
16.410-13: Principles of Autonomy
and Decision Making
Sample Final Exam

December 3rd, 2004

Name

E-mail

Note: Budget your time wisely. Some parts of this exam could take you
much longer than others. Move on if you are stuck and return to the
problem later.

Problem
Number

Max Score Grader

Problem 1

20

Problem 2

20

Problem 3

20

Problem 4

27

Problem 5

30

Problem 6

30

Problem 7

14

Problem 8

15

Problem 9

15

Total

191

Problem 1 – Search (20 points)

Part A – Dijkstra’s Algorithm (6 points)

Consider the following graph, with node 1 as the start, and node 9 as the goal.

1

Part A-1 – (2 points)

How many times does the value at node 11 change?

Part A-2 – (2 points)

What is the length of the shortest route from start to goal?

Part A-3 – (2 points)

In what order are the nodes expanded?

3 – Once for each of node 11’s parents - nodes 5, 6 and 7.

8, following along the path 1-4-7-8-9.

1, 2, 3, 5, 6, 4, 7, 8, and then 9.

2 3 4 5

6 7 8

 1 1
 1 1

9

10 11 12

13

14

 1 1 1

 1
 1

 1

 1

1 5
 1 12

3 11 1 1 1 1 1 0

 1 9
 1 8 7 1 11

1 1 1 1 1

1

 2

Part B – A* Search (8 points)

Consider the following maze. Actions are moves to the 8 neighboring squares. Each
such move involves a move over a distance, which is the cost of the move. Let’s say that
the distance to the left and right neighbors, and to the upper and lower neighbors is 1, and
that the distance to the corner neighbors is 2 .

Part B-1 – (4 points)

Is Euclidean distance an admissible heuristic? Why or why not? (The Euclidean distance
between two points <x1,y1> and <x2,y2> is [(x2 – x1}2 + (y2 – y1)2]1/2).

Yes. Euclidean distance is the straight line distance between two points, which
is the shortest distance between those points. Hence Euclidean distance is
always less than or equal to the true distance of any path between those two
points within the maze.

Part B-2 – (4 points)

Is Manhattan distance an admissible heuristic? Why or why not? (Manhattan distance
between two points <x1,y1> and <x2,y2> is (|x2 – x1| + |y2 – y1|)).

No. The Manhattan distance may be greater than the true distance. For
example, the Manhattan distance to the corner neighbors will be greater than
the true distance.

 3

Part C – Properties of Search (6 points)

Part C-1 – (1 point)

How can A* be made to behave just like breadth-first search?

Set h = 0

Part C-2 – (1 point)

How can depth-first search be made to behave just like breadth-first search?

Use iterative deepening

Part C-3 – (2 points)

Is A* always the fastest search method? Explain your answer.

No. Hill climbing w/o backtracking, for example, could find a solution much
faster (if it is lucky).

Part C-4 – (2 points)

Is depth first always slower than breadth first search? Explain your answer.

No. If the goal happens to be on an early expansion of the depth-first
algorithm, then dfs could be faster. For example, if dfs expands from left to
right, and the goal is to the farthest left of the tree.

 4

Problem 2 – Planning with Graphplan (20 points)

Consider the following set of initial facts and operators.

Initial facts:

(Item Brian)
(Item Laptop)
(City Boston)
(City PaloAlto)
(City Ames)
(Plane USAir-1)
(Plane USAir-2)

(in Boston Brian)
(in PaloAlto Laptop)
(in Boston USAir-1)
(in PaloAlto USAir-2)

Operators:

(operator board
 (parameters (Item x) (Plane y) (City z))
 (preconditions (in z x) (in z y))
 (effects (on y x))
)

(operator fly
 (parameters (Plane x) (City y) (City z))
 (preconditions (in y x))
 (effects (in z x))
)

(operator deplane
 (parameters (Item x) (Plane y) (City z))
 (preconditions (on y x) (in z y))
 (effects (in z x))
)

Part A – Get Brian from Boston to his laptop in Palo Alto (5 points)

What is the goal fact?

