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Problem 1 – Search (20 points) 
 
 
Part A – Dijkstra’s Algorithm (6 points) 
 
Consider the following graph, with node 1 as the start, and node 9 as the goal. 
 

1

 2

 
 

Part A-1 – (2 points) 
 
How many times does the value at node 11 change? 
 
 
 
 

 
Part A-2 – (2 points) 
 
What is the length of the shortest route from start to goal? 
 
 
 
 
 
Part A-3 – (2 points) 
 
In what order are the nodes expanded? 
 

2 3 4 5

6 7 8

 1 1

9

10 11 12 

13 

14 

  

  1  1  1

 1
 1

 1

 1

1 1 1 5
 1 12 

3 11 1 1  1 1 1 0

 1 9
 1 8 7  1 11

1 1 1  1 1

1



 
 
 
Part B – A* Search (8 points) 
 
Consider the following maze.  Actions are moves to the 8 neighboring squares.  Each 
such move involves a move over a distance, which is the cost of the move.  Let’s say that 
the distance to the left and right neighbors, and to the upper and lower neighbors is 1, and 
that the distance to the corner neighbors is 2 . 
 

 
 
 
Part B-1 – (4 points) 
 
The Manhattan distance is not an admissible heuristic.  Can it be made admissible by 
adding weights to the x and y terms? (The Manhattan distance between two points 
<x1,y1> and <x2,y2> is [|x2 – x1| + |y2 – y1|]. A weighted version would be [α|x2 – x1| + 
β|y2 – y1|].) . 
 
 
 
 
 
 
 
 
Part B-2 – (4 points) 
 
Is the L-∞ distance an admissible heuristic?  Why or why not? (The L-∞  distance 
between two points <x1,y1> and <x2,y2> is (max(|x2 – x1|, |y2 – y1|) ). 
 
 
 
 
 

 3



 
Part C – Properties of Search (6 points) 
 
Part C-1 – (1 point) 
 
How can A* be made to behave just like breadth-first search? 
 
 
 
 
 
 
 
Part C-2 – (1 point) 
 
How can depth-first search be made to behave just like breadth-first search? 
 
 
 
 
 
 
 
Part C-3 – (2 points) 
 
Is A* always the fastest search method?  Explain your answer. 
 
 
 
 
 
 
 
Part C-4 – (2 points) 
 
Is breadth first always slower than depth first search?  Explain your answer. 
 
 
 
 
 
 
 
 

 4



Problem 2 – Planning with Graphplan (20 points) 
 
Consider the following set of initial facts and operators. 
 
Initial facts: 
 

(Item Brian) 
(Item Laptop) 
(City Boston) 
(City PaloAlto) 
(City Ames) 
(Plane USAir-1) 
(Plane USAir-2) 
 
(in Boston Brian) 
(in PaloAlto Laptop) 
(in Boston USAir-1) 
(in PaloAlto USAir-2) 

 
Operators: 
 

(operator board 
   (parameters (Item x) (Plane y) (City z)) 
   (preconditions (in z x) (in z y)) 
   (effects (on y x)) 
) 
 
(operator fly 
   (parameters (Plane x) (City y) (City z)) 
  (preconditions (in y x)) 
   (effects (in z x)) 
) 
 
(operator deplane 
   (parameters (Item x) (Plane y) (City z)) 
   (preconditions (on y x) (in z y)) 
   (effects (in z x)) 
) 

 
Part A – Get Brian from Boston to his laptop in Palo Alto (5 points) 
 
What is the goal fact? 
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How many different propositional symbols result from instantiating fly(x, y, z) for the 
first ten levels of the plan graph, given that the initial facts have already been 
instantiated? 
 
 
 
 
 
Part B – Get Brian’s laptop from Palo Alto to Boston using Graphplan 
(15 points) 
 
Fill in the plan graph, showing level 1 operators and level 1 and 2 facts (but no mutexes). 
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Problem 3 – Propositional Logic and Inference (20 points) 
 
Consider a theory comprised of the following six clauses: 

not A or B; 
not B or C; 
not C or not D or E; 
not D or not E; 
not F or not G; 
F. 
 

