
NOTES ON HASHING
Author: Jayakanth Srinivasan jksrini@mit.edu

Introduction

Any large information source (data base) can be thought of as a table (with multiple
fields), containing information.

For example:

A telephone book has fields name, address and phone number. When you want to find
somebody’s phone number, you search the book based on the name field.

A user account on AA-Design, has the fields user_id, password and home folder. You log
on using your user_id and password and it takes you to your home folder.

To find an entry (field of information) in the table, you only have to use the contents of
one of the fields (say name in the case of the telephone book). You don’ t have to know
the contents of all the fields. The field you use to find the contents of the other fields is
called the key.

Ideally, the key should uniquely identify the entry, i.e. if the key is the name then no two
entries in the telephone book have the same name.

We can treat the Table formulation as an abstract data type. As with all ADT’s we can
define a set of operations on a table

Operation Descr iption
Initialize Initialize internal structure; create an empty table

IsEmpty True iff the table has no elements

Insert Given a key and an entry, insert it into the table

Find Given a key, find the entry associated with the key

Remove Given a key, find the entry associated with the key and

remove it from the table

Table 1. Table ADT Operations

Implementation

Given an ADT, the implementation is subject to the following questions

��What is the frequency of insertion and deletion into the table?
��How many key values will be used?
��What is the pattern for searching for the keys? i.e. will most of the accesses use

only one or two key values?
��Is the table small enough to fit into memory?
��How long should the table exist in memory?

We use the word node to represent an entry into the table. For searching, the key is
typically stored separately from the table entry (even if the key is present in the entry as
well). Can you think of why?

Unsorted Sequential Array

0

…

key entry

1

2

3

and so on

4

14

45

22

67

17

<data>

<data>

<data>

<data>

<data>

0

…

key entry

1

2

3

and so on

4

14

45

22

67

17

<data>

<data>

<data>

<data>

<data>

Figure 1. Unsorted Sequential Array Implementation

An array implementation stores the nodes consequtively in any order (not necessarily in
ascending or descending order).

Operation Descr iption
Initialize O(1)

IsEmpty O(1) as you will only check if the first element is empty

Insert O(1) as you will add to the end of the array

Find O(n) as you have to sequentially search the array, in the

worst case through the entire array

Remove O(n) as you have to sequentially search the array, delete
the element and copy all elements one place up

Table 2. Unsorted Sequential Array Table Operations

Unsorted Sequential Array

0

…

key entry

1

2

3

and so on

4

15

17

22

45

67

<data>

<data>

<data>

<data>

<data>

0

…

key entry

1

2

3

and so on

4

15

17

22

45

67

<data>

<data>

<data>

<data>

<data>

Figure 2. Sorted Sequential Array Implementation

A sorted array implementation stores the nodes consequtively in either ascending or
descending order.

Operation Descr iption
Initialize O(1)

IsEmpty O(1) as you will only check if the first element is empty

Insert O(1) as you will add to the end of the array

Find Olog(n) as you can perform a binary search operation

Can you think of why?

Remove O(n) as you have to perform a binary search and shuffle
elements one place up

Table 3. Sorted Sequential Array Table Operations

Linked List (Sorted or Unsorted)
key entry

14

45

22

67

17

<data>

<data>

<data>

<data>

<data>

key entry

14

45

22

67

17

<data>

<data>

<data>

<data>

<data>

Figure 3. Linked List Implementation

An linked list implementation stores the nodes consequtively (can be sorted or unsorted).

Operation Descr iption
IsEmpty O(1) as you will only check if head pointer is null

Insert O(n) for a sorted list

O(1) for an unsorted list, insert at the begining

Find O(n) as you have to traverse the entire list in the worst
case

Remove O(n) as you have to traverse the list to find the node,
removal is carried out using pointer operations

Table 4. Linked List Table Operations

Ordered Binary Tree

14 <data>

22 <data>

17 <data>

45 <data>

67 <data>

14 <data>

22 <data>

17 <data>

45 <data>

67 <data>
Fig 4. Ordered Binary Tree Implementation

An ordered binary tree is a rooted tree with the property left sub-tree < root < right sub-
tree, and the left and right sub-trees are ordered binary trees.

Operation Descr iption
IsEmpty O(1) as you will only check if the root is null

Insert O(logn)) tree is an ordered binary tree

Find O(log(n)) as the tree is an ordered binary tree

Remove O(log(n)) as finding takes O(log(n)) and removal takes

constant time as it is carried out using pointer operations

Table 5. Ordered Binary Tree Table Operations

Hashing

Having an insertion, find and removal of O(log(N)) is good but as the size of the table
becomes larger, even this value becomes significant. We would like to be able to use an
algorithm for finding of O(1). This is when hashing comes into play!