(in Boston Laptop)

 5

How many different propositional symbols result from instantiating fly(x, y, z) for the
first ten levels of the plan graph, given that the initial facts have already been
instantiated?

Instantiates (in z x) for each of 10 layers, with z = 2 planes and x = three cities
10 x 2 x 3 = 60

Part B – Get Brian’s laptop from Palo Alto to Boston using Graphplan
(15 points)

Fill in the plan graph, showing level 1 operators and level 1 and 2 facts (but no mutexes).

Level 1 facts Level 1 actions Level 2 facts

(in Boston Brian) Noop (in Boston Brian)
 Board (on USAir-1 Brian)
(in Boston USAir-1) Noop (in Boston USAir-1)
 Fly
 Fly (in PaloAlto USAir-1)
 Fly (in Ames USAir-1)

(in PaloAlto Laptop) Noop (in PaloAlto Laptop)
 Board (on USAir-2 Laptop)
(in PaloAlto USAir-2) Noop (in PaloAlto USAir-2)
 Fly
 Fly (in PaloAlto USAir-2)
 Fly (in Ames USAir-2)

 6

Problem 3 – Propositional Logic and Inference (20 points)

Consider a theory comprised of the following six clauses:

not A or B;
not B or C;
not C or not D or E;
not D or not E;
not F or not G;
F.

Part A – Satisfiability Using DPLL (15 points)

Use the DPLL algorithm (backtrack search plus unit propagation) to find a truth
assignment to propositions A, B, C, D, E, F and G, that is consistent with the theory.
Fill out the search tree supplied below, stopping at the first consistent assignment
found.

• Search the propositions in alphabetical order (no other order please!).
• For each proposition P, assign the value True before trying False.
• On the line next to each node in the tree, write the proposition being assigned a

truth value at that point in the search.
• In the box next to each branch, list all propositions whose truth value is

determined by unit propagation based on the assignment to the proposition at
that branch.

• Indicate the truth value derived for each of these propositions.
• Draw an X at each node that is immediately below the branch where at least one

clause becomes false; this is where the search backtracks.
• Circle the node that denotes the first complete and consistent assignment to the

propositions A – G.

We filled out the result of the initial propagation in the box above the tree. In addition,
we filled out the first variable to be assigned (A), next to the root.

 7

F = True
G = False

Part B – Satisfiability with Backtracking + Forward Checking (5 points)

Consider solving the same problem (finding the first consistent assignment for the theory)
using backtrack search plus forward checking. Would backtrack search plus forward
checking expand the same number of search nodes, up to the first solution, fewer nodes,
or more nodes than the DPLL algorithm? Give a brief explanation for your answer.

True False

True False

True False True False

True False

True False True False

B = True
C = True

E=True
E=False

A

D

E

 8

Circle one of Fewer, Same or More

Why? DPLL deduces truth assignments to propositions at the root node by using unit
propagation. BT+FC may need to assign these propositions by explicit splitting. In
addition, DPLL will use unit propagation at a node to detect inconsistencies involving
two or unassigned variables. FC would need to expand the node to its descendants in
order to detect the same inconsistency.

Problem 4 – Model-based Diagnosis (27 points)

You are having trouble with your car. Each time you brake, the car drags to the right (the left
wheel underbrakes and the right wheel overbrakes), while the brake pedal feels harder than
normal. Let’s see if what you have learned in 16.410/13 can help you find the cause.

The reference manual of the car states that the hydraulic circuit consists of the pedal brake
cylinder B, the left and right wheel brake cylinders LW and RW, and two valves LV and RV:

PB

PLW PRW

QLV

QB

QLW QRW

QRV

LV RV

B

Left
Wheel LW Right

WheelRW

Pedal

The fluid flow in the pipes (in the direction indicated by the arrows) is denoted QB, QLV, QRV,
QLW, and QRW. The pressure in the pipes is denoted PB, PLW, and PRW.

If a valve is working correctly, then the flow across it is proportional to the pressure difference in
the adjacent pipes. If a pedal or wheel brake cylinder is working correctly, then the flow into it is
proportional to the pressure in the adjacent pipe. The brake fluid is incompressible, so the flow
sums up to zero at the junction of the pipes to the left and right branches.

