Massachusetts Institute of Technology

16.410-13 Principles of Autonomy
and Decision Making

Problem Set #6 (distributed 10/22/04, revised 10/26/04)

Paper solutions due no later than 5pm on Friday, 10/29/04. Please give
solutions to the course secretary, Brian O’ Conaill, at his desk outside of 33-330.

Note: Problem solutions will be posted on the web at 5pm on Friday,
10/29/04, hence, no late problem sets will be accepted.

Note Problem Set Revision:

In order to simplify the solution of this problem, this revision replaces the original pair of

goals:
(rocket-fired)
(off-rocket)
with:
(rocket-fired)
(fuel-flowing)

The plan graphs in your solution should not need to contain more than two action layers
and three proposition layers.

Objective

To exercise your understanding of the plan graph representation and plan extraction
process, based on the GraphPlan algorithm.

Background

Handouts from lecture and from AIMA Chapter 11: “Planning.” AIMA denotes
“Artificial Intelligence: A Modern Approach: 2" Edition” by Russell and Norvig.

Planning For Space Operations

A critical stage of many deep space probe missions is orbital insertion. One of the
most ambitious autonomy demonstrations to date has been robust mission planning,
execution and failure recovery for Saturn Orbital Insertion (SOI). During SOI it is
essential that the main engine be commanded reliably under failure. In this problem we
consider the problem of automatically planning a control sequence for a simple rocket
engine system. We address execution and failure recovery later in this course.

Consider an extremely simple rocket engine system, shown at the top of the next
page. To fire the engine, fuel must be flowing to it. This flow is controlled by valves V1
and V2, which are pyro valves. Pyro valves are initially in one particular state (open or
closed). An explosive bolt can be fired that switches a pyro valve to its other state. Thus,



an important disadvantage of a pyro valve (with respect to a typical electrically activated
on-off valve) is that a pyro valve can switch states only once. The advantage of using a
pyro valve is that it is extremely reliable. It will stay in its initial state until it is fired.
When it is fired, it is guaranteed to switch to the opposite state, where it will remain. In
the following diagram, valve V1 is initially open (indicated by NO for normally open).
Firing closes it. Valve V2 is initially closed (NC for normally closed). Firing opens it.

Fuel

Vi

Ao
\NCJ

V2
Rocket
Motor

We formulate the problem using the STRIPS plan representation (the STRIPS
representation is introduced in the lecture notes and Ch. 11 of AIMA). Our problem is to
generate a command sequence that fires and turns off (powers down) the rocket engine,
given that initially v2 is closed, v1 is open and the rocket is off. The initial and goal
conditions in STRIPS are:

Initial Conditions:
(closed-v2)
(open-vl)
(off-rocket)

Goal:
(rocket-fired)
(fuel-flowing) [note: goal changed to simplify problem]

LoFE—rocket)

We define the operations of firing pyro valves v1 and v2 through the plan operators
fire-v1 and fire-v2, given below. Note that fire-v1l moves v1 from open to closed, and
can only be executed when v2 is open. Likewise, fire-v2 moves v2 from closed to open,
and can only be executed when v1 is open.



Operators:

(:operator fire-vl
(:precondition
(open-v2) (open-vl))
(-effect
(not open-vl)
(closed-vl)
(not fuel-flowing)
(fuel-not-flowing)))

(:operator Ffire-v2
(:precondition
(closed-v2) (open-vl))
(-effect
(not closed-v2)
(open-v2)
(not fuel-not-flowing)
(fuel-flowing)))

In addition, we introduce operators for firing and shutting down the rocket. The
engine can only be fired if it is off and fuel is flowing. The engine can only be shut off if
the rocket is on, but fuel is not flowing.

(-operator fire-rocket
(:precondition
(fuel-flowing) (off-rocket))
(:effect
(not off-rocket)
(on-rocket)
(rocket-fired)))

(:operator shut-off-rocket
(:precondition
(on-rocket) (fuel-not-flowing))
(-effect
(not on-rocket)
(off-rocket)))



Problem 1.

Draw the plan graph for this problem, beginning with the initial state, and expanding
levels until a level appears that contains all goal variables. Ignore mutex relations for
now.

Problem 2.

Draw a plan graph that includes mutex relations for both actions and variables. The
last level for this graph must include all goal variables with no mutex relations between
any of them.

Problem 3.

Extract a plan solution from the plan graph of Problem 2 using the backward search
algorithm described in lecture. Indicate each step including backtracking, if any is
necessary. Note that, if your plan graph is correct, you should only be exploring a plan
graph with two action layers.



