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16.410-13 Principles of Autonomy  
and Decision Making 

 
Due: Monday, 11/22/04   

 
Paper solutions are due no later than 5pm on Monday, 11/22/04.  Please give solutions to 
the course secretary, Brian O’ Conaill, at his desk outside of 33-330. 

Objectives 
The purpose of this problem set is to develop a grounded understanding of Solutions to 
Markov Decision Processes and Mixed Integer Programs. 

Problem 1 – Markov Decision Processes 
Consider the circular racetrack shown below. 
 

1

2  
 
It has two sections:  section 1 is dry, and section 2 is slippery.  A race car on this track 
will crash if it is on section 2 and is going too fast. 
 
Suppose we want to give the race car driver advice about how fast to go in each section.  
We will model this system using a simple deterministic MDP, where the state is simply 
the section number that the race car is in, and the action is one of three speeds:  0, 20, 
and 40 mph. 
 
 



The transition function is as follows: 
s a s+1 
1 0 1 
1 20 2 
1 40 2 
2 0 2 
2 20 1 
2 40 2 
 
The reward function is 
s a R 
1 0 0 
1 20 15 
1 40 45 
2 0 0 
2 20 10 
2 40 0 
 
Note that if the driver goes 40 mph in section 2, he will stay in section 2, and his reward 
will be 0 (he will crash). 
 
Assume that the discount rate γ is 0.8 
 
Part A.  What is the value function and optimal policy for a 2-step horizon? 
Solution: 
V*

1(1) = 45  π*
1(1) = 40 

V*
1(2) = 10  π*

1(2) = 20 
 
V*

2(1) = 45 + 0.8 * 10 = 53  π*
2(1) = 40 

V*
2(2) = 10 + 0.8 * 45 = 46  π*

2(2) = 20 
 
Part B.  How do these change if the transition function is altered to the table below?  
Give the value function and optimal policy, and comment on the reason for the changes 
from Part A. 
 
s a s+1 
1 0 1 
1 20 2 
1 40 2 
2 0 2 
2 20 2 
2 40 1 
 



Solution: 
The difference from part A is that there is now a reward for staying in state 2, but no 
reward for transitioning from 2 to 1.  For the two step horizon the solution changes to: 
 

V*
1(1) = 45   π*

1(1) = 40 
V*

1(2) = 10   π*
1(2) = 20 

 
V*

2(1) = 45 + 0.8 * 10 = 53  π*
2(1) = 40 

V*
2(2) = 0 + 0.8 * 45 = 36   π*

2(2) = 20 
 

Here the value of V(2) decreases; however, the policy doesn’t change.  This is because 
the reward for going from 1 to 2 at 40 mph (45) is still more than twice the reward of 
staying at 2 at 20 mph (10).  For the policy to change the reward of staying at 2 would 
need to go above 25. 



Problem 2 Integer Programming and Branch and Bound 
 
Part A Formulation Using Integer Programming 
 
The Transportation Security Administration needs to maintain an all-night security gate 
at a busy international airport.  All its employees work in eight hour shifts.  The number 
of employees needed to run the gate varies according to time of day, because fewer or 
more passengers travel during those times.  From 12 midnight-4am, 25 people are 
needed; from 4am-8am, 45 people; from 8am-12noon, 85 people, from 12noon-4pm, 
120; from 4pm-8pm, 55 people; from 8pm-12midnight, 33 people.   
 
Part A.1 
 
Write an integer program whose solution gives the minimum-employee solution to the 
TSA’s staffing problem.  Include a description in words of what your variables mean.  
Explain any key modeling decisions in your encoding. 
 
Solution:  

xi = number of people who start their shift at 4*i hours after midnight. 
 

Minimize z = x0 + x1 + x2 +x3 +x4 +x5 
 

Subject to x0 + x5  ≥ 25; 
x0 + x1  ≥ 45; 
x1 + x2  ≥ 85; 
x2 + x3  ≥ 120; 
x3 + x4  ≥ 55; 
x4 + x5  ≥ 33; 
xi ≥ 0, integer(xi); 

 
Part A.2 
 
Appearances are important, and the TSA is getting complaints because of the surplus 
employees that are hanging around Dunkin’ Donuts during their shifts.  Modify your 
integer program to minimize the maximum number of unnecessary employees in any one 
shift.   Give your integer program and an explanation for any modifications that you 
made from part A.1. 
 



Solution:  
As before, 

xi = number of people who start their shift at 4*i hours after midnight. 
 
We make z to be the max of the surplus employees by adding constraints that make z an 
upper bound on this surplus, and then minimize z, to make it a least upper bound. 