The next page shows a constraint-based model of the hydraulic circuit as described above. Each
variable can assume one of the three values “low”, “nominal”, and “high”, abbreviated as “-“,
“0”, and “+”. Each constraint lists the possible combinations of values if the component works
correctly (denoted “G”). In this representation, the observations of the car’s strange behavior can
be expressed as PB=”+”, PLW=”-“, PRW=”+”.

 9

B:

PB QB
- -
0 0
+ +

LW:

PLW QLW
- -
0 0
+ +

RW:

PRW QRW
- -
0 0
+ +

LV:

QLV QLW PB PLW
- - - -
- - - 0
- - - +
- - 0 +
- - + +
0 0 - -
0 0 0 0
0 0 + +
+ + - -
+ + 0 -
+ + + -
+ + + 0
+ + + +

 10

RV:

QRV QRW PB PRW
- - - -
- - - 0
- - - +
- - 0 +
- - + +
0 0 - -
0 0 0 0
0 0 + +
+ + - -
+ + 0 -
+ + + -
+ + + 0
+ + + +

Pipe Junction:

QLV QB QRV
+ - -
- + -
+ 0 -
0 + -
+ + -
+ - 0
0 0 0
- + 0
+ - +
- + +
- 0 +
0 - +
- - +

 11

In the lecture, you learned how to find symptoms by applying unit propagation to a set of clauses,
and how to extract conflicts from inconsistent clauses by tracing support. Now you will
generalize propagation and conflict extraction from clauses to constraints.

Recall that in unit propagation, we look for clauses where all literals except one are false. We
then assign true to the remaining literal, and record the clause as a support for this literal.

Constraint propagation generalizes this in the following way: In constraint propagation we look
for constraints where all values of a variable except one are excluded. We then assign this
remaining value to the variable, and record the constraint as a support for this assignment.

For example, consider the constraint for LV. If PB = “+” and PLW = “-“, then QLV is restricted to
the single value “+” and QLW is restricted to the single value “+“. We assign these values to the
variables and record “LV=G” as a support for QLV = “+” and as a support for QLW = “+”.

In the diagram below, we applied constraint propagation to the constraint model above, given the
observations PB=”+”, PLW=”-“, PRW=”+”. The support for each predicted value is shown next to
that value. The pipes are assumed to be ok, so the pipe junction is not included as a support (for
QLV).

PB

PLW PRW

QLV

QB

QLW QRW

QRV

LV RV

B

LW RW

+

+-

+

RW=G+

B=G +

-

LV=G ∅

RV=G

Part A – Conflict Extraction from Support [4 points]

As shown in the diagram above, the model and the observations are inconsistent with the
assertion that every component is correct: constraint LV has become empty, as there is no tuple in
the constraint LV that allows for QLV =”-“, PB = “+”, and PLW = “-“. Extract the conflict by
tracing back the support for the predictions (you should be able to do this by inspection):

Not (LV=G and B=G and RV=G and RW=G)
Note: pipe excluded, because it is given that it is okay.

 12

Part B – Constraint Suspension for Fault Localization [20 points]

Let’s now see what single failures can account for the symptoms you observed in your car. Find
this out by successively suspending constraints.

Show your results on the following diagrams, one for each candidate. For each diagram, write at
the top if the candidate is subsumed by (can be pruned by) conflicts that have been discovered
so far. If the candidate is not subsumed by conflicts discovered so far, then:

• Cross out the suspended constraint.
• Perform constraint propagation and write the predicted values in the box next to the

corresponding variable. You can stop propagation as soon as you have found that the
candidate is inconsistent.

• Write the support in the box next to the predicted value. Do not record the pipe junction as
support, we assume it to be fault-free.

• Write at the top of each diagram whether or not the candidate is consistent.
• If the candidate is inconsistent, extract a conflict and write it on top of the diagram.

Recall, the observations are PB=”+”, PLW=”-“, PRW=”+”.

