
Appendix A

Vector Algebra

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional
space R3.

A.1 Vectors

A vector is used to represent quantities that have both magnitude and direction. Quantities
that only need their magnitude to be fully represented are called scalars. We use bold letters
to denote vectors, e.g. v . The magnitude of a vector is denoted by ‖v‖.

A vector of unit length is called a unit vector. The unit vector in the direction of vector
v, is obtained by scaling the vector by the inverse of its magnitude:

ev =
v

‖v‖
,

We can also express v as
v = ‖v‖ev.

A.2 Components of a vector

A basis in R3 is a set of linearly independent vectors1 such that any vector in the space
can be represented as a linear combination of basis vectors. We will represent vectors in a
cartesian basis where the basis vectors ei are orthonormal, i.e. they have unit length and
they are orthogonal with respect to each other. This can be expressed using dot products

e1 · e1 = 1 e2 · e2 = 1 e2 · e3 = 1

e1 · e2 = 0 e1 · e3 = 0 e2 · e3 = 0.

1A set of vectors v1,v2,v3, . . . ,vn are linearly dependent if

β1v1 + β2v2 + β3v3 + ...+ βnvn = 0

where β1, β2,...βn are not all zero. In R3, the maximum number of linearly independent vectors is 3.
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We can write these expressions in a very succinct form as follows

ei · ej = δij

where the symbol δij is the so-called

Kronecker delta:

δij =

{
1 : if i = j
0 : if i 6= j

Then we can represent any vector v in three dimensional space as follows

v = v1e1 + v2e2 + v3e3 =
3∑
i=1

viei, (A.1)

where v1, v2 and v3 are the components of the vector in the basis ei, i = 1, 3

A.3 Indicial notation

Free index: A subscript index ()i will be denoted a free index if it is not repeated in the
same additive term where the index appears. Free means that the index represents all the
values in its range.

• Latin indices will range from 1 to 3, (i, j, k, ... = 1, 2, 3),

• Greek indices will range from 1 to 2, (α, β, γ, ... = 1, 2).
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Examples:

1. ei, i = 1, 2, 3 can now be simply written as ei, no need to make the explicit mention of
i = 1, 2, 3, as i is a free index.

2. ai1 implies a11, a21, a31. (one free index)

3. xαyβ implies x1y1, x1y2, x2y1, x2y2 (two free indices).

4. aij implies a11, a12, a13, a21, a22, a23, a31, a32, a33 (two free indices implies 9 values).

5.
∂σij
∂xj

+ bi = 0

has a free index (i), therefore it represents three equations:

∂σ1j

∂xj
+ b1 = 0

∂σ2j

∂xj
+ b2 = 0

∂σ3j

∂xj
+ b3 = 0

A.4 Summation Convention

In expressions such as:

3∑
i=1

viei,

we observe that the summation sign with its limits can be eliminated altogether if we adopt
the convention that the summation is implied by the repeated index i. Then, a vector
representation in a cartesian basis, Equation (A.1), can be shortened to

v =
3∑
i=1

viei = viei,

More formally:
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Summation convention: When a repeated index is found in an expression (inside an
additive term) the summation of the terms ranging all the possible values of the indices is
implied'

&

$

%

Examples:

1. aibi =
∑3

i=1 aibi = a1b1 + a2b2 + a3b3

2. akk = a11 + a22 + a33.

3. ti = σijnj implies the three equations (why?):

t1 = σ11n1 + σ12n2 + σ13n3

t2 = σ21n1 + σ22n2 + σ23n3

t3 = σ31n1 + σ32n2 + σ33n3

Other important rules about indicial notation:

1. An index cannot appear more than twice in a single additive term, it’s either free or
repeated only once.

ai = bijcjdj is INCORRECT

2. In an equation the lhs and rhs, as well as all the terms on both sides must have the
same free indices

• aibk = cijdkj free indices i, k, CORRECT

• aibk = cijdkj + eifjj + gkpiqr INCORRECT, second term is missing free index k
and third term has extra free index r

• When the summation convention applies, the index is dummy (irrelevant): aibi =
akbk.