Minimize z 
 

Subject to z ≥ x0 + x5-25; 

  z ≥ x1 + x2-45;  

  z ≥ x2 + x3-85;  

  z ≥ x3 + x4-120;  

  z ≥ x4 + x5-55;  

  z ≥ x5 + x6-33;
 

x0 + x5  ≥ 25; 
x0 + x1  ≥ 45; 
x1 + x2  ≥ 85; 
x2 + x3  ≥ 120; 
x3 + x4  ≥ 55; 
x4 + x5  ≥ 33; 
xi ≥ 0, integer(xi); 

 
Part B Solving Integer Programs using Branch and Bound 
 
Solve the following mixed integer linear program using Branch and Bound.   
 

Minimize z = 8x1 + 3x2 + 18b1 + 20b2
 

subject to x1 + x2  ≥ 8 
  x1 ≤ 15b1 

  x2 ≤ 10b2  
 
   b1 + b2  ≤ 1 

b1, b2  are binary (i.e., bi ∈ {1,0}). 
 

Part B.1 Branch and Bound Search Tree 
 
Construct a branch and bound search tree that augments the template tree given below.  Branch 
on the binary variables in the following order: .  Evaluate the 0 branch before the 1 
branch.  Cross off each node that is infeasible or fathomed.  For feasible, non-fathomed nodes, 
give the relaxed solution and the value of Z.  For fathomed nodes, give the solution and value of 
Z.   

21, bb

 



 
 
Part B.2 Minimum Feasible Solution 
 
List your solution, which is the minimum feasible state: 
 
Z = 34__, x1 = -2__, x2 = 10__, b1 = 0___, b2 = 1___, 
 
Derivation of Solution: 
You can solve each relaxed problem using the simplex method.  This problem is simple enough 
that you can also solve it by inspection.  The solution below is based on the use of monotonicity 
arguments to determine which particular constraints are active (this is called monotonicity 
analysis, or activity analysis).  A constraint is active if the solution satisfies the constraint as an 
equality, rather than an inequality. 
 
We start by initializing the incumbent to: 
 

z*= infinity 
b1=?, b2=?, x1=?, x2=?,  

 



We then relax the binary variables at the Root Node and solve: 
 
Root Node: 

Minimize z = 8x1 + 3x2 + 18b1 + 20b2
subject to x1 + x2  ≥ 8 
  x1 ≤ 15b1 

  x2 ≤ 10b2 
   b1 + b2  ≤ 1 

 bi ∈ [1,0]. 
 

First, z monotonically decreases as x1 and x2 monotonically decrease, hence z is a minimum 
when 

x1 + x2  > 8  → x1 + x2  = 8  (i.e., the constraint is said to be active) 
 

Note that this argument holds unless x1 and x2 reach another constraint boundary first.  We can 
test this at the end by checking feasibility of the solution. 
 
Solving for x2  produces: 

x2  = 8 - x1 
 

Substituting for x2  into the problem and simplifying produces: 
Minimize z = 5x1 + 18b1 + 20b2 + 24 
subject to x1 ≤ 15b1 

  8 ≤ 10b2 + x1  
   b1 + b2  ≤ 1 

 bi ∈ [1,0]. 
 
Second, z monotonically decreases as x1 and b2  monotonically decrease, hence z is a minimum 
when: 

8 ≤ 10b2 + x1 → 8 = 10b2 + x1  (i.e., active constraint). 
Solving for x1: 

x1 = 8 - 10b2,
 

substituting for x1 into the problem and simplifying produces: 
Minimize z = 18b1 - 30b2 + 64 
subject to 8 ≤ 15b1  + 10b2  

   b1 + b2  ≤ 1 
 bi ∈ [1,0]. 

 
Third, z monotonically decreases as b1 monotonically decreases, hence z is a minimum when 
either  
0 < b1, or 8 ≤ 15b1  + 10b2 is active.  Assuming the former: 

b1  = 0  (i.e., active constraint). 
  
Substituting for b1 into the problem and simplifying produces: 

Minimize z = - 30b2 + 64 
subject to 8 ≤ 10b2  



   b2  ≤ 1,  bi ∈ [1,0]. 
 
Finally, z monotonically decreases as b2 monotonically increases, hence z is a minimum when  

b2  ≤ 1 → b2  = 1 
 

Substituting for b2 into the equations for z, x1, x2 and b2 produces: 
z = 34 
x1 = 8 - 10b2 = -2
x2  = 8 - x1 = 10 
 

To summarize, the relaxed solution is: 
b1 = 0, b2 = 1, x1 = -2, x2  = 10, z = 34 

 
This relaxed solution is feasible (substitute into the inequality constraints to confirm). 
The integer variables take on integer values for the relaxed solution, hence this is the 
optimal solution for the integer program.  No other search nodes need to be explored. 
 