Candidate B:

Subsumed by conflicts (yes/no)? __No__ Consistent (yes/no)? ___Yes____
Conflict: _____None_____________________________________

PB

PLW PRW

QLV

QB

QLW QRW

QRV

B

LV RV

LW RW

 Assignment Support
PB = +, PLW = -, PRW = + Observed
QLV = + LV=G, PB = +, PLW = -
QLW = + LV=G, PB = +, PLW = -
QRW = + RW=G, PRW = +
QRV = + RV=G, QRW = +, PRW = +
QB = - (Pipe), QLV = +, QRV = +

 13

Candidate LV:

Subsumed by conflicts (yes/no)? ___No_ Consistent (yes/no)? __Yes__
Conflict: ___

PB

PLW PRW

QLV

QB

QLW QRW

QRV

LV RV

B

LW RW

Assignment Support
PB = +, PLW = -, PRW = + Observed
QRW = + RW=G, PRW = +
QRV = + RV=G, QRW = +, PRW = +, PB = +
QLW = + LW=G, PLW = +
QB = + B=G, PB = +
QLV = - (Pipe), QB = +, QRV = +

Candidate RV:

Subsumed by conflicts (yes/no)? __No____ Consistent (yes/no)? _Yes______
Conflict: ___

PB

PLW PRW

QLV

QB

QLW QRW

QRV

LV RV

B

LW RW

 14

Assignment Support
PB = +, PLW = -, PRW = + Observed
QLV = + LV=G, PB = +, PLW = -
QLW = + LV=G, PB = +, PLW = -
QRW = + RW=G, PRW = +
QB = + B=G, PB = +
QRV = - (Pipe), QB = +, QLV = +

Candidate LW:

Subsumed by conflicts (yes/no)? __Yes____ Consistent (yes/no)? _______
Conflict: ___

PB

PLW PRW

QLV

QB

QLW QRW

QRV

LV RV

B

LW RW

Candidate RW:

Subsumed by conflicts (yes/no)? __No____ Consistent (yes/no)? ___No____
Conflict: __Not (B=G and LV=G and RV=G)__________________________

PB

PLW PRW

QLV

QB

QLW QRW

QRV

LV RV

B

LW RW

 15

Assignment Support

PB = +, PLW = -, PRW = + Observed
QB = + B=G, PB = +
QLV = + LV=G, PB = +, PLW = -
QLW = + LV=G, PB = +, PLW = -
QRV = - (Pipe), QLV = +, QB = +
QRW = φ RV=G, QRW = +, PRW = +, QRV = -

 16

Problem 5 – Navigation by MDP (30 points)

Captain Jack Sparrow, infamous pirate, has sailed his ship to the eastern side of the island
of Tortuga (see chart below).

Tortuga

1

2

3

4 Harbor

Gold

Rocks

Captain Jack would like to anchor in the harbor on the western side. Let’s help him by
using an ancient navigation technique that is known to all sailors worth their salt: value
iteration.

First, let’s consider some details shown on the chart. There are four locations, with the
dotted arrows indicating valid moves between them. We will assume that all moves are
deterministic. Location 3 represents rocks that will sink the ship, so there are no actions
that lead out of this state. Similarly, location 4 represents the goal, and there are no
actions that lead out of location 4 (Captain Jack wants to relax after he has anchored). In
order to relax, Captain Jack needs some gold. Fortunately, he remembers that he has
previously stashed some at location 2.

Let’s assume that any time the ship reaches location 2, and the ship is not carrying the
gold, the gold is automatically loaded onto the ship.

To use an MDP formulation, we need some notion of reward. Let’s assume that location
4, the goal, has a reward of 1000. Also, let’s assume that location 3 has a reward of

 17

-1000 (because the ship sinks). Finally, let’s assume that location 2 has a reward of 200
if the ship has not yet picked up the gold. Rewards for actions in all other states are 0.

Part A - Modeling

In this part, you will design an MDP model for this problem. Assume that the state
vector consists of the following two variables (with corresponding possible values):

Location (1, 2, 3, 4)
Ship-has-gold (true, false)

Part A-1 (5 points)

Write the transition function for this problem. Note that the system is deterministic.