A.5 Operations

Scalar product between vectors is defined as

a · b = (aiei) · (bjej) = aibj(ei · ej) = aibjδij = aibi.

Cross product between two basis vectors ei and ej is defined as

ei × ej = εijkek,

where εijk is called the alternating symbol (or permutation symbol) and defined as follows

εijk =


1, if i, j, k are in cyclic order and not repeated (123, 231, 312),
−1, if i, j, k are not in cyclic order and not repeated(132, 213, 321),
0, if any of i, j, k are repeated.
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In general, the cross product of two vectors can be expressed as

a× b = (aiei)× (bjej) = aibj(ei × ej) = aibjεijkek.

ε− δ identity relates the Kronecker delta and the permutation symbol as follows

εijkεimn = δjmδkn − δjnδkm. (A.2)

Problems:

1. Verify the ε − δ identity by the definition of Kronecker delta and the permutation
symbol.

2. Use the ε− δ identity to verify a× (b× c) = (a · c) b− (a · b) c.

Dyadic product (or tensor product) between two basis vectors ei and ej defines a basis second
order tensor ei ⊗ ej or simply eiej. In general, the dyadic product

a⊗ b = (aiei)⊗ (bjej) = aibjei ⊗ ej ,

results in a second order tensor which has component aibj on the basis ei⊗ej. The following
identities are properties of the dyadic product

(αa)⊗ b = a⊗ (αb) = α(a⊗ b), for scalar α ,

(a⊗ b) · c = (b · c)a ,

a · (b⊗ c) = (a · b)c .

A.6 Transformation of basis

Given two orthonormal bases ei, ẽk and a vector v whose components in each of these bases
are vi and ṽk, respectively, we seek to express the components in basis in terms of the
components in the other basis. Since the vector is unique:

v = ṽmẽm = vnen

Taking the scalar product with ẽi:

v · ẽi = ṽm(ẽm · ẽi) = vn(en · ẽi)

But ṽm(ẽm · ẽi) = ṽmδmi = ṽi from which we obtain:

ṽi = v · ẽi = vj(ej · ẽi)

Note that ej · ẽi are the direction cosines of the basis vectors of one basis on the other basis:

ej · ẽi = ‖ej‖‖ẽi‖ cos êj ẽi = cos êj ẽi
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A.7 Tensors

Tensors are defined as the quantities that are independent of the selection of basis while the
components transform following a certain rule as the basis changes.

When the basis changes from {ei} to {ẽi}, a scalar does not change (e.g. mass), the
vector component transforms as ṽi = vj(ej · ẽi) (see Section A.6), and the stress component
transforms as σ̃ij = σkl

(
ek · ẽi

)(
el · ẽj

)
(see Equation 1.11), which defines a second order

tensor. Similarly, the vector is a first order tensor, and a scalar is a zeroth order tensor.
The order of the tensor equals the number of free indices (see Section A.3) that the tensor
has, and it can also be interpreted as the dimensionality of the array needed to represent
the tensor, as detailed in the next table:

# indices Tensor order Array type Denoted as Rule of Trans.
0 Zeroth Scalar α
1 First Vector v = viei = ṽj ẽj ṽi = vj(ej · ẽi)
2 Second Matrix σ = σijei ⊗ ej = σ̃ij ẽi ⊗ ẽj σ̃ij = σkl

(
ek · ẽi

)(
el · ẽj

)
Higher order tensor can be defined following the transformation rule. For instance, the

fourth order tensor can be defined as

C = Cijklei ⊗ ej ⊗ ek ⊗ el

with
C̃ijkl = Cpqrs(ep · ẽi)(eq · ẽj)(er · ẽk)(es · ẽl)

upon the change of basis.