Part A – Satisfiability Using DPLL (15 points) 
 
Use the DPLL algorithm (backtrack search plus unit propagation) to find a truth 
assignment to propositions A, B, C, D, E, F and G, that is consistent with the theory.  
Fill out the search tree supplied below, stopping at the first consistent assignment 
found.   
 

• Search the propositions in alphabetical order (no other order please!).   
• For each proposition P, assign the value True before trying False.   
• On the line next to each node in the tree, write the proposition being assigned a 

truth value at that point in the search.   
• In the box next to each branch, list all propositions whose truth value is 

determined by unit propagation based on the assignment to the proposition at 
that branch.   

• Indicate the truth value derived for each of these propositions.   
• Draw an X at each node that is immediately below the branch where at least one 

clause becomes false; this is where the search backtracks. 
• Circle each node that denotes a complete and consistent assignment to the 

propositions A – G. 
 

We filled out the result of the initial propagation in the box above the tree.  In addition, 
we filled out the first variable to be assigned (A), next to the root. 
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F = True 
G = False 

 
 
 
Part B – Satisfiability with Backtracking + Forward Checking (5 points) 
 
Consider solving the same problem (finding the first consistent assignment for the theory) 
using backtrack search plus forward checking.  Would the depth of the search tree be 
different, that is, would backtrack search plus forward checking assign the same number 
of variables, fewer variables, or more variables than the DPLL algorithm?  Give a brief 
explanation for your answer. 
 
 
 
 
 
 

True False 

True False 

True False True False 

True False 

True False True False 

 
A
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Circle one of Fewer, Same or More 
Why? 



Problem 4 – Model-based Diagnosis (27 points) 
 
You are having trouble with your car. Each time you brake, the car drags to the right (the left 
wheel is underbraked and the right wheel is overbraked), while the brake pedal feels harder than 
normal.  Let’s see if what you have learned in 16.410 can help you find the cause. 
 
The reference manual of the car states that the hydraulic circuit consists of the pedal brake 
cylinder B, the left and right wheel brake cylinders LW and RW, and two valves LV and RV: 
 
 

PB

PLW PRW

QLV

QB

QLW QRW

QRV

LV RV

B

Left
Wheel LW Right

WheelRW

Pedal

 
 
The fluid flow in the pipes (in the direction indicated by the arrows) is denoted QB, QLV, QRV, 
QLW, and QRW.  The pressure in the pipes is denoted PB, PLW, and PRW. 
 
If a valve is working correctly, then the flow across it is proportional to the pressure difference in 
the adjacent pipes.  If a pedal or wheel brake cylinder is working correctly, then the flow into it is 
proportional to the pressure in the adjacent pipe.  The brake fluid is incompressible, so the flow 
sums up to zero at the junction of the pipes to the left and right branches.  
 
The next page shows a constraint-based model of the hydraulic circuit as described above.  Each 
variable can assume one of the three values “low”, “nominal”, and “high”, abbreviated as “-“, 
“0”, and “+”.  Each constraint lists the possible combinations of values if the component works 
correctly (denoted “G”).  In this representation, the observations of the car’s strange behavior can 
be expressed as PB=”+”, PLW=”-“, PRW=”+”.  
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B: 

PB QB
- - 
0 0 
+ + 

 
LW:  

PLW QLW
- - 
0 0 
+ + 

 
RW:  

PRW QRW
- - 
0 0 
+ + 

 
LV:  

QLV QLW PB PLW
- - - - 
- - - 0 
- - - + 
- - 0 + 
- - + + 
0 0 - - 
0 0 0 0 
0 0 + + 
+ + - - 
+ + 0 - 
+ + + - 
+ + + 0 
+ + + + 
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RV:  

QRV QRW PB PRW
- - - - 
- - - 0 
- - - + 
- - 0 + 
- - + + 
0 0 - - 
0 0 0 0 
0 0 + + 
+ + - - 
+ + 0 - 
+ + + - 
+ + + 0 
+ + + + 

 
Pipe Junction: 

QLV QB QRV
+ - - 
- + - 
+ 0 - 
0 + - 
+ + - 
+ - 0 
0 0 0 
- + 0 
+ - + 
- + + 
- 0 + 
0 - + 
- - + 
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In the lecture, you learned how to find symptoms by applying unit propagation to a set of clauses, 
and how to extract conflicts from inconsistent clauses by tracing support.  Now you will 
generalize propagation and conflict extraction from clauses to constraints.   
 
