Homework#3

Given: October 23, 2002 Due: November 6, 2002

- 1. **Weld design**: Solve Problem 7.2-11, page 541, Gere. Establish the Tresca plastic yield condition and brittle rupture condition for the weld. If the weld material has Young's modulus E and Poisson's ratio v, calculate the strains acting on the weld.
- 2. Thick-walled cylindrical pressure vessel design: A closed-end cylindrical pressure vessel of inner radius a and outer radius b is subject to internal pressure p. The stresses are

$$\sigma_{rr} = -\frac{p}{(b/a)^2 - 1} \left(\frac{b^2}{r^2} - 1\right)$$

$$\sigma_{\theta\theta} = \frac{p}{(b/a)^2 - 1} \left(\frac{b^2}{r^2} - 1\right)$$

$$\sigma_{zz} = \frac{p}{b^2/a^2 - 1}$$

Find the Mises yield and brittle rupture conditions for the vessel.

3. Thin-walled spherical and cylindrical pressure vessel design: Let b = a + t where t is the thickness of the spherical pressure vessel/cylindrical pressure vessel.

Substitute the above relation in stress equations for the spherical pressure vessel (Eq. 6.1 Lecture#8 with $p_e = 0$, $p_i = p$) and cylindrical pressure vessel (equations in Problem 2 above).

Then assume that the pressure vessels are *thin-walled*, or a >> t, so that higher order terms of t are negligible. Simplify the stress relations for this case and compare your results with those of Gere (pg. 557-571). Establish the brittle rupture conditions for thin-walled spherical and cylindrical pressure vessels.

4. **Weight optimization design of a sandwich beam:** Suppose you are provided with many thin steel ($E_{steel} = 240 \text{ GPa}$, $\rho_{steel} = 7.8 \times 10^3 \text{ kg/m}^3$) and aluminum ($E_{alumin \, um} = 70 \text{ GPa}$, $\rho_{alumin \, um} = 2.7 \times 10^3 \text{ kg/m}^3$) sheets of thickness t and width b, and many thick aluminum foam slabs ($E_{foam} = 7 \text{ GPa}$, $\rho_{foam} = 0.27 \times 10^3 \text{ kg/m}^3$) of thickness h and width

Homework#3

Given: October 23, 2002 Due: November 6, 2002

- b. Also given is that t << h. There is only enough adhesive (with shear strength τ_c) to bond only four surfaces so that some of the material will not be used. You are required to design a sandwich beam which strictly includes all the three materials! Design the sandwich beam for the combination of all the following three requirements:
 - -maximum bending resistance
 - -maximum shear resistance
 - -minimum weight

5. Brittle rupture design of a multi-layered composite beam:

Consider a cylindrical multi-layered composite beam made up of hollow cylindrical beams of different *brittle* materials with Young's moduli; $E_1 = 4E$, $E_2 = 3E$, $E_3 = 2E$, $E_4 = E$. E = 400 GPa. The internal radius of cylinder 1 is a = 25 mm, while all hollow cylinders are of thickness t = 2.5 mm. Observe a > t. The fracture strengths are; $\sigma_f^1 = 2\sigma_f$, $\sigma_f^2 = \sigma_f$, $\sigma_f^3 = 0.5\sigma_f$, $\sigma_f^4 = 0.25\sigma_f$ $\sigma_f = 25$ MPa

- -find the neutral axis for the composite beam
- -what is the elastic bending stiffness of the beam?
- -what is the critical bending moment M_{ν}^{f} for brittle rupture?
- -find the corresponding deflection w_o^f at brittle rupture if the beam is under 4-point bending (Let beam length be L).