A.8 Tensor operations

Tensors are able to operate on tensors to produce other tensors. The scalar product, cross
product and dyadic product of first order tensor (vector) have already been introduced in Sec
A.5. In this section, focus is given to the operations related with the second order tensor.
Dot product with vector:

σ · a = (σijei ⊗ ej) · (akek) = σijei(ej · akek) = σijeiakδjk = σijajei

a · σ = (akek) · (σijei ⊗ ej) = ak(ek · (σijei))ej = ak(σijδki)ej = aiσijej

Double-dot product :

σ : ε = (σijei ⊗ ej) : (εklek ⊗ el) = σijεkl(ei · ek)(ej · el) = σijεklδikδjl = σijεij

Double-dot product with fourth order tensor:

C : ε = Cijklei ⊗ ej ⊗ ek ⊗ el : εpqep ⊗ eq = Cijklεpqei ⊗ ej(ek · ep)(el · eq) = Cijklεklei ⊗ ej .



Appendix B

Vector Calculus

B.1 nabla operator(∇)

In a Cartesian system with orthonormal basis {ei}, the nabla operator ∇ is denoted by

∇ ≡ ei
∂

∂x1

+ e2
∂

∂x2

+ e3
∂

∂x3

.

The gradient of a scalar field φ is defined as

grad φ = ∇φ = ei
∂φ

∂xi
.

Problems:

1. Verify that ∇φ is perpendicular to the surface {x|φ(xi) = const}, and it is associated
with the maximum spatial rate of change of φ. (Hint: the spatial rate of change of φ
along unit vector l̂ is given by ∂φ

∂xi
(ei · l̂).)

In general, the gradient of a tensor generates a new tensor with a higher order. For instance,
the gradient of a first order tensor v (vector) produces a second order tensor:

∇v = ei
∂

∂xi
(vjej) =

∂vj
∂xi

eiej =
∂vj
∂xi

ei ⊗ ej.

It is also common to decompose the gradient of vector as

∇v =
1

2

(
∂vj
∂xi

+
∂vi
∂xj

)
ei ⊗ ej +

1

2

(
∂vj
∂xi
− ∂vi
∂xj

)
ei ⊗ ej.

The divergence of a vector is defined as

div v = ∇ · v = (ei
∂

∂xi
) · (vjej) =

∂vi
∂xi

which results in a scalar.

113
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In general, the divergence of a tensor generates a tensor with a lower order. The diver-
gence of a tensor Φ = φijei ⊗ ej produces a vector, as shown in next equations:

∇ · Φ = (ei
∂

∂xi
) · (φmnem ⊗ en)

=
∂φin
∂xi

en.

The curl of a vector is defined as

curl v = ∇× v = εijk
∂vj
∂xi

ek .

The Laplacian operator ∇2 (sometimes written as ∆) on a scalar field φ is defined as the
divergence of the gradient vector ∇φ:

∇2φ = ∇ · (∇φ) = (∇ · ∇)φ =
∂2φ

∂xi∂xi
.

B.2 Integral Relations

The integral relations are equations that relate the volume integral to the surface integral,
or the surface integral to the line integral. Consider an arbitrary region in space of volume
V which is surrounded by surface S with a unit outer normal n̂.
Gradient Theorem: for any scalar field φ,∫

V

grad φ dV =

∮
S

n̂φ dS . (B.1)

Written in component, ∫
V

∂φ

∂xi
dV =

∮
S

n̂iφ dS .

Divergence Theorem (or Gauss’ Theorem): for a first or second order tensor A,∫
V

div A dV =

∮
S

n̂ ·A dS (B.2)

For vector A = Aiei, the divergence theorem gives rise to one identity∫
V

∂Ai
∂xi

dV =

∮
S

n̂iAi dS .

While for second order tensor A = Aijei ⊗ ej, the divergence theorem gives rises to three
identities: ∫

V

∂Aij
∂xi

dV =

∮
S

n̂iAij dS .
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B.3 nabla operator in Cylindrical and Spherical Coor-

dinate Systems

The nabla operator ∇ has already been introduced in Cartesian coordinate system in the
previous section. Let êx be a unit vector along the x-axis, and define êy and êz by analogy.
Then {êx, êy, êz} forms a basis of the space. On the basis, the nabla operator is denoted as

∇ = êx
∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z
.