Current state Action Next state

1, no gold To 2 2, no gold
 To 4 4, no gold
1, gold To 2 2, gold
 To 4 4, gold
2, no gold To 1 1, gold
 To 3 3, gold
2, gold To 1 1, gold
 To 3 3, gold

States 3 and 4 have no actions.

Part A-2 (5 points)

Write the reward function for this problem.

Current state Action Reward

2, no gold Don’t care 200
3 (gold or no gold) Don’t care -1000
4 (gold or no gold) Don’t care 1000

For all other combinations of states and actions, the reward is 0.

 18

Part B – Value Iteration (10 points)

Use value iteration to determine the values of each state. Perform two iterations using a
discount factor of 9.0=γ . Assume that the initial value for all states corresponding to
location 3 is -1000, the initial value for all states corresponding to location 4 is 1000, and
the initial value for all other states is 0.

State Initial value Iteration 1 value Iteration 2 value

1, no gold 0 900 900
1, gold 0 900 900
2, no gold 0 200 1010
2, gold 0 0 810

States for location 3 have a constant value of –1000 since this is the initial value, and
since there are no actions leading out of this state. Similarly, states for location 4 have
a constant value of 1000.

 19

Part C – Optimal Policy (5 points)

What is the optimal policy for each state?

Assuming that V2 is a reasonable approximation of V* after two iterations, then:

State Action
1, no gold to 2
1, gold to 4
2, no gold to 1
2, gold to 1

Part D – Effect of discount factor (5 points)

What would be the effect of changing the discount factor from 0.9 to 0.5?

The algorithm would become more greedy, and would go directly to the harbor
without picking up the gold.

 20

Problem 6 - Scheming with CNF (30 points)

For this problem, we’ll use a subset of propositional logic. In particular, we don’t worry
about negation (not), and the and and or operators are binary (as opposed to n-ary).
Well-formed formulas (WFF’s) are either propositional symbols (e.g. a), or a conjunction
of two WFF’s, (e.g. (and)), or a disjunction of two WFF’s, (e.g. (or)). We
can write the grammar for WFF’s as:

WFF :: = Symbol
 | (or WFF WFF)
 | (and WFF WFF)

The following are WFF’s:
1. a
2. (or a b)
3. (and a b)
4. (and (or a b) c)
5. (and (or a b) (and c (or d e)))
6. (and a (or (and b c) d))
7. (or (or a (and b c)) (and (or d e) f)))

A WFF is a Disjunctive Normal Clause(DNC) if it is a disjunction of terms, where each
term is either a propositional symbol or a disjunctive normal clause. A single symbol can
be considered a degenerate disjunctive normal clause. For example, formulas 1 and 2,
above, are DNC. We can write the grammar for DNC as:

DNC ::= Symbol
 | (or DNC DNC)

A WFF in Conjunctive Normal Form (CNF) consists of a conjunction of WFF’s such that
each conjunct is either in CNF itself or is a DNC. In the list of formulas above, WFF’s 1
through 5 are in CNF. Note that formula 1 and 2 can be considered to consist of a single
conjunct. A grammar for CNF formula is:

CNF ::= Symbol
 | (and CNF CNF)
 | (or DNC DNC)

An important step in converting logical formulas to CNF is to distribute or over and
whenever possible. For example, we can convert (or A (and B C)) to (and (or A B)
(or A C)), and we can convert (or (and A B) C) to (and (or A C) (or B C))

 21

Part A – Convert to CNF Manually (10 points)

Convert the following WFF’s to CNF by repeatedly applying or distribution.
Show intermediate steps, so that if you make a mistake we can give you partial credit.

