Lecture 5 Nash equilibrium & Applications

14.12 Game Theory Muhamet Yildiz

Road Map

- 1. Rationalizability summary
- 2. Nash Equilibrium
- 3. Cournot Competition
	- 1. Rationalizability in Cournot Duopoly
- 4. Bertrand Competition
- 5. Commons Problem
- **6. Quiz**
- 7. Mixed-strategy Nash equilibrium

Dominant-strategy equilibrium

 $s_{-i} = (s_1, \ldots, s_{i-1}, s_{i+1}, \ldots, s_n)$ **Definition:** s_i^* **strictly dominates** s_i iff s_i^* weakly dominates s_i iff $u_i(s_i^*, s_{-i}) \ge u_i(s_i^*, s_{-i}) \quad \forall s_{-i}$ and at least one of the inequalities is strict. **Definition:** A strategy s_i^* is a **dominant strategy** iff s_i* **weakly dominates** every other strategy s_i. **Definition:** A strategy profile s* is a **dominant**strategy equilibrium iff s_i^* is a dominant strategy for each player i. $u_i(s_i^*, s_{-i}) > u_i(s_i, s_{-i}) \quad \forall s_{-i};$

Examples: Prisoners' Dilemma; Second-Price auction.

Economic Applications

- 1. Cournot (quantity) Competition
	- 1. Nash Equilibrium in Cournot duopoly
	- 2. Nash Equilibrium in Cournot oligopoly
	- 3. Rationalizability in Cournot duopoly
- 2. Bertrand (price) Competition
- 3. Commons Problem

Rationalizability in Cournot duopoly

- If i knows that $q_i \le q$, then $q_i \ge (1-c-q)/2$.
- If i knows that $q_i \ge q$, then $q_i \le (1-c-q)/2$.
- We know that $q_i \ge q^0 = 0$.
- Then, $q_i \le q^1 = (1 c q^0)/2 = (1 c)/2$ for each i;
- Then, $q_i \ge q^2 = (1-c-q^1)/2 = (1-c)(1-1/2)/2$ for each i;
- …
- Then, $q^n \le q_i \le q^{n+1}$ or $q^{n+1} \le q_i \le q^n$ where $q^{n+1} = (1-c-q^n)/2 = (1-c)(1-1/2+1/4-...+(-1/2)^n)/2.$
- As $n \rightarrow \infty$, $q^n \rightarrow (1-c)/3$.

Bertrand (price) competition

- $N = \{1,2\}$ firms.
- Simultaneously, each firm i sets a price p_i ;
- If $p_i < p_j$, firm i sells $Q = max\{1 p_i, 0\}$ unit at price p_i ; the other firm gets 0.
- If $p_1 = p_2$, each firm sells $Q/2$ units at price p_1 , where $Q = max\{1 - p_1, 0\}.$
- The marginal cost is 0.

$$
\pi_1(p_1, p_2) = \begin{cases} p_1(1-p_1) & \text{if } p_1 < p_2 \\ p_1(1-p_1)/2 & \text{if } p_1 = p_2 \\ 0 & \text{otherwise.} \end{cases}
$$

Bertrand duopoly -- Equilibrium

Theorem: The only Nash equilibrium in the "Bertrand game" is $p^* = (0,0)$.

Proof:

- 1. $p^*=(0,0)$ is an equilibrium.
- 2. If $p = (p_1, p_2)$ is an equilibrium, then $p = p^*$.
	- 1. If $p = (p_1, p_2)$ is an equilibrium, then $p_1 = p_2$.
		- If $p_i > p_j = 0$, for sufficiently small $\varepsilon > 0$, $p_j' = \varepsilon$ is a better response to p_i for j. If $p_i > p_j > 0$, $p_i' = p_j$ is a better response for i.
	- 2. Given any equilibrium $p = (p_1, p_2)$ with $p_1 = p_2$, $p = p^*$.
		- If $p_1 = p_2 > 0$, for sufficiently small $\epsilon > 0$, $p_j' = p_j \epsilon$ is a better response to p_i for i.

Commons Problem

- $N = \{1, 2, \ldots, n\}$ players, each with unlimited money;
- Simultaneously, each player i contributes x_i ≥ 0 to produce $y = x_1 + ... x_n$ unit of some public good, yielding payoff

$$
U_i(x_i, y) = y^{1/2} - x_i.
$$

Quiz

Each student i is to submit a real number x_i . We will pair the students randomly. For each pair (i,j), if $x_i \neq x_j$, the student who submits the number that is closer to $(x_i+x_j)/4$ gets 100; the other student gets 20. If $x_i = x_j$, then each of i and j gets 50.