The Laplacian operator is given by

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

In cylindrical and spherical coordinate systems, the basis is defined locally, and will
change as the position changes. As as a result, the nabla operator has different expressions.

B.3.1 Cylindrical coordinates

In a cylindrical coordinate system (R, φ, z), the orthonormal basis vectors associated with
the coordinates are defined by

êR = cos(φ)êx + sin(φ)êy
êφ = − sin(φ)êx + cos(φ)êy
êz = êz

where {êx, êy, êz} are the three basis vectors in the Cartesian coordinate system (x, y, z).

x

y

z

φ R

Z

ez

eR

eφ

The nabla operator in cylindrical coordinate system is denoted as:

∇ = êR
∂

∂R
+ êφ

1

R

∂

∂φ
+ êz

∂

∂z
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Factor 1
R

in the second term is a little surprise at the first sight, while it makes the rhs dimen-
sionally consistent. The new expression can be derived from the coordinate transformation
as below.

(R, φ, z) coordinates can be written as functions of (x, y, z):

R =
√
x2 + y2

φ = arctan
y

x
z = z

which means given any scalar field ψ(R, φ, z), ψ(R(x, y, z), φ(x, y, z), z) is a scalar field in
(x, y, z) coordinate system. Recalling the expression of ∇ in Cartesian coordinate system,

∇ψ = êx
∂ψ

∂x
+ êy

∂ψ

∂y
+ êz

∂ψ

∂z

= êx(
∂ψ

∂R

∂R

∂x
+
∂ψ

∂φ

∂φ

∂x
) + êy(

∂ψ

∂R

∂R

∂y
+
∂ψ

∂φ

∂φ

∂y
) + êz

∂ψ

∂z

=
∂ψ

∂R

(
êx
∂R

∂x
+ êy

∂R

∂y

)
+
∂ψ

∂φ

(
êx
∂φ

∂x
+ êy

∂φ

∂y

)
+ êz

∂ψ

∂z

=
∂ψ

∂R

(
êx
x

R
+ êy

y

R

)
+
∂ψ

∂φ

(
êx(−

y

R2
) + êy

x

R2

)
+ êz

∂ψ

∂z

=
∂ψ

∂R
(cos(φ)êx + sin(φ)êy) +

∂ψ

∂φ

1

R
(− sin(φ)êx + cos(φ)êy) + êz

∂ψ

∂z

= êR
∂ψ

∂R
+ êφ

1

R

∂ψ

∂φ
+ êz

∂ψ

∂z
,

which denotes the ∇ operator in (R, φ, z) coordinates on the basis {êR, êφ, êz}.
Consequently, Laplacian operator on a scalar field ψ can be written as

∇2ψ = ∇ · (∇ψ)

= (êR
∂

∂R
+ êφ

1

R

∂

∂φ
+ êz

∂

∂z
) · (êR

∂ψ

∂R
+ êφ

1

R

∂ψ

∂φ
+ êz

∂ψ

∂z
)

=
∂2ψ

∂R2
+ êφ ·

1

R

∂

∂φ
(êR)

∂ψ

∂R
+

1

R2

∂2ψ

∂φ2
+
∂2ψ

∂z2

=
∂2ψ

∂R2
+ êφ ·

1

R
êφ
∂ψ

∂R
+

1

R2

∂2ψ

∂φ2
+
∂2ψ

∂z2

=
∂2ψ

∂R2
+

1

R

∂ψ

∂R
+

1

R2

∂2ψ

∂φ2
+
∂2ψ

∂z2

=
1

R

∂

∂R
(R

∂ψ

∂R
) +

1

R2

∂2ψ

∂φ2
+
∂2ψ

∂z2
.
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B.3.2 Strain and Stress components in cylindrical coordinates

The cylindrical coordinates have very important applications in plane stress and plane strain
problems. Consider only the in-plane coordinates (polar coordinates) (r, θ). The displace-
ment fields (ur, uθ) can be expressed as

ur = cos θ u1 + sin θ u2 ,
uθ = − sin θ u1 + cos θ u2

where (u1, u2) are the displacements in the Cartesian coordinates system. At the same time,
it is easy to see that (u1, u2) can be expressed in terms of (ur, uθ) as

u1(r, θ) = cos θ ur − sin θ uθ ,
u2(r, θ) = sin θ ur + cos θ uθ .