Recall that in unit propagation, we look for clauses where all literals except one are false.  We 
then assign true to the remaining literal, and record the clause as a support for this literal. 
 
Constraint propagation generalizes this in the following way:  In constraint propagation, we look 
for constraints where all values of a variable except one are excluded. We then assign this 
remaining value to the variable, and record the constraint as a support for this assignment. 
 
For example, consider the constraint for LV.  If PB = “+” and PLW = “-“, then QLV is restricted to 
the single value “+” and QLW is restricted to the single value “+“.  We assign these values to the 
variables and record “LV=G” as a support for QLV = “+” and as a support for QLW = “+”. 
 
In the diagram below, we applied constraint propagation to the model above, given the 
observations PB=”+”, PLW=”-“, PRW=”+”.  The support for each predicted value is shown next to 
that value. The pipes are assumed to be ok, so the pipe junction is not included as a support. 
  

PB

PLW PRW

QLV

QB

QLW QRW

QRV

LV RV

B

LW RW

+

+-

+

RW=G+

B=G +

-

LV=G ∅

RV=G

 
 
 
Part A – Conflict Extraction from Support [4 points] 
 
As shown in the diagram above, the model and the observations are inconsistent with the 
assertion that every component is correct: constraint LV has become empty, as there is no tuple in 
the constraint LV that allows for QLV =”-“, PB = “+”, and PLW = “-“. Extract the conflict by 
tracing back the support for the predictions (you should be able to do this by inspection): 
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Part B – Constraint Suspension for Fault Localization [20 points] 
 
Let’s now see what single failures can account for the symptoms you observed in your car.  Find 
this out by successively suspending constraints. 
 
Show your results on the following diagrams, one for each candidate.  For each diagram, write at 
the top if the candidate is subsumed by (can be pruned by) conflicts that have been discovered 
so far.  If the candidate is not subsumed by conflicts discovered so far, then: 
 
• Cross out the suspended constraint. 
• Perform constraint propagation and write the predicted values in the box next to the 

corresponding variable. You can stop propagation as soon as you have found that the 
candidate is inconsistent. 

• Write the support in the box next to the predicted value. Do not record the pipe junction as  
support, we assume it to be fault-free.   

• Write at the top of each diagram whether or not the candidate is consistent. 
• If the candidate is inconsistent, extract a conflict and write it on top of the diagram. 
 
Recall, the observations are PB=”+”, PLW=”-“, PRW=”+”. 
 
Candidate B: 
 
Subsumed by conflicts (yes/no)? ______    Consistent (yes/no)?  _______ 
Conflict: __________________________________________ 
 
 

PB

PLW PRW

QLV

QB

QLW QRW

QRV

LV RV

B

LW RW
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Candidate LV: 
 
Subsumed by conflicts (yes/no)? ______   Consistent (yes/no)?  _______  
Conflict:  _________________________________________ 
 
 

PB

PLW PRW

QLV

QB

QLW QRW

QRV

LV RV

B

LW RW

 
 
 
 
Candidate RV: 
 
Subsumed by conflicts (yes/no)? ______   Consistent (yes/no)?  _______ 
Conflict:  _________________________________________ 
 
 

PB

PLW PRW

QLV

QB

QLW QRW

QRV

LV RV

B

LW RW
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Candidate LW: 
    
Subsumed by conflicts (yes/no)? ______   Consistent (yes/no)?  _______ 
Conflict:  _________________________________________ 
 
 

PB

PLW PRW

QLV

QB

QLW QRW

QRV

LV RV

B

LW RW

 
      
 
 
Candidate RW: 
 
Subsumed by conflicts (yes/no)? ______   Consistent (yes/no)?  _______ 
Conflict:  _________________________________________ 
 
 

PB

PLW PRW

QLV

QB

QLW QRW

QRV

LV RV

B

LW RW
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Problem 5 – Navigation by MDP (30 points) 
 
Captain Jack Sparrow, infamous pirate, has sailed his ship to the eastern side of the island 
of Tortuga (see chart below).   
 