For those of you who missed finding the solution on the root node, below is what you 
would find when going to the next level.  This also serves to better demonstrate 
branch and bound.  Note, however, that going beyond the root isn’t needed: 
 
Node b1 = 0 (not needed): 
 
To solve the relaxed problem: 

Minimize z = 8x1 + 3x2 + 20b2
subject to x1 + x2  ≥ 8 
  x1 ≤ 0
  x2 ≤ 10b2 

b2 ∈ [1,0]. 
 
We go through a similar process to above.  First, z monotonically decreases with x1 and x2, thus:  

x1 + x2  > 8  → x1 + x2  = 8  (i.e., the constraint is said to be active) 
x2  = 8 - x1 
 

Once again, remember that this type of argument only holds if x1 and x2 do not hit another 
constraint boundary first. 
 
Substituting for x2 and simplifying produces: 

Minimize z = 5x1 + 20b2 + 24 
subject to x1 ≤ 0 

  8 ≤ 10b2 + x1  
b2 ∈ [1,0]. 

 
Second, z monotonically decreases with x1 and b2 , hence z is a minimum when: 

8 ≤ 10b2 + x1 → 8 = 10b2 + x1  (i.e., active constraint).: 
Solving and substituting for x1 into the problem produces: 
 



x1 = 8 - 10b2, 
 

Minimize z = - 30b2 + 64 
subject to 8 ≤ 10b2  

b2 ∈ [1,0]. 
 
Third, z monotonically decreases as b1 monotonically decreases, hence z is a minimum when 
either  
0 < b1, or 8 ≤ 15b1  + 10b2 is active.  Assuming the former: 

b1  = 0  (i.e., active constraint). 
  
Substituting for b1 into the problem and simplifying produces: 

Minimize z = - 30b2 + 64 
subject to 8 ≤ 10b2  

   b2  ≤ 1,  bi ∈ [1,0]. 
 
Finally, z monotonically decreases as b2 monotonically increases, hence z is a minimum when  

b2  ≤ 1 → b2  = 1 
 

Substituting for b2 into the equations for z, x1, x2 and b2 produces: 
z = 34 
x1 = 8 - 10b2 = -2 
x2  = 8 - x1 = 10 
 

To summarize, the relaxed solution is: 
b1 = 0, b2 = 1, x1 = -2, x2  = 10, z = 34 

 
This is the same solution that we found at the root.  Again, the relaxed solution is feasible 
(substitute into the inequality constraints to confirm).  The integer variables take on 
integer values for the relaxed solution, hence this is the optimal solution for the integer 
program with b1=0.  We don’t need to explore any descendants of this node. 
In addition, this is better than the incumbent, hence we update the incumbent to: 

z*= 34 
b1 = 0, b2 = 1, x1 = -2, x2  = 10 

 
Now we explore the other option for b1. 
 
Node b1 = 1: 
 
Form the relaxed problem by substituting for b1 and relaxing the integer constraint:: 

Minimize z = 8x1 + 3x2 + 18 + 20b2 
subject to x1 + x2  ≥ 8 
  x1 ≤ 15 

  x2 ≤ 10b2 
   b2  ≤ 0 

 b2 ∈ [1,0]. 
 



First, note that b2  ≤ 0 and b2  > 0, hence: 
 b2  = 0 
Substituting for b2  and simplifying we get: 

Minimize z = 8x1 + 3x2 + 18 
subject to x1 + x2  ≥ 8 
  x1 ≤ 15 

  x2 ≤ 0 
 . 

Second, we again note that z monotonically decreases with x1 and x2, thus:  
x1 + x2  > 8  → x1 + x2  = 8  (i.e., the constraint is said to be active) 
x2  = 8 - x1 

 
Substituting for x2 produces: 

Minimize z = 5x1 + 42 
subject to x1 ≤ 15 

  8 ≤ x1 
 
Finally, z monotonically decreases with x1, hence z is a minimum when: 

8 ≤ x1 → x1 = 8, 
 

Substituting for x1 into the equations for z and x2 produces: 
z = 5(8) + 42 = 82 
x2  = 8 - 8 = 0 
 

To summarize, the relaxed solution is: 
b1 = 1, b2 = 0, x1 = 8, x2  = 0, z = 82 

 
This solution is feasible, and the integer variables take on integer values, hence the node is 
fathomed.  The solution is worse than the incumbent, hence the solution is thrown away.  The 
final solution is: 

z*= 34 
b1 = 0, b2 = 1, x1 = -2, x2  = 10 
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