The strain tensor (εrr, εrθ; εθr, εθθ) can be obtained through the rotation of the Cartesian
coordinates by θ, i.e.

εrr = ε11 cos2 θ + ε22 sin2 θ + ε12 sin 2θ
εθθ = ε11 sin2 θ + ε22 cos2 θ − ε12 sin 2θ

εrθ = εθr = − ε11−ε22
2

sin 2θ + ε12 cos 2θ .

Using the definition and the chain rule derivative, the strains εij can be expressed in terms
of (r, θ, ur, uθ), and finally the strains in polar coordinates can be obtained by substitution.
From chain rule, it is straightforward to show that ∂r

∂x1
= cos θ, ∂r

∂x2
= sin θ, ∂θ

∂x1
= − sin θ

r
, ∂θ
∂x2

=
cos θ
r
. And consequently,

ε11 =
∂u1

∂x1

=
∂u1

∂r
cos θ +

∂u1

∂θ
(−sin θ

r
) ,

ε22 =
∂u2

∂x2

=
∂u2

∂r
sin θ +

∂u2

∂θ
(
cos θ

r
) ,

ε12 =
1

2
(
∂u1

∂x2

+
∂u2

∂x1

)

=
1

2

(
∂u1

∂r
(sin θ) +

∂u1

∂θ
(
cos θ

r
) +

∂u2

∂r
(cos θ) +

∂u2

∂θ
(−sin θ

r
)

)
.

Since sin 2θ = 2 sin θ cos θ,

εrr =
∂u1

∂r
cos3 θ +

∂u1

∂θ
(−sin θ cos2 θ

r
) +

∂u2

∂r
sin3 θ +

∂u2

∂θ
(
cos θ sin2 θ

r
)

+
∂u1

∂r
(sin2 θ cos θ) +

∂u1

∂θ
(
cos2 θ sin θ

r
) +

∂u2

∂r
(cos2 θ sin θ) +

∂u2

∂θ
(−sin2 θ cos θ

r
)

=
∂u1

∂r
cos θ +

∂u2

∂r
sin θ

=
∂(u1 cos θ + u2 sin θ)

∂r

=
∂ur
∂r

.
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Similarly,

εθθ =
∂u1

∂r
cos θ sin2 θ +

∂u1

∂θ
(−sin3 θ

r
) +

∂u2

∂r
sin θ cos2 θ +

∂u2

∂θ
(
cos3 θ

r
)

− ∂u1

∂r
(sin2 θ cos θ)− ∂u1

∂θ
(
cos2 θ sin θ

r
)− ∂u2

∂r
(cos2 θ sin θ) +

∂u2

∂θ
(
sin2 θ cos θ

r
)

=
∂u1

∂θ
(−sin θ

r
) +

∂u2

∂θ

cos θ

r

=
1

r

(
∂(−u1 sin θ + u2 cos θ)

∂θ
+ u1 cos θ + u2 sin θ

)
=

1

r

(
∂uθ
∂θ

+ ur

)
,

and

εθr =−
(
∂u1

∂r
cos θ − ∂u1

∂θ

sin θ

r
− ∂u2

∂r
sin θ − ∂u2

∂θ

cos θ

r

)
sin θ cos θ

+

(
∂u1

∂r
(sin θ) +

∂u1

∂θ
(
cos θ

r
) +

∂u2

∂r
(cos θ) +

∂u2

∂θ
(−sin θ

r
)

)
(cos2 θ − 1

2
)

=
1

2

(
∂u1

∂r
(− sin θ) +

∂u1

∂θ

cos θ

r
+
∂u2

∂r
cos θ +

∂u2

∂θ

sin θ

r

)
=

1

2

(
∂(−u1 sin θ + u2 cos θ)

∂r
+

1

r

∂(u1 cos θ + u2 sin θ)

∂θ
− 1

r
(−u1 sin θ + u2 cos θ)

)
=

1

2

(
∂uθ
∂r

+
1

r

∂ur
∂θ
− uθ

r

)
.

