Lecture 5 Nash equilibrium & Applications

14.12 Game Theory Muhamet Yildiz

Road Map

- 1. Rationalizability summary
- 2. Nash Equilibrium
- 3. Cournot Competition
 - 1. Rationalizability in Cournot Duopoly
- 4. Bertrand Competition
- 5. Commons Problem
- 6. Quiz
- 7. Mixed-strategy Nash equilibrium

Dominant-strategy equilibrium

 $s_{-i} = (s_1, ..., s_{i-1}, s_{i+1}, ..., s_n)$ Definition: s_i^* strictly dominates s_i iff

 $u_i(s_i^*, s_{-i}) > u_i(s_i, s_{-i}) \quad \forall s_{-i};$ s_i^* weakly dominates s_i iff $u_i(s_i^*, s_{-i}) \ge u_i(s_i, s_{-i}) \quad \forall s_{-i}$ and at least one of the inequalities is strict. **Definition:** A strategy s_i^* is a **dominant strategy** iff s_i^* weakly dominates every other strategy s_i . **Definition:** A strategy profile s^* is a **dominantstrategy equilibrium** iff s_i^* is a dominant strategy for each player i. Examples: Prisoners' Dilemma; Second-Price auction.

Simplified price-competition			
Firm 2 Firm 1	High	Medium	Low
High	6,6	0,10	0,8
Medium	10,0	5,5	0,8
Low	8,0	8,0	4,4
L			Dutta

Economic Applications

- 1. Cournot (quantity) Competition
 - 1. Nash Equilibrium in Cournot duopoly
 - 2. Nash Equilibrium in Cournot oligopoly
 - 3. Rationalizability in Cournot duopoly
- 2. Bertrand (price) Competition
- 3. Commons Problem

Rationalizability in Cournot duopoly

- If i knows that $q_i \le q$, then $q_i \ge (1-c-q)/2$.
- If i knows that $q_i \ge q$, then $q_i \le (1-c-q)/2$.
- We know that $q_i \ge q^0 = 0$.
- Then, $q_i \le q^1 = (1-c-q^0)/2 = (1-c)/2$ for each i;
- Then, $q_i \ge q^2 = (1-c-q^1)/2 = (1-c)(1-1/2)/2$ for each i;
- ...
- Then, $q^n \le q_i \le q^{n+1}$ or $q^{n+1} \le q_i \le q^n$ where $q^{n+1} = (1-c-q^n)/2 = (1-c)(1-1/2+1/4-\ldots+(-1/2)^n)/2.$
- As $n \rightarrow \infty$, $q^n \rightarrow (1-c)/3$.

Bertrand (price) competition

- $N = \{1,2\}$ firms.
- Simultaneously, each firm i sets a price p_i;
- If p_i < p_j, firm i sells Q = max{1 p_i,0} unit at price p_i; the other firm gets 0.
- If $p_1 = p_2$, each firm sells Q/2 units at price p_1 , where $Q = \max\{1 p_1, 0\}$.
- The marginal cost is 0.

$$\pi_1(p_1, p_2) = \begin{cases} p_1(1-p_1) & \text{if } p_1 < p_2 \\ p_1(1-p_1)/2 & \text{if } p_1 = p_2 \\ 0 & \text{otherwise.} \end{cases}$$

Bertrand duopoly -- Equilibrium

Theorem: The only Nash equilibrium in the "Bertrand game" is $p^* = (0,0)$.

Proof:

- 1. $p^*=(0,0)$ is an equilibrium.
- 2. If $p = (p_1, p_2)$ is an equilibrium, then $p = p^*$.
 - 1. If $p = (p_1, p_2)$ is an equilibrium, then $p_1 = p_2$.
 - If $p_i > p_j = 0$, for sufficiently small $\epsilon > 0$, $p_j' = \epsilon$ is a better response to p_i for j. If $p_i > p_j > 0$, $p_i' = p_j$ is a better response for i.
 - 2. Given any equilibrium $p = (p_1, p_2)$ with $p_1 = p_2$, $p = p^*$.
 - If $p_1 = p_2 > 0$, for sufficiently small $\varepsilon > 0$, $p_j' = p_j \varepsilon$ is a better response to p_j for i.

Commons Problem

- N = {1,2,...,n} players, each with unlimited money;
- Simultaneously, each player i contributes x_i ≥ 0 to produce y = x₁+...x_n unit of some public good, yielding payoff

$$U_i(x_i,y) = y^{1/2} - x_i.$$

Quiz

Each student i is to submit a real number x_i . We will pair the students randomly. For each pair (i,j), if $x_i \neq x_j$, the student who submits the number that is closer to $(x_i+x_j)/4$ gets 100; the other student gets 20. If $x_i = x_j$, then each of i and j gets 50.