
Graph-based Planning

Brian C. Williams
October 25th & 27th, 2003

16.410 - 13

Slides based on
material from:
Prof. Maria Fox

Monitors

Autonomous
Agents

Command dispatch
Fault protection
Attitude control

Mission Goal Scenario

SelfSelf--commandingcommanding
SelfSelf--diagnosingdiagnosing
SelfSelf--repairingrepairing

RECOVERY

PL
ANNIN

G

EXECUTION

Commanded at:
• Mission level
• Engineering level

Reading and Assignment
for Planning Lectures
Graph-based Planning
AIMA Chapter 11

• AIMA = “Artificial Intelligence: A Modern Approach,”
by Russell and Norvig.

• Problem Set #6
• Out Friday, Oct 22nd

• Due Friday, Oct 29th.

Outline
Operator-based Planning
Graph Plan

The Graph Plan Planning Problem
Graph Construction
Solution Extraction
Properties
Termination with Failure

5

Operator-based Planning Problem

• State
• A consistent conjunction of propositions (positive

literals)
• E.g., (and (cleanhands) (quiet) (dinner) (present) (noGarbage))
• All unspecified propositions are false

• Initial State
• Problem state at time i = 0

• E.g., (and (cleanHands) (quiet))

• Goal State
• A partial state

• E.g., (and (noGarbage) (dinner) (present))
• The planner must put the system in a final state that

satisfies the conjunction.

Example: Dinner Date Problem
Initial Conditions: (and (cleanHands) (quiet))

Goal: (and (noGarbage) (dinner) (present))

Actions:
(:operator carry :precondition

:effect (and (noGarbage) (not (cleanHands)))

(:operator dolly :precondition
:effect (and (noGarbage) (not (quiet)))

(:operator cook :precondition (cleanHands)
:effect (dinner))

(:operator wrap :precondition (quiet)
:effect (present))

+ noops

(Parameterized) Operator Schemata
Instead of defining:
pickup-A and pickup-B and …

Define a schema:
(:operator pick-up

:parameters ((block ob1))
:precondition (and (clear ob1)

(on-table ob1)
(arm-empty))

:effect (and (not (clear ob1))
(not (on-table ob1))
(not (arm-empty))

(holding ob1)))

Note: strips doesn’t

allow derived effects;

you must be complete!}
?var denotes a free variable

8

Operator Execution at Time i

If all propositions of :precondition appear in state i,
Then create state i+1 from i, by

• adding to i, all “add” propositions in :effects,
• removing from i, all “delete” propositions in

:effects.

(:operator cook :precondition (cleanHands)
:effect (dinner))

(cleanHands)
(quiet)

(dinner)

(cleanHands)
(quiet) cook

9

Operator Execution at Time i

If all propositions of :precondition appear in state i,
Then create state i+1 from i, by

• adding to i, all “add” propositions in :effects,
• removing from i, all “delete” propositions in

:effects.

(:operator dolly :precondition
:effect (and (noGarbage) (not (quiet)))

(cleanHands)
(noGarbage)

(cleanHands)
(quiet) dolly

10

Operator-based Planning Problems

Input
Set of world states
Action operators

Fn: world-state→world-state
Initial state of world
Goal

partial state
(set of world states)

a
a

anorth11 north12

W0 W2W1

Output
Sequence of actions

Complete: Achieve goals
Consistent: No negative
side-effects

11

Operator-based Planning Problem

(:operator carry
:precondition
:effect (:and (noGarbage) (not (cleanHands)))

Preconditions: Propositions that must be true to apply
the operator.

• A conjunction of propositions (no negated propositions).

Effects: Propositions that the operator changes,
given the preconditions are satisfied.

• A conjunction of propositions (called adds) and
their negation (called deletes).

12

What Assumptions are Implied?

• Atomic time.

• Agent is omniscient
(no sensing necessary).

• Agent is sole cause of
change.

• Actions have
deterministic effects.

• No indirect effects.