In sum, the strain components in polar coordinates can be written as follows:

εrr = ∂ur
∂r

εθθ = 1
r
∂uθ
∂θ

+ ur
r

εrθ = εθr = 1
2
(∂uθ
∂r

+ 1
r
∂ur
∂θ
− uθ

r
)

The isotropic elastic constitutive relation between strain and stress remains the same in
the polar coordinates. In constitutive relation, the only difference is the change of index
from {i, j} to {r, θ}.

The stress tensor (σrr, σrθ;σθr, σθθ) can be obtained through the rotation of the Cartesian
coordinates by θ, i.e.

σrr = σ11 cos2 θ + σ22 sin2 θ + σ12 sin 2θ
σθθ = σ11 sin2 θ + σ22 cos2 θ − σ12 sin 2θ
σrθ = −σ11−σ22

2
sin 2θ + σ12 cos 2θ .

The stress tensor can also be expressed as derivatives of the Airy stress function. See Unit 4
for more details. The equilibrium equations can be also derived through the transformation
of coordinates and chain rule as we have done for the strain components. Here, we adopt
an alternative tensorial approach and use the results from previous section. In the polar
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coordinates, êr = cos θê1 + sin θê2, and êθ = − sin θê1 + cos θê2, where êi, i = 1, 2 are the
basis vectors in the Cartesian system. It is straightforward to see that ∂êr

∂r
= ∂êθ

∂r
= 0 ,

∂êr
∂θ

= êθ and ∂êθ
∂θ

= −êr.
The equilibrium equation in tensorial form reads

0 =∇ · σ

=(êr
∂

∂r
+

êθ
r

∂

∂θ
) · (σrrêrêr + σrθêrêθ + σθrêθêr + σθθêθêθ)

=
∂σrr
∂r

êr +
∂σrθ
∂r

êθ +
σrr
r

êr +
σrθ
r

êθ +
1

r

∂σθr
∂θ

êr +
σθr
r

êθ +
1

r

∂σθθ
∂θ

êθ +
σθθ
r

(−êr)

=

(
∂σrr
∂r

+
1

r

∂σθr
∂θ

+
σrr − σθθ

r

)
êr +

(
∂σrθ
∂r

+
1

r

∂σθθ
∂θ

+
σrθ + σθr

r

)
êθ .

Considering the symmetry of the stress tensor, the equilibrium equations in polar coor-
dinates can be written as follows

∂σrr
∂r

+ 1
r
∂σrθ
∂θ

+ σrr−σθθ
r

= 0 ,
1
r
∂σθθ
∂θ

+ ∂σrθ
∂r

+ 2σrθ
r

= 0 .

B.3.3 Spherical system

In a spherical coordinate system (r, θ, φ), the orthonormal basis vectors associated with the
coordinates are defined by

êr = sin(θ) cos(φ)êx + sin(θ) sin(φ)êy + cos(θ)êz
êθ = cos(θ) cos(φ)êx + cos(θ) sin(φ)êy − sin(θ)êz
êφ = − sin(φ)êx + cos(φ)êy

where {êx, êy, êz} are the three basis vectors in the Cartesian coordinate system (x, y, z).
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The nabla operator is written as:
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The derivation follows the same way as in the cylindrical coordinates. Main tools are the
chain rule of derivative and the fact that (r, θ, φ) coordinates can be written as functions of
(x, y, z):
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The Laplacian operator on a scalar field ψ can be written as
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