
Smith 4/27/01 1

Inter-task Communication
04/27/01 Lecture # 29 16.070

� Task state diagram (single processor)
� Intertask Communication

� Global variables
� Buffering data
� Critical regions

� Synchronization
� Semaphores
� Mailboxes and Queues
� Deadlock

� Readings: Chapter 7 in Laplante

Smith 4/27/01 2

Task state diagram

A process goes through several
states during its life in a multitasking
system.

READYBlocked
(waiting for I/O

or other resource)

Running

Ready QueueWait Queue

(This is an interrupt, too. The CPU must stop what it�s
doing and mark the blocked task as �ready�)

Tasks are moved
from one state to

another in
response to the

stimuli marked on
the arrows.

Smith 4/27/01 3

State Diagram description

� Any tasks that are ready to run sit on the ready queue.
This queue may be prioritized so the most important task
runs next.

� When the scheduler decides the current task has had
enough time on the CPU, either because it finished or its
time slice is up, the �Running� task is moved to the
�Ready� queue. Then the first task on the �Ready� queue
is selected for �Running�.

� If the �Running� task needs I/O or needs a resource that is
currently unavailable, it is put on the �Blocked� queue.
When its resource becomes available, it goes back to
�Ready�.

Smith 4/27/01 4

Tasks don�t work in isolation from each other. They
often need to share data or modify it in series

GPS
translation

Inertial Nav
interpreter

Instrument
Interfaces

Position
Data

Navigation
Package

Display
Subsystem

Smith 4/27/01 5

Inter-task communication examples

� Since only one task can be running at one time (remember
the book analogy), there must be mechanisms for tasks to
communicate with one another
� A task is reading data from a sensor at 15 hz. It stores 1024 bytes

of data and then needs to signal a processing task to take and
process the data so it has room to write more.

� A task is determining the state of a system- i.e. Normal Mode,
Urgent Mode, Sleeping, Disabled. It needs to inform all other
tasks in the system of a change in status.

� A user is communicating to another user across a network. The
network receive task has to deliver messages to the terminal
program, and the terminal program has to deliver messages to the
network transmit task.

Smith 4/27/01 6

Inter-task Communication

� Regular operating systems have many options for passing
messages between processes, but most involve significant
overhead and aren�t deterministic.
� Pipes, message queues, semaphores, Remote Procedure Calls,

Sockets, Datagrams, etc.

� In a RTOS, tasks generally have direct access to a common
memory space, and the fastest way to share data is by
sharing memory.
� In ordinary OS�s, tasks are usually prevented from accessing

another task�s memory, and for good reason.

Smith 4/27/01 7

Global Variables:
an example in pseudocode

int finished = 0;

main()

{

 spawn(task1);

 spawn(task2);

 spawn(task3);

 while(finished !=3)

 {

 ;

 }

 printf(� done �);

}

void task1 (void)

{

 compute_pi_to_a zillion_places();

 finished++;

}

void task2 (void)

{

 solve_world_hunger();

 finished++;

}

void task3 (void)

{

find_out_why_white_shirts_give_you_
black_belly_button_lint();

 finished++;

}

Smith 4/27/01 8

Mailboxes

� Post() - write operation- puts data in mailbox
� Pend() - read operation- gets data from mailbox
� Just like using a buffer or shared memory, except:

� If no data is available, pend() task is suspended
� Mutual exclusion built in:
 if somebody is posting, pend() has to wait.

� No processor time is wasted on polling the
mailbox, to see if anything is there yet.

� Pend might have a timeout, just in case

Smith 4/27/01 9

Buffering Data

� If you have a producer and a consumer that work at
different rates, a buffer can keep things running smoothly
� As long as buffer isn�t full, producer can write

� As long as buffer isn�t empty, consumer can read

Producer

Consumer

Smith 4/27/01 10

Shared Memory and Data Corruption

Let�s look at a navigation system:
� We use a laser-based rangefinder to get altitude readings as

available (approx. once every 5 seconds).
� We add a redundant system, an inertial navigation system, to

update the altitude once a second:

Write() Write()

�Shared memory can be as simple as a global variable in a C
program, or an OS-supplied block of common memory.