STRIPS Assumptions

(:operator pick-up
:parameters ((block ob1))
:precondition (and (clear ob1)

(on-table ob1)
(arm-empty))

:effect (and (not (clear ob1))
(not (on-table ob1))

(not (arm-empty))
(holding ob1)))

Outline
Operator-based Planning
Graph Plan

The Graph Plan Solutions
Graph Construction
Solution Extraction
Properties
Termination with Failure

Graph Plan

Graphplan was developed in 1995 by
Avrim Blum and Merrick Furst, at CMU.

Graphplan approach extended to reason
with temporally extended actions, metric
and non-atomic preconditions and effects.

Approach: Graph Plan
1. Constructs compact constraint encoding of

state space from operators and initial state,
which prunes many invalid plans – Plan Graph.

2. Generates plan by searching for a consistent
subgraph that achieves the goals.

Proposition
Init State

Action
Time 1

Proposition
Time 1

Action
Time 2

Outline
Operator-based Planning
Graph Plan

The Graph Plan Planning Problem
Graph Construction
Solution Extraction
Properties
Termination with Failure

17

Visualizing Actions in a Plan Graph

(:operator cook :precondition (cleanHands)
:effect (dinner))

cook
dinner

cleanHands

(:operator carry :precondition
:effect (:and (noGarbage) (not (cleanHands)))

carry
noGarb

cleanH

18

Visualizing Actions in a Plan Graph

• Persistence actions (Noops)

• Every literal has a no-op action,
which maintains it from time i to i+1.

(:operator noop-P :precondition (P) :effect (P))

Noop-P PP

In Blum & Furst: (& lecture) Only persist positive literals .
AIMA: Persists negative literals as well.

A Plan in GraphPlan <Actions[i] >

dinner

present

cook

wrap

carrycleanH

quiet

noGarb

cleanH

dinner

present

Prop at 0 Action at 0 Prop at 1 Action at 1 Prop at 2

noop-dinner

noop-present

• Sets of concurrent actions performed at each time [i]
• Concurrent actions can be interleaved in any order.

If actions a and b occur at time i, then it must be valid to
perform either a followed by b, OR b followed by a.

A Complete Consistent Plan
Given that the initial state holds at time 0,
a plan is a solution iff:

• Complete:
• The goal propositions all hold in the final state.

•The preconditions of every operator at time i,
is satisfied by a proposition at time i.

• Consistent:
• The operators at any time i can be executed in any order,
without one of these operators undoing:

• the preconditions of another operator at time i.

• the effects of another operator at time i.

dinner

present

cook

wrap

carrycleanH

quiet

noGarb

cleanH

dinner

present

Prop at 0 Action at 0 Prop at 1 Action at 1 Prop at 2

(noop dinner)

(noop present)

Example of a
Complete Consistent Plan

Initial Conditions: (and (cleanHands) (quiet))

Goal: (and (noGarbage) (dinner) (present))

GraphPlan Algorithm

Phase 1 – Plan Graph Expansion
Graph encodes reachability and pairwise consistency
of actions and propositions from initial state.
Graph includes, as a subset, all plans that are complete
and consistent.

Phase 2 - Solution Extraction
Graph treated as a kind of constraint satisfaction problem
(CSP).
Selects whether or not to perform each action at each time
point, by assigning CSP variables and testing consistency.

Outline
Operator-based Planning
Graph Plan

The Graph Plan Planning Problem
Graph Construction
Solution Extraction
Properties
Termination with Failure

Example: Graph and Solution
noGarb

cleanH

quiet

dinner

present

carry

dolly

cook

wrap

carry

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

present

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Graph Properties

A Plan graph
compactly encodes the space of consistent
plans,
while pruning . . .
1. partial states and actions at each time i

that are not reachable from the initial state.
2. pairs of propositions and actions

that are mutually inconsistent at time i.
3. plans that cannot reach the goals.

Graph Properties
Plan graphs are constructed in polynomial
time and are of polynomial in size.

The plan graph does not eliminate all
infeasible plans.

Plan generation still requires focused
search.

Constructing the plan graph…
(Reachability)

Initial proposition layer
Contains propositions that hold in the initial state.