(and a (or (and b c) d))

Recall:(or x (and y z))=>(and (or x y)(or x z)-distribution

Soln: (and a(and(or b d)(or c d))) by distribution

(or (or a b) (and c d))

Soln: (and (or (or a b) c)(or (or a b) d)) by distribution

(or (or a (and b c)) (and (or d e) f))

recall:(or(and A B)(and C D)
=>(and (and (or A C)(or A D))(and(or B C)(or B D)))

Soln: (or (and (or a b)(or a c)) (and (or d e) f))
=>
(and (and (or (or a b)(or d e))
 (or (or a b) f))
 (and (or (or a c)(or d e))
 (or (or a c) f)))

 22

Part B – Scheme Code to Convert to CNF (20 points)
Following is the skeleton of a function to convert a WFF into CNF by distributing or
over and:
(define first car)
(define second cadr)
(define third caddr)
;; Assume formulas are well-formed, and conform to the following grammar:
;; wff ::= symbol | (and wff wff) | (or wff wff)
(define (and-clause? wff) (and (list? wff) (eq? 'and (first wff))))
(define (or-clause? wff) (and (list? wff) (eq? 'or (first wff))))
;; Distribute OR over AND in a well-formed formula (wff).
;; 1. (or (and A B) C) => (and (or A C) (or B C))
;; 2. (or A (and B C)) => (and (or A B) (or A C))
;; Note that in the above, if A, B, or C are not symbols or simple
;; disjunctive clauses, they will need to be further converted, so
;; that we wind up with, in general, wff's of the form
;; cnf ::= symbol | (and cnf cnf) | (or dnc dnc)
;; dnc ::= symbol | (or dnc dnc)
(define (distribute-or wff) ; => CNF
 (cond
 ((symbol? wff) ; symbol
 wff)
 ((and-clause? wff) ; an AND clause
 (list 'and
 ;; [1] construct 1st conjunct here
 ;; [2] construct 2nd conjunct here
 ((or-clause? wff) ; an OR clause
 (let ((disj1 (distribute-or (second wff))) ; get disjuncts
 (disj2 (distribute-or (third wff)))) ; into CNF
 (cond
 ((and-clause? disj1) ; case 1, above
 (let ((a (second disj1))
 (b (third disj1))
 (c disj2))
 (list 'and
 ;; [3] construct 1st conjunct here
 ;; [4] construct 2nd conjunct here
 ((and-clause? disj2) ; case 2, above
 (let ((a disj1)
 (b (second disj2))
 (c (third disj2)))
 (list 'and
 ;; [5] construct 1st conjunct here
 ;; [6] construct 2nd conjunct here
 (else
 (list 'or
 ;; [7] construct 1st disjunct here
 ;; [8] construct 2nd disjunct here
)))))))

 23

Provide the eight Scheme expressions that should replace the eight commented lines in
the code of the form “[n] construct ... here”.

1. (distribute-or (second wff))

2. (distribute-or (third wff))

3. (list ‘or a c)

4. (list ‘or b c)

5. (list ‘or a b)

6. (list ‘or a c)

7. disj1

8. disj2

 24

Problem 7 - Mixed Integer Programming (14 points)

Part A. Formulation with fixed costs (7 points)
Formulate the following mixed integer linear program. Stacy’s Subway Company needs to supply
5 subway cars to Manhattan. The alternatives for shipping include transporting them by truck
over a bridge (at a cost of $2000 each) or transporting them by ferry (at a cost of $1000 each).
However, the permit process in Manhattan is absurd and so there is a one time red-tape cost of
$6000 for transporting any subway cars in trucks over a bridge and a one time red-tape cost of
$10,000 for transporting any subway cars by ferry.

Formulate a MILP to minimize the transportation costs.

Minimize z = x1 + 2x2 + 10b1 + 6b2

subject to x1 + x2 ≥ 5
 x1 ≤ Mb1 [Here, accept M or any numerical value > 5]
 x2 ≤ Mb2 [Here, accept M or any numerical value > 5]

b1, b2 are binary (i.e., bi ∈ {1,0}).

 25

Part B. Branch and Bound Search Tree (7 points)

Solve the following mixed integer linear problem using Branch and Bound.

Minimize z = 10x1 + 4x2 + 20b1 + 25b2

subject to 2x1 + x2 > 10
 x1 ≤ 10b1

 x2 ≤ 10b2
 x1>0, x2>0

 b1 + b2 ≤ 1

b1, b2 are binary (i.e., bi ∈ {1,0}).

