 3, 2002

1. Solve Problem 4.3-2, page 302 in from Gere

In addition, assume that the beam material has a Young's modulus E, shear modulus G, and the following a rectangular cross-section

- (a) Determine the deflection curve w(x) for the beam.
- (b) Determine the maximum and minimum longitudinal stress σ_{xx} and longitudinal strain ε_{xx} in the beam.
- (c) Determine the maximum and minimum shear stress σ_{x} and shear strain γ_{x} in the beam.

2. Solve Problem 4.3-3, page 302 from Gere

In addition, assume that the beam material has a Young's modulus E and shear modulus G, as well as the following rectangular cross-section

- (a) Determine the deflection curve w(x) for the beam.
- (b) If you are told that the maximum longitudinal stress that the beam can carry in tension before plastic yield is σ_y , what would be the maximum load P_y you can apply on the beam before yield occurs.
- (c) If you were told that the maximum shear stress that the beam can carry before plastic yield is $\tau_y = \sigma_y / \sqrt{3}$, what would be the maximum load P_y^* you can apply on the beam before yield occurs.
- (d) Compare P_y and P_y^* and comment on whether the beam will fail in tension or shear.

Homework#1

Given: September 19, 2002 Due: October 3, 2002

3. Solve Problem 10.6, page 319 from Shames and Pitarresi (*In Fig. P.10.8, change *y* into *z* to in order to have the same convention as in your class notes).

In addition, assume that the beam material has a Young's modulus E and shear modulus G, and the same rectangular cross-section as in Question 1 above

- (a) Determine the deflection curve w(x) for the beam.
- (b) Suppose that in addition to the normal distributed load, an axial force P_o is applied in the positive x-direction at A. Will this change the deflection curve you obtained in (a)? If you are told that the yield strain in tension is $\varepsilon_y = 0.02$ for the beam material, what is the maximum axial force P_o^y you can apply (while keeping the load-distribution the same) before yield occurs.
- 4. Solve Problem 10.8, page 319 from Shames and Pitarresi (*In Fig. P.10.6, change *y* into *z* to in order to have the same convention as in your class notes).

In addition, assume that the beam material has a Young's modulus E and shear modulus G, and the same rectangular cross-section as in Question 2 above. Determine the deflection curve w(x) for the beam and the shear stress distribution σ_{xz} at any section of the beam.

5. Given the plane stress field

$$\sigma_{xx} = Axy$$
, $\sigma_{xy} = \frac{A}{2}(h^2 - y^2)$, $\sigma_{yy} = 0$

(a) Is it in equilibrium under a zero body force?

Homework#1

Given: September 19, 2002 Due: October 3, 2002

- (b) Determine the strains if the material has a Young's modulus E and shear modulus G.
- (c) Let the strain compatibility condition in 2D be given by

(d)

$$\frac{\partial^2 \varepsilon_{xx}}{\partial y^2} + \frac{\partial^2 \varepsilon_{yy}}{\partial x^2} = \frac{\partial^2 \gamma_{xy}}{\partial x \partial y}$$

Do the strains satisfy the above compatible condition?

- (e) Calculate displacements u and v.
- (f) Let the stress tensor be given by

$$\begin{pmatrix} Axy & ? & \sigma_{xz} \\ \frac{A}{2}(h^2 - y^2) & 0 & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{pmatrix}$$

Determine σ_{xz} , σ_{yz} , σ_{zz} in order that equilibrium condition is satisfied.