Example: Initial State, Layer 1

cleanH

quiet

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Constructing the plan graph…
(Reachability)

Initial proposition layer
Contains propositions in initial state

Action layer i
If all of action’s preconditions are consistent in
proposition layer i
Then add action to layer i

Proposition layer i+1
For each action at layer i
Add all its effects at layer i+1

Example: Add Actions and Effects

noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

cleanH

quiet

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Constructing the planning
graph…(Reachability)

Initial proposition layer
Write down just the initial conditions

Action layer i
If all action’s preconditions appear consistent in
proposition layer i
Then add action to layer i

Proposition layer i+1
For each action at layer i
Add all its effects at layer i+1

Repeat adding layers until all goal propositions appear

Round 1: Stop at Proposition Layer 1?

noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

cleanH

quiet

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Do all goal
propositions
appear?

Goal: (and (noGarbage)
(dinner)
(present))

Constructing the plan graph…
(Consistency)

Initial proposition layer
Write down just the initial conditions

Action layer i
If action’s preconditions appear consistent in i-1 (non-mutex)
Then add action to layer i

Proposition layer i+1
For each action at layer i
Add all its effects at layer i+1

Identify mutual exclusions
Actions in layer i
Propositions in layer i + 1

Repeat until all goal propositions appear non-mutex

34

Mutual Exclusion: Actions
Actions A,B are mutually exclusive at level i
if no valid plan could possibly contain both at i:

They have inconsistent effects.
A deletes B’s effects,

Effects interfere with preconditions.
A deletes B’s preconditions, or
Vice versa or

They compete for needs.
A and B have inconsistent preconditions

Mutual exclusion: Actions
noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

cleanH

quiet

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Mutual exclusion: Actions
noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

cleanH

quiet

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Mutual exclusion: Actions
noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

cleanH

quiet

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Mutual exclusion: Actions
noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

cleanH

quiet

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Layer 1: complete action mutexs
noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

cleanH

quiet

0 Prop 0 Action 1 Prop 1 Action 2 Prop

40

Mutual Exclusion: Actions
Actions A,B are mutually e xcl usi ve at le ve l i
if no valid plan could possibly contain both at i:

They Interfere
A deletes B’s preconditions, or
Vice versa

They have inconsistent effects:
A deletes B’s effects, or
Vice versa

They have competing needs:
A & B have inconsistent preconditions

41

Mutual Exclusion:
Proposition Layer

Propositions P,Q are in co n si sten t at i
if no valid plan could possibly contain both at i
If at i, all ways to achieve P exclude all ways to
achieve Q

P

Q

A1

A2

M

N

Layer 1: Add Proposition Mutexs

noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

cleanH

quiet

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Do all goal
propositions
appear non-mutex?

Round 2: Extending The Plan Graph
noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

carr

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

present

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Outline
Operator-based Planning
Graph Plan

The Graph Plan Planning Problem
Graph Construction
Solution Extraction
Properties
Termination with Failure

45

Graphplan
Create plan graph level 1 from initial state
Loop

1. If goal ⊆ propositions of the highest level
(nonmutex)

2. Then search graph for solution
If solution found, then return and terminate

3. Extend graph one more level

A kind of double search: forward direction checks necessary

(but insufficient) conditions for a solution, ...

Backward search verifies...

46

2. Search for a Solution
Recursively find consistent actions achieving all goals at

time t, then time t-1, . . . :
Find action to achieve each goal G at time t

For each action A making G true at t
If A isn’t mutex with previously chosen action at t,
Then select it

Finally,
If no action of G works,
Then backtrack on previous G.

Finally
If action found for each goal at time t,
Then recurse on preconditions of actions selected, t-1,
Else backtrack to next solution at t+1.

47

Searching for a Solution
Recursively find consistent actions achieving all goals at

time t, then time t-1, . . . :
Select actions at t-1 to achieve each goal G at t,

by solving CSPt:
Variables: One for each goal Gi

Domain: For variable Gi, all actions in layer t-1 that add Gi.
Constraints: Action mutex of layer t-1

Finally
If solution to CSP found (action found for each goal at time t),
Then recurse on preconditions of actions selected for layer t-1,
Else backtrack to next solution at t+1.

No-ops are always favored.
To guarantee that the plan will not contain
redundant plan steps.