Fill in the branch and bound search tree below. Branch on the binary variables in the following
order: . Evaluate the 0 branch before the 1 branch. Cross off each node that is infeasible
or fathomed. For feasible, non-fathomed nodes, give the relaxed solution and the value of Z. For
fathomed nodes, give the solution and value of Z.

21, bb

 26

Derivation of Answer:

You can solve each relaxed problem using the simplex method. This problem is simple enough
that you can solve it by inspection. The solution below is based on the use of monotonicity
arguments to determine that particular constraints are active (this is called monotonicity analysis,
or activity analysis).

We start by initializing the incumbent to:

z*= infinity
b1=?, b2=?, x1=?, x2=?,

We then relax the binary variables at the Root Node and solve:

Root Node:

Minimize z = 10x1 + 4x2 + 20b1 + 25b2

subject to 2x1 + x2 > 10
 x1 ≤ 10b1

 x2 ≤ 10b2
 x1>0, x2>0
 b1 + b2 ≤ 1

b1≤1, b2 ≤1
b1>0, b2>0

z monotonically decreases as x1 and x2 monotonically decrease, hence z is a minimum when
2x1 + x2 > 10 → 2x1 + x2 = 10 (i.e., the constraint is said to be active)

Note that this argument holds unless x1 and x2 reach another constraint boundary first. We can
test this at the end by checking feasibility of the solution.

Next, solving for x2 produces:

x2 = 10 - 2x1

Substituting for x2 into the problem and simplifying produces:
Minimize z = 2x1 + 20b1 + 25b2 + 40
subject to x1 ≤ 10b1

10 ≤ 10b2 + 2x1
 x1 >0, 5 > x1
 b1 + b2 ≤ 1

b1≤1, b2 ≤1, b1>0, b2 >0

z monotonically decreases as x1 and b2 monotonically decrease, hence z is a minimum when

10 ≤ 10b2 + 2x1 → 10 = 10b2 + 2x1 (i.e., active constraint).

Solving for x1:

x1 = 5 - 5b2

Substituting for x1 into the problem and simplifying produces:

 27

Minimize z = 20b1 + 15b2 + 50
subject to 5 ≤ 10b1 + 5 b2

 1 > b2, b2 > 0
 b1 + b2 ≤ 1

b1≤1, b2 ≤1, b1>0, b2 >0

z monotonically decreases as b1 and b2 monotonically decrease, hence z is a minimum when

5 ≤ 10b1 + 5 b2 → 5 = 10b1 + 5 b2 (i.e., active constraint).

Solving for b2:

b2 = 1 - 2b1

Substituting for b2 into the problem and simplifying produces:
Minimize z = - 10b1 + 65
subject to b1 > 0, b1 < .5

z monotonically decreases as b1 monotonically increases, hence z is a minimum when
b1 < .5 → b1 =.5 (i.e., active constraint).

Substituting for b1 into the problem and simplifying produces:
z = - 10(.5) + 65 = 60

Substituting b1 into the active constraints produces:
b2 = 1 - 2b1= 1 – 2(.5) = 0
x1 = 5 - 5b2 = 5 – 5(0) = 5
x2 = 10 – 2(5) = 0

To summarize, the relaxed solution is:
b1 =.5, b2 = 0, x1 = 5, x2 =0, z=60

This relaxed solution is feasible (substituting into the inequality constraints to confirm).
It is not integer, and the relaxed solution is better than the incumbent. Hence we branch
on the next variable, b1.

Node b1 = 0:
Substituting for b1 induces an assignment for x1:

x1 ≤ 10(0), x1 >0 → x1 = 0

Eliminating b1 and x1, the problem simplifies to:

Minimize z = 4x2 + 25b2
subject to x2 > 10
 x2 ≤ 10b2

 x2>0
b2 ≤1, b2>0

z decreases monotonically with x2, reaching a minimum when:
x2 > 10 → x2 = 10 (active constraint)

z also decreases monotonically with b2, reaching a minimum when:
10 ≤ 10b2 → 10 = 10b2 → b2 = 1 (active constraint)