�In a single-task program, you know only one function will try
to access the variable at a time.

Smith 4/27/01 11

2 tasks sharing the same data

Altitude Laser InputINS Input

28

90 m

38

48

60

70

80

90

-10m

-10m

-10m

-10m

-10m

-10m

48 m

23 m

Smith 4/27/01 12

Shared memory conflict:

� The INS executes
several instructions
while updating the
altitude:
� Get stored altitude
� Subtract _ altitude
� Replace altitude with

result

� One task may
interrupt another at
an arbitrary (possibly
Bad�) point.

50m

50m

40m

40m

40m

 Laser Task

 Get alt. from sensor

 Store alt. in memory

42m

42m
42m

INS Task

Retrieve altitude

Subtract _ from

altitude.

Replace altitude

Altitude:

Altitude:

Altitude:

Smith 4/27/01 13

Timing Problem:

Altitude Laser InputINS Input

0

10

20

30

40

50

60

-10m

-10m

-10m

-10m

-10m

-10m

 26 m

43 m

9 m

60 m

Smith 4/27/01 14

Avoiding Conflict

 We need to be careful in
multi-tasked systems,
especially when modifying
shared data.

 We want to make sure that in
certain critical sections of the
code, no two processes have
access to data at the same
time.

Smith 4/27/01 15

Mutual Exclusion

� If we set a flag (memory is busy, please hold), we
can run into the same problem as the previous
example:

Flag set?Flag set?

Set flag

Flag set?

Set flag

Flag set?

Set flag

Write to

memory

Unset

Flag

Write to

memory

Smith 4/27/01 16

Atomic Operations

� An operating system that supports multiple tasks
will also support atomic semaphores.

� The names of the functions that implement
semaphores vary from system to system (

test-set/release; lock/unlock; wait/signal; P()/V())
� The idea: You check a �lock� before entering a

critical section. If it�s set, you wait. If it isn�t, you
go through the lock and unset it on your way out.

� The word atomic means checking the lock and
setting it only takes one operation- it can�t be
interrupted.

Smith 4/27/01 17

Semaphore Example

TelescopeImageUpdate()

{

 if(time_is_now())

 {

 lock(image_map);
 �

 update(curr_image[]);

 unlock(image_map);
 �

}

ImageTransmit()

{

 �

 if(command == XMIT)

 {

 lock(transmitter);

 lock(image_map);
 �

 broadcast(curr_image[]);

 unlock(image_map);
 unlock(transmitter);

 }

 �

}

Smith 4/27/01 18

Deadlock!

ImageTransmit()

{

 �

 if(command == XMIT)

 {

 lock(transmitter);
 lock(image_map);
 �

 broadcast(curr_image[]);

 unlock(image_map);
 unlock(transmitter);

 }

 �

}

Process_Image_Weights()

{

 �

 lock(image_map);
 �

 color_map(curr_image[]);

 lock(transmitter);
 �

 broadcast(colored_image[]);

 unlock(transmitter);

 unlock(image_map);

 �

}

Waiting on
transmitterWaiting on

image_map

Smith 4/27/01 19

Deadlock: detection and avoidance

� Cannot always be found in testing
� Four conditions necessary

� Area of mutual exclusion
� Circular wait
� Hold and wait
� No preemption

� Some well-known solutions exist
� Make all resources sharable
� Impose ordering on resources, and enforce it
� Force a task to get all of its resources at the same time

or wait on all of them
� Allow priority preemption

Smith 4/27/01 20

Other ways around synchronization problems

� Avoidance: Only write single-task programs or
programs that don�t use shared memory

� Ostrich method: Ignore the problem completely,
assuming it won�t happen often, or at least not
often enough for your customers to sue you

� Brute force: Disable interrupts completely during
�critical section� operations

Smith 4/27/01 21

Summary

� Buffering data can smooth out the interaction of a producer that
generates data at one rate and a consumer that eats at another.

� Intertask communication can be tricky- if your operating system
supports high-level communication protocols, and they are appropriate
for your task, use them!

� If you use a flag to indicate a resource is being used, understand why
checking and setting the flag needs to be atomic.

� For Next time: Read sections 11.1, 11.2 (intro section only) 11.3, 11.4