Search Action Layer 0
noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

cleanH

quiet

0 Prop 0 Action 1 Prop

carry

cook

wrap

noGarb

dinner

present

dolly

cook

wrap

Extend & Search Action Layer 1
noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

carr

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

present

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Search Action Layer 1

carr

dolly

cook

wrap

noGarb

cleanH

quiet

dinner

present

1 Action 2 Prop

noop carry

noGarb
dolly

noop wrap

noop cook

noop wrap noop wrap

noop cook

noop wrap

dinner

present

Search Action Layer 0
noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

carr

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

present

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Search Action Layer 0
noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

cleanH

quiet

0 Prop 0 Action 1 Prop

carry dolly

cook

wrap

noGarb

dinner

present

cook

wrap

Backtrack!

Search Action Layer 1 Again!

carr

dolly

cook

wrap

noGarb

cleanH

quiet

dinner

present

1 Action 2 Prop

noop carry

noGarb
dolly

noop wrap

noop cook

noop wrap noop wrap

noop cook

noop wrap

dinner

present

Search Action Layer 0
noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

carr

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

present

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Search Action Layer 0
noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

cleanH

quiet

0 Prop 0 Action 1 Prop

carry dolly

noop

cook

noGarb

quiet

dinner

noop

cook

Backtrack!

Search Action Layer 1 Again!

carr

dolly

cook

wrap

noGarb

cleanH

quiet

dinner

present

1 Action 2 Prop

noop carry

noGarb
dolly

noop wrap

noop cook

noop wrap noop wrap

noop cook

noop wrap

dinner

present

Search Action Layer 0
noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

carr

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

present

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Search Action Layer 0
noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

cleanH

quiet

0 Prop 0 Action 1 Prop

carry dolly

noop

wrap

noGarb

cleanH

present

noop

wrap

Backtrack!

Search Action Layer 1 Again!

carr

dolly

cook

wrap

noGarb

cleanH

quiet

dinner

present

1 Action 2 Prop

noop carry

noGarb
dolly

noop wrap

noop cook

noop wrap noop wrap

noop cook

noop wrap

dinner

present

Search Action Layer 0
noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

carr

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

present

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Search Action Layer 0
noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

cleanH

quiet

0 Prop 0 Action 1 Prop

cook

wrap

dinner

present

Consistent!

Solution: Cook & Wrap, then Carry
noGarb

cleanH

quiet

dinner

present

carry

dolly

cook

wrap

carry

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

present

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Memos of Inconsistent Subgoals

To prevent wasted search effort:
If a goal set at layer k cannot be achieved,
Then memoize set at layer k.

Check each new goal set at k against
memos.

If memo, then fail,
Else test by solving a CSP.

Search Layer 0: Record Memo
noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

cleanH

quiet

0 Prop 0 Action 1 Prop

carry

cook

wrap

noGarb

dinner

present

dolly

cook

wrap

Layer 0 Memos
• noGarb, dinner, present

Search Layer 1: Check memos
noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

carr

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

present

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Layer 0 Memos
• noGarb, dinner, present

noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

carr

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

present

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Memo 2

Layer 0 Memos
• noGarb, dinner, present
• noGarb, dinner, quiet

noGarb

cleanH

quiet

dinner

present

carr

dolly

cook

wrap

carr

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

present

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Memo 3

Layer 0 Memos
• noGarb, dinner, present
• noGarb, dinner, quiet
• noGarb, cleanH, present

Solution: Not Recorded as a Memo
noGarb

cleanH

quiet

dinner

present

carry

dolly

cook

wrap

carry

dolly

cook

wrap

cleanH

quiet

noGarb

cleanH

quiet

dinner

present

0 Prop 0 Action 1 Prop 1 Action 2 Prop

Layer 0 Memos
• noGarb, dinner, present
• noGarb, dinner, quiet
• noGarb, cleanH, present

Outline
Operator-based Planning
Graph Plan

The Graph Plan Planning Problem
Graph Construction
Solution Extraction
Properties
Termination with Failure

Plan Graph Properties:
Fixed Points

Propositions monotonically increase
once they are added to a layer they are never
removed in successive layers;

Mutexes monotonically decrease
once a mutex has decayed it can never reappear;

The graph will eventually reach a fix point
• level where facts and mutexs no longer change.