 

Tortuga

1

2

3

4 Harbor

Gold

Rocks  
 
Captain Jack would like to anchor in the harbor on the western side.  Let’s help him by 
using an ancient navigation technique that is known to all sailors worth their salt:  value 
iteration. 
 
First, let’s consider some details shown on the chart.  There are four locations, with the 
dotted arrows indicating valid moves between them.  We will assume that all moves are 
deterministic.  Location 3 represents rocks that will sink the ship, so there are no actions 
that lead out of this state.  Similarly, location 4 represents the goal, and there are no 
actions that lead out of location 4 (Captain Jack wants to relax after he has anchored).  In 
order to relax, Captain Jack needs some gold.  Fortunately, he remembers that he has 
previously stashed some at location 2.  
 
Let’s assume that any time the ship reaches location 2, and the ship is not carrying the 
gold, the gold is automatically loaded onto the ship.   
 
To use an MDP formulation, we need some notion of reward.  Let’s assume that location 
4, the goal, has a reward of 1000.  Also, let’s assume that location 3 has a reward of  
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-1000 (because the ship sinks).  Finally, let’s assume that location 2 has a reward of 200 
if the ship has not yet picked up the gold.  Rewards for any actions in all other states are 
0. 
 
Part A - Modeling 
 
In this part, you will design an MDP model for this problem.  Assume that the state 
vector consists of the following two variables (with corresponding possible values): 
 
Location (1, 2, 3, 4) 
Ship-has-gold (true, false) 
 
 
Part A-1 (5 points) 
 
Write the transition function for this problem.  Note that the system is deterministic. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Current state   Action   Next state 
 

 17



 
Part A-2 (5 points) 
 
Write the reward function for this problem.   
  
 
 
 
 
 
 
 
 
 
 
 
 
 

Current state   Action   Reward 
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Part B – Value Iteration (10 points) 
 
Use value iteration to determine the values of each state.   Perform two iterations using a 
discount factor of 9.0=γ .  Assume that the initial value for all states corresponding to 
location 3 is -1000, the initial value for all states corresponding to location 4 is 1000, and 
the initial value for all other states is 0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

State  Initial value  Iteration 1 value Iteration 2 value 
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Part C – Optimal Policy (5 points) 
 
What is the optimal policy for each state? 
 
 
 
 
 
 
 
 
 
 

 State  Action 

 
 
 
 
 
Part D – Effect of discount factor (5 points) 
 
What would be the effect of changing the discount factor from 0.9 to 0.5? 
 
 
 
 
 
 
 
 
 
 

 20



Problem 6  - Scheming with CNF (30 points) 
 
For this problem, we’ll use a subset of propositional logic. In particular, we won’t worry 
about negation (not), and the and and or operators are binary (as opposed to n-ary). 
Well-formed formulas (WFF’s) are either symbols (e.g. a), or a conjunction of two 
WFF’s, (e.g. (and ... ...)), or a disjunction of two WFF’s, (e.g. (or ... ...)). We can write 
the grammar for WFF’s as:  

WFF :: = Symbol  
          |   (or WFF WFF)  
          |   (and WFF WFF)  

The following are WFF’s:  
1. a  
2. (or a b)  
3. (and a b)  
4. (and (or a b) c)  
5. (and (or a b) (and c (or d e)))  
6. (and a (or (and b c) d))  
7. (or (or a (and b c)) (and (or d e) f)))  

A WFF in Disjunctive Normal Form (DNF) is a disjunction of clauses, where each clause 
is either a symbol or a disjunctive normal clause. A single symbol can be considered a 
degenerate DNF. For example, formulas 1 and 2, above, are in DNF. We can write the 
grammar for DNF formulas as:  