 28

substituting x2 and b2 into z produces:

z = 4(10) + 25(1) = 65

Thus, the relaxed solution is:

b1=0, b2=1, x1=0, x2=10, z=65

All integer variables are integer in the relaxed solution, hence the node is fathomed.
The solution is better than the current incumbent, thus the incumbent is changed to:

z* = 65
b1=0, b2=1, x1=0, x2=10

Node b1 = 1:
Substituting b1 into the constraints induces two additional assignments:

1 + b2 ≤ 1, b2 > 0 → b2 = 0
x2 ≤ 10(0), x2>0 → x2 = 0

Substitutuing these three assignments into the original problem produces:

Minimize z = 10x1 + 20
subject to 2x1 > 10
 x1 ≤ 10, x1>0

z monotonically decreases with x1. Reaching a minimum when:
 2x1 > 10 → 2x1 = 10 → x1 = 5 (active constraint)

Substituting this assignment into z produces:
z = 10(5) + 20 = 70

Hence the solution to the relaxed problem is:
b1=1, b2=0, x1=5, x2=0, z=70

This is worse than the incumbent, hence we fathom this node, b1 = 1.

The tree is fully explored, hence the optimal solution is the incumbent:

z* = 65, b1=0, b2=1, x1=0, x2=10

 29

Problem 8 - Decision Trees (15 points)

City planners have accumulated the following data on a variety of threats to urban life. The
purpose of this data is to predict, based upon a monster's origin, appearance, and breath attack (if
any), whether or not it will practically raze a city before it retires for mid-afternoon tea and
crumpets.

Origin Appearance Foul Breath City-Destroyer

Outer Space Blob Acid Yes

Outer Space Reptile None Yes

Outer Space Reptile Acid Yes

Outer Space Blob Fire No

Pacific Ocean Blob None No

Pacific Ocean Blob Acid No

Pacific Ocean Reptile Fire No

Pacific Ocean Reptile Acid No

1. (5 points) With no other information, how many bits on average would you need to transmit
City-Destroyer ?

H(3/8, 5/8) = -3/8 x log2(3/8) – 5/8 log2(5/8)

2. (1 point) Which of the three other attributes gives you the highest information gain with respect
to City-Destroyer? Show your reasoning.

By inspection, the Origin attribute is the best since it only makes one mistake when used as a
classifier and has high entropy. The others make more mistakes.

3. (2 points) Using information gain as your splitting criteria, what decision tree would you get?
Do not prune the tree.

 ORIGIN
 / \
 space pacific
 / \
 FOULBREATH Predict=No
 / | \
 acid none fire
 / | \
 yes yes no

 30

4. (2 points) Fill in the following table with your predictions.

Origin Appearance Foul Breath City-Destroyer

Outer Space Blob Fire No

Pacific Ocean Reptile Acid No

5. (5 points) How might you deal with missing values? For example, what would you predict if
all you knew about a visitor was that it was blob-shaped, and why?

Any of the following answers:
1. Use a Bayes Classifier instead
2. Retrain the decision tree using only the attributes that are present in the query
3. Guess the most common value as the missing value.

 31

Problem 9- Hidden Markov Models (15 points)

Consider an HMM defined by the traditional set of parameters:

λ = (S,Z,T,O,p0)

Recall that the following array of probabilities can be obtained by dynamic programming in the
forward algorithm:

αt(i) = p(z1,..., zt ^ qt = si|λ)

a) We can compute a similar array of probabilities using dynamic programming in a backward
algorithm:

βt(i) = p(zt,..., zT ^ qt = si|λ)

Give a mathematical expression for βτ(ι) that can be computed using dynamic programming.

βt(i) =ΣS
j=1T(si,sj)O(sj ,zt+1)βt+1(j)

b) In the process of learning an HMM from data we need the following array of probabilities:

γt(i) = p(qt = si|z1, ..., zt, zt+1, ..., zT, λ)

Your job is to define γt(i) in a simple finite expression in terms of αt(i), βt(i) and
p(z1, ..., zt, zt+1, ..., zT, λ).

γt(i) = αt(i)βt(i)/p(z1, ..., zt, zt+1, ..., zT, λ)

 32