Hashing using Arrays
When implementing a hash table using arrays, the nodes are not stored consecutively,
instead the location of storage is computed using the key and a hash function. The
computation of the array index can be visualized as shown below:

Key hash
function

array
indexKey hash

function
array
index

Figure 5. Array Index Computation

The value computed by applying the hash function to the key is often referred to as the
hashed key. The entries into the array, are scattered (not necessarily sequential) as can be
seen in figure below.

key entry

4

10

<key> <data>

<key> <data>

<key> <data>123

key entry

4

10

<key> <data>

<key> <data>

<key> <data>123

Figure 6. Hashed Array

The cost of the insert, find and delete operations is now only O(1). Can you think of
why?

Hash tables are very good if you need to perform a lot of search operations on a relatively
stable table (i.e. there are a lot fewer insertion and deletion operations than search
operations).

One the other hand, if traversals (covering the entire table), insertions, deletions are a lot
more frequent than simple search operations, then ordered binary trees (also called AVL
trees) are the preferred implementation choice.

Hashing Performance

There are three factors the influence the performance of hashing:

��Hash function
o should distribute the keys and entries evenly throughout the entire table
o should minimize collisions

��Collision resolution strategy
o Open Addressing: store the key/entry in a different position
o Separate Chaining: chain several keys/entries in the same position

��Table size

o Too large a table, will cause a wastage of memory
o Too small a table will cause increased collisions and eventually force

rehashing (creating a new hash table of larger size and copying the
contents of the current hash table into it)

o The size should be appropriate to the hash function used and should
typically be a prime number. Why? (We discussed this in class).

Selecting Hash Functions

The hash function converts the key into the table position. It can be carried out using:

��Modular Arithmetic: Compute the index by dividing the key with some value and
use the remainder as the index. This forms the basis of the next two techniques.

For Example: index := key MOD table_size

��Truncation: Ignoring part of the key and using the rest as the array index. The

problem with this approach is that there may not always be an even distribution
throughout the table.

For Example: If student id’s are the key 928324312 then select just the last three
digits as the index i.e. 312 as the index. => the table size has to be atleast 999.
Why?

��Folding: Partition the key into several pieces and then combine it in some

convenient way.

For Example:
o For an 8 bit integer, compute the index as follows:

Index := (Key/10000 + Key MOD 10000) MOD Table_Size.

o For character strings, compute the index as follows:

Index :=0
For I in 1.. length(string)
Index := Index + ascii_value(String(I))

Collision

Let us consider the case when we have a single array with four records, each with two
fields, one for the key and one to hold data (we call this a single slot bucket). Let the
hashing function be a simple modulus operator i.e. array index is computed by finding the
remainder of dividing the key by 4.

Array Index := key MOD 4

Then key values 9, 13, 17 will all hash to the same index. When two(or more) keys hash
to the same value, a collision is said to occur.

k = 13

0

hash_table (I,J)

1

2

31

Key Hash
functionk = 9

Hashed
value

9

k = 17
k = 13

0

hash_table (I,J)

1

2

31

Key Hash
functionk = 9

Hashed
value

9

k = 17

Figure 7. Collision Using a Modulus Hash Function

Collision Resolution
The hash table can be implemented either using

��Buckets: An array is used for implementing the hash table. The array has size
m*p where m is the number of hash values and p (≥ 1) is the number of slots (a
slot can hold one entry) as shown in figure below. The bucket is said to have p
slots.

0

1st slot

1

2

3

key

Hash
value
(index)

2nd slot

key

3rd slot

key

0

1st slot

1

2

3

key

Hash
value
(index)

2nd slot

key

3rd slot

key

Figure 8. Hash Table with Buckets

��Chaining: An array is used to hold the key and a pointer to a liked list (either

singly or doubly linked) or a tree. Here the number of nodes is not restricted
(unlike with buckets). Each node in the chain is large enough to hold one entry as
shown in figure below.

0

1

3

Hash
Value

n

Hash
Table

Chain

.

.

.

NULL

NULL

NULL

NULL

1

C

2

B

A

0

1

3

Hash
Value

n

Hash
Table

Chain

.

.

.

NULL

NULL

NULL

NULL

1

C

2

B

A

Figure 9. Chaining using Linked Lists / Trees

Open Addressing (Probing)

Open addressing / probing is carried out for insertion into fixed size hash tables (hash
tables with 1 or more buckets). If the index given by the hash function is occupied, then
increment the table position by some number.

There are three schemes commonly used for probing:

��Linear Probing: The linear probing algorithm is detailed below:

Index := hash(key)
While Table(Index) Is Full do

index := (index + 1) MOD Table_Size
 if (index = hash(key))
 return table_full
 else

Table(Index) := Entry

��Quadratic Probing: increment the position computed by the hash function in

quadratic fashion i.e. increment by 1, 4, 9, 16, ….

��Double Hash: compute the index as a function of two different hash functions.

Chaining

In chaining, the entries are inserted as nodes in a linked list. The hash table itself is an
array of head pointers.

The advantages of using chaining are

��Insertion can be carried out at the head of the list at the index
��The array size is not a limiting factor on the size of the table

The prime disadvantage is the memory overhead incurred if the table size is small.

