Graph-based Planning

Slides based on - C e
material from: Brian C. Williams

Prof. Maria Fox October 25th & 27th 2003
16.410 - 13

Autonomous
Agents

Self-commanding
Self-diagnosing
Self-repairing

Commanded at;
e Mission level
 Engineering level

Command dispatch
Fault protection
Attitude control

Mission Goal Scenario

Reading and Assignment
for Planning Lectures

Graph-based Planning
AIMA Chapter 11

AIMA = “Artificial Intelligence: A Modern Approach,”
by Russell and Norvig.

Problem Set #6
« Out Friday, Oct 22nd
* Due Friday, Oct 29™,

Outline

= Operator-based Planning

= Graph Plan
= The Graph Plan Planning Problem
= Graph Construction
= Solution Extraction
* Properties
= Termination with Failure

Operator-based Planning Problem

e State

* A consistent conjunction of propositions (positive
literals)

- E.g., (and (cleanhands) (quiet) (dinner) (present) (noGarbage))
 All unspecified propositions are false

e |nitial State

* Problem state attime 1 =0
* E.g., (and (cleanHands) (quiet))

« Goal State
« A partial state
* E.g., (and (noGarbage) (dinner) (present))

e The planner must put the system in a final state that
satisfies the conjunction.

Example: Dinner Date Problem

Initial Conditions: (and (cleanHands) (quiet))

Goal: (and (noGarbage) (dinner) (present))
Actions:
(:operator carry :precondition
.effect (and (noGarbage) (not (cleanHands)))

(:operator dolly :precondition
.effect (and (noGarbage) (not (quiet)))

(:operator cook :precondition (cleanHands)
.effect (dinner))

(:operator wrap :precondition (quiet)
.effect (present))

+ NOopsS

(Parameterized) Operator Schemata

= |nstead of defining:
pickup-A and pickup-B and ...

= Deflne a schema:

(:operator pick-up A
:parameters ((block ob1)) J/@//%j@x@
:precondition (and (clear ob1) %, “o %®

(on-table ob1) /)’6/@/‘ T, %,
(arm-empty)) Y o5,
.effect (and (not (clear obl)) OO/)) @%
(not (on-table ob1)) '%/@*
/

(not (arm-empty))
(holding ob1l)))

?var denotes a free variable

Operator Execution at Time |

If all propositions of :precondition appear Iin state |,
Then create state I1+1 from I, by
e adding to I, all “add” propositions In :effects,

* removing from i, all “delete” propositions in
.effects.

(:operator cook :precondition (cleanHands)
.effect (dinner))

(cleanHands) (cleanHands)
(quiet) > Cook — (quiet)

(dinner)

Operator Execution at Time |

If all propositions of :precondition appear Iin state |,
Then create state I1+1 from I, by
e adding to I, all “add” propositions In :effects,

* removing from i, all “delete” propositions in
.effects.

(:operator dolly :precondition
.effect (and (noGarbage) (not (quiet)))

(cleanHands) (cleanHands)
(quiet) > dolly > (noGarbage)

Operator-based Planning Problems

= |nput = QOutput
= Set of world states = Seguence of actions
= Action operators = Complete: Achieve goals
= Fn: world-state—world-state " Consistent: No negative
= |nitial state of world side-effects
= Goal

= partial state
(set of world states)

\ \ \
... nor ... nor .
gisi th11 :igi th12 EEEE

Wo W1 Q. .QH

Operator-based Planning Problem

(:operator carry
:precondition
.effect (:and (noGarbage) (not (cleanHands)))

Preconditions: Propositions that must be true to apply
the operator.
A conjunction of propositions (no negated propositions).

Effects: Propositions that the operator changes,
given the preconditions are satisfied.

A conjunction of propositions (called adds) and
their negation (called deletes).

What Assumptions are Implied?

e Atomic time.

(:operator pick-up . . -
:parameters ((block ob1)) Agent Is omniscient

:precondition (and (clear ob1) (no sensing necessary).

(on-table ob1) . Agent is sole cause of
(arm-empty))

-effect (and (not (clear obl)) change.

(not (on-table ob1)) Actions have
(not (arm-empty)) o
(holding ob1))) deterministic effects.

e No indirect effects.

= STRIPS Assumptions

Outline

= Operator-based Planning

= Graph Plan
= The Graph Plan Solutions
= Graph Construction
= Solution Extraction
* Properties
= Termination with Failure

Graph Plan

= Graphplan was developed in 1995 by
Avrim Blum and Merrick Furst, at CMU.

= Graphplan approach extended to reason
with temporally extended actions, metric
and non-atomic preconditions and effects.

Approach: Graph Plan

1. Constructs compact constraint encoding of
state space from operators and initial state,
which prunes many invalid plans — Plan Graph.