Fix point Example:
Door Domain
Move from room 1 to room 2

pre: robot in 1, door is open
add: robot in 2
del: robot in 1

Open door
pre: door closed
add: door open
del: door closed

Close door
pre: door open
add: door closed
del: door open

A B

noop

noop

Move

Move

Open

noop

Close

noop

In(B)

In(A)

Closed

Opened

Layer 3

N

Move

Move

Open

In(A)

Closed

Layer 0

Open

noop

noop

In(A)

Closed

Opened

Layer 1

In(B)

noop

noop

Move

Open

noop

Close

In(A)

Closed

Opened

Layer 2

Layer 3 is the fixed point (called level out) of the graph

Graph Search Properties
Graphplan may need to expand well beyond the
fix point to find a solution.
Why?

Gripper Example
Move from one room to another

pre: robot in first room
add: robot in second room
del: robot in first room

Pick up ball
pre: gripper free, ball in room
add: holding ball
del: gripper free, ball in room

Drop ball
pre: holding ball, in room
add: ball in room, gripper free
del: holding ball

Gripper Example

Fix point occurs at layer 4,
All facts concerning ball and robot locations
are pairwise non-mutex after 4 steps.

Solution layer depends on # balls moved.
E.g., for 30 balls

solution is at layer 59,
54 layers with identical facts, actions and mutexes.

Properties:
Optimality and Redundancy

Plans guarantee parallel optimality.
Parallel plan will take as short a time as possible.

Plans don’t guarantee sequential optimality.
Might be possible to achieve all goals
at a later layer using fewer actions.

Plans do not contain redundant steps.
By preferring no-ops.

Outline
Operator-based Planning
Graph Plan

The Graph Plan Planning Problem
Graph Construction
Solution Extraction
Properties
Termination with Failure

Termination Property

Graphplan returns failure if and only if
no plan exists.

Simple Termination

If the fix point is reached and:
A goals is not asserted OR
Two goals are mutex

Then return "No solution," without any search .

Else may be higher order exclusions (memos),
preventing a solution.

Requires more sophisticated termination test.

Why Continue After FixPoint?

propositions, actions and mutexes no longer
change after fix point.

N-ary exclusions (memos) DO change.
New layers add time to graph.

Time allows actions to be spaced so that memos decay.
Memos monotonically decrease

Any goal set achievable at layer i, is achievable at i + n.

Track memos & terminate on their fix point.

Recap: Graph Plan

Graphplan developed in 1995 by Avrim Blum
and Merrick Furst, at CMU.
Graphplan searches a compact encoding of
the state space, constructed from the
operators and initial state.
Encoding pre-prunes many invalid plans that
violate reachability and mutual exclusion.
Graphplan has been extended to reason with
temporally extended actions, metric and non-
atomic preconditions and effects.

Appendix

Termination Test
A graph “levels off” if the memos at layer n+1 are the same as at n.

If the Graph levels off at layer n, and the current search stage is t >n,
Then Graphplan can output "No Solution".

Layer
n

Layer
n + 1

Layer
t

St
n = St

n+1 Where Sm
k = the sets of goals found

unsolvable at layer k during search from m

Termination Property

Theorem: Graphplan returns with failure iff the
problem is unsolvable.

Proof of, If the problem is unsolvable, then
Graphplan returns with failure: The number of
goal sets found unsolvable at layer n from layer
t will never be smaller than the number at n from
layer t+1. In addition, there is a finite maximum
number of goal sets. Hence, if the problem is
unsolvable, eventually two successive layers will
contain the same memoized sets.

If Graphplan outputs "No Solution," then the problem is unsolvable.
Suppose the fix point is at layer n and Graphplan has completed an
unsuccessful search starting at layer t > n.
A plan to achieve any goal set that is unsolvable at layer n+1 must,
one step earlier, achieve some set unsolvable at layer n.
Suppose Graphplan returns "No Solution," but the problem is
solvable:

If St
n = St

n+1 then S' and S'' must both be in St
n+1. This means that some

set in St
n+1 will need to be achieved in n+1. this situation is

contradictory.

Layer
n

Layer
n + 1

Layer
q

Layer
q + 1

Solution Layer
q

S’ S’’

S’ in St
n S’’ in St

n+1