DNF ::= Symbol  
          |  (or DNF DNF)  

A WFF in Conjunctive Normal Form (CNF) consists of a conjunction of WFF’s such that 
each conjunct is either in CNF itself or is in DNF. In the list of formulas above, WFF’s 1 
through 5 are in CNF. Note that formulas 1 and 2 can be considered to consist of a single 
conjunct. A grammar for CNF formulas is:  

CNF ::= Symbol  
         |   (and CNF CNF)  
         |   (or DNF DNF)  

An important step in converting logical formulas to CNF is to distribute or over and 
whenever possible. For example, we can convert (or A (and B C)) to (and (or A B) 
(or A C)), and we can convert (or (and A B) C) to (and (or A C) (or B C)) 
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Part A – Convert to CNF Manually (10 points) 
 
Convert the following WFF’s to CNF by repeatedly applying or distribution. 
Show intermediate steps, so that if you make a mistake we can give you partial credit. 
 
(and a (or (and b c) d)) 

(or (or a b) (and c d)) 

(or (or a (and b c)) (and (or d e) f)) 
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Part B – Scheme Code to Convert to CNF (20 points) 
Following is the skeleton of a function to convert a WFF into CNF by distributing or 
over and: 
(define first car) 
(define second cadr) 
(define third caddr) 
;; Assume formulas are well-formed, and conform to the following grammar:  
;;   wff ::= symbol | (and wff wff) | (or wff wff) 
(define (and-clause? wff) (and (list? wff) (eq? 'and (first wff)))) 
(define (or-clause? wff) (and (list? wff) (eq? 'or (first wff)))) 
;; Distribute OR over AND in a well-formed formula (wff). 
;; 1. (or (and A B) C) => (and (or A C) (or B C)) 
;; 2. (or A (and B C)) => (and (or A B) (or A C)) 
;; Note that in the above, if A, B, or C are not symbols or simple 
;; disjunctive clauses, they will need to be further converted, so 
;; that we wind up with, in general, wff's of the form 
;; cnf  ::= symbol | (and cnf cnf) | (or dnf dnf) 
;; dnf  ::= symbol | (or dnf dnf) 
(define (distribute-or wff)  ; => CNF 
  (cond 
   ((symbol? wff)   ; symbol 
    wff) 
   ((and-clause? wff)   ; an AND clause 
    (list 'and 
   ;; [1] construct 1st conjuct here 
   ;; [2] construct 1st conjuct here 
   ((or-clause? wff)   ; an OR clause 
    (let ((disj1 (distribute-or (second wff))) ; get disjuncts 
     (disj2 (distribute-or (third wff)))) ; into CNF 
      (cond 
       ((and-clause? disj1)  ; case 1, above 
 (let ((a (second disj1)) 
       (b (third disj1)) 
       (c disj2)) 
   (list 'and  
  ;; [3] construct 1st conjuct here 
  ;; [4] construct 1st conjuct here 
       ((and-clause? disj2)  ; case 2, above 
 (let ((a disj1) 
       (b (second disj2)) 
       (c (third disj2))) 
   (list 'and  
  ;; [5] construct 1st conjuct here 
  ;; [6] construct 1st conjuct here 
       (else 
 (list 'or  
       ;; [7] construct 1st disjunct here 
       ;; [8] construct 1st disjunct here 
       ))))))) 
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Provide the eight Scheme expressions that should replace the eight commented lines in 
the code of the form “[n] construct ... here”. 
 
1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
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Problem 7 - Mixed Integer Programming (14 points) 
 

Part A. Formulation with fixed costs (7 points) 
Formulate the following mixed integer linear program. Stacy’s Subway Company needs to supply 
5 subway cars to Manhattan.  The alternatives for shipping include transporting them by truck 
over a bridge (at a cost of $2000 each) or transporting them by ferry (at a cost of $1000 each).  
However, the permit process in Manhattan is absurd and so there is a one time red-tape cost of 
$6000 for transporting any subway cars in trucks over a bridge and a one time red-tape cost of 
$10,000 for transporting any subway cars by ferry.   
 