2. Generates plan by searching for a consistent
subgraph that achieves the goals.

Ll
W
Y

Proposition Action Proposition Action
Init State Time 1 Time 1 Time 2

Outline

= Operator-based Planning

= Graph Plan
= The Graph Plan Planning Problem
= Graph Construction
= Solution Extraction
* Properties
= Termination with Failure

Visualizing Actions in a Plan Graph

(:operator cook :precondition (cleanHands)
.effect (dinner))

_——p> dinner
cleanHands == cook

(:operator carry :precondition
.effect (:and (noGarbage) (not (cleanHands)))

_—p noGarb

cleanH

Visualizing Actions in a Plan Graph

e Persistence actions (Noops)

* Every literal has a no-op action,
which maintains it from time i to i+1.

(:operator noop-P :precondition (P) :effect (P))

In Blum & Furst: (& lecture) Only persist positive literals .
AIMA: Persists negative literals as well.

A Plan in GraphPlan <Actions]|i] >

« Sets of concurrent actions performed at each time |i]
« Concurrent actions can be interleaved in any order.

= |If actions a and b occur at time i, then it must be valid to
perform either a followed by b, OR b followed by a.

[noGarb |

[cleanH

cleanH

[quiet

noop-dinner

dinner dinner]

NOOpP-present
present [present]

| | | |
Per at 0 Actilon at 0 ProP at 1 ActionI atl Prop Iat 2

A Complete Consistent Plan

Given that the initial state holds at time O,
a plan is a solution Iff;

o Complete:
e The goal propositions all hold in the final state.

*The preconditions of every operator at time |,
IS satisfied by a proposition at time 1.

» Consistent:
e The operators at any time | can be executed in any order,
without one of these operators undoing:

* the preconditions of another operator at time I.

* the effects of another operator at time .

Example of a
Complete Consistent Plan

Initial Conditions: (and (cleanHands) (quiet))

Goal: (and (noGarbage) (dinner) (present))
[noGarb]
| cleanH | M/
O..A
\ cleanH
[quiet cook
\ (noop dinner)

wrap

\ (n0oOp present)

(] —— [present]

| | | | |
Per at 0 Actilon at 0 ProP at 1 ActionI atl Prop EII'[2

GraphPlan Algorithm

= Phase 1 — Plan Graph Expansion

= Graph encodes reachability and pairwise consistency
of actions and propositions from initial state.

= Graph includes, as a subset, all plans that are complete
and consistent.

= Phase 2 - Solution Extraction

= Graph treated as a kind of constraint satisfaction problem
(CSP).

= Selects whether or not to perform each action at each time
point, by assigning CSP variables and testing consistency.

Outline

= Operator-based Planning

= Graph Plan
= The Graph Plan Planning Problem
= Graph Construction
= Solution Extraction
* Properties
= Termination with Failure

Example: Graph and Solution

noGarb =[noGarb]
carry / m%/
| cleanH | “A CleanH A CloanH
dolly / dolly .,
| quiet | e quiet l"CIuiet
COOK

— 00%—_
\[dinner EF[dinner]
wrap
\ present \‘[present]

! !
0 Plrop 0 Actlon 1 IIDrop 1 Actlon 2 Plrop

Graph Properties

A Plan graph
= compactly encodes the space of consistent
plans,

= while pruning . ..

1.

partial states and actions at each time |
that are not reachable from the initial state.

pairs of propositions and actions
that are mutually inconsistent at time |.

plans that cannot reach the goals.

Graph Properties

= Plan graphs are constructed in polynomial
time and are of polynomial in size.

= The plan graph does not eliminate all
Infeasible plans.

=» Plan generation still requires focused
search.

Constructing the plan graph...
(Reachability)

= |nitial proposition layer
= Contains propositions that hold in the Initial state.

Example: Initial State, Layer 1

cleanH

quiet

! | ! | !
0 Plrop 0 Al\ction 1 IIDrop 1 Alction 2 Plrop

Constructing the plan graph...
(Reachability)

= [nitial proposition layer
= Contains propositions in initial state

= Action layer |
= |f all of action’s preconditions are consistent in
proposition layer |
= Then add action to layer |
= Proposition layer 1+1
= For each action at layer |
= Add all its effects at layer i+1

Example: Add Actions and Effects

noGarb
carr

cleanH cleanH

-,
/
\ doIIy
quiet N » %, quiet
-
\

wrap

present

! | !
0 Plrop 0 Al\ction 1 IIDrop

|
1 Alction

|
2 Plrop

Constructing the planning
graph...(Reachability)

= [nitial proposition layer
= Write down just the initial conditions

= Action layer |
= |f all action’s preconditions appear consistent in
proposition layer |
= Then add action to layer |
= Proposition layer i+1
= For each action at layer |
= Add all its effects at layer i+1

= Repeat adding layers until all goal propositions appear

Round 1: Stop at Proposition Layer 17

noGarb

carr /
cleanH A cleanH
\ dolly “.,
quiet qmet

[dlnner]
wrap
present]
! !
0 Plrop OAI\ction 1 IIDrop

Do all goal
propositions
appear?

Goal: (and (noGarbage)
(dinner)
(present))

| !
1 Alction 2 