Formulate a MILP to minimize the transportation costs.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Part B. Branch and Bound Search Tree (7 points) 
 
Solve the following mixed integer linear problem using Branch and Bound.   
 

Minimize z = 10x1 + 4x2 + 20b1 + 25b2
 

subject to 2x1 + x2  > 10  
  x1 ≤ 10b1 

  x2 ≤ 10b2
   x1>0, x2>0    
 
   b1 + b2  ≤ 1 

b1, b2  are binary (i.e., bi ∈ {1,0}). 
 
 
Fill in the branch and bound search tree below.  Branch on the binary variables in the following 
order: .  Evaluate the 0 branch before the 1 branch.  Cross off each node that is infeasible 21, bb
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or fathomed.  For feasible, non-fathomed nodes, give the relaxed solution and the value of Z.  For 
fathomed nodes, give the solution and value of Z.   
 

b1 =    , b2 =    , x1 =    ,  x2 =    , z =

b1 = 0 b1 = 1

b1 =    , b2 =    , x1 =    ,  x2 =    , z =

b1 =
 b2 =
x1 =
 x2 =
z =

b1 =
 b2 =
x1 =
 x2 =
z =

b1 =
 b2 =
x1 =
 x2 =
z =

b1 =
 b2 =
x1 =
 x2 =
z =

b2 = 0 b2 = 1 b2 = 0 b2 = 1

b1 =    , b2 =    ,
x1 =    ,  x2 =    , z =
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Problem 8 - Decision Trees (15 points) 
 
City planners have accumulated the following data on a variety of threats to urban life. The 
purpose of this data is to predict, based upon a monster's origin, appearance, and breath attack (if 
any), whether or not it will practically raze a city before it retires for  mid-afternoon tea and 
crumpets. 
 

Origin  Appearance Foul Breath  City-Destroyer 

Outer Space Blob Acid Yes 

Outer Space Reptile None Yes 

Outer Space Reptile Acid Yes 

Outer Space Blob Fire No 

Pacific Ocean  Blob None No 

Pacific Ocean  Blob Acid No 

Pacific Ocean  Reptile Fire No 

Pacific Ocean  Reptile Acid No 
 
1. (5 points) With no other information, how many bits on average would you need to transmit 

City-Destroyer ? 
 
 
 
 
 
 

2. (1 point) Which of the three other attributes gives you the highest information gain with 
respect to City-Destroyer? Show your reasoning. 

 
 
 
 
 
 
 
3. (2 points) Using information gain as your splitting criteria, what decision tree would you get? 

Do not prune the tree. 
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4. (2 points) Fill in the following table with your predictions. 
 

Origin  Appearance Foul Breath  City-Destroyer 

Outer Space Blob Fire  

Pacific Ocean Reptile Acid  
 
 
 
 
 
5. (5 points) How might you deal with missing values? For example, what would you predict if 

all you knew about a visitor was that it was blob-shaped, and why? 
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Problem 9- Hidden Markov Models (15 points) 
 
Consider an HMM defined by the traditional set of parameters: 

λ = (S,Z,T,O,p0)  
 

Recall that the following  array of probabilities can be obtained by dynamic programming in the 
forward algorithm: 
 

αt(i) = p(z1,..., zt ^ qt = si|λ) 
 

a) We can compute a similar array of probabilities using dynamic programming in a backward 
algorithm:  

βt(i) = p(zt,..., zT ^ qt = si|λ) 
 
Give a mathematical expression for βτ(ι) that can be computed using dynamic programming. 
 
 
 
 
 
 
 
 
 
 
 
b) In the process of learning an HMM from data we need the following array of probabilities: 
 

γt(i) = p(qt = si|z1, ..., Ot, Ot+1, ..., OT, λ) 
 

Your job is to define γt(i) in a simple finite expression in terms of αt(i), βt(i) and  
p(z1, ..., Ot, Ot+1, ..., OT, λ). 
 

γt(i) = αt(i) x βt(i)     
             p(z1, ..., Ot, Ot+1, ..., OT, λ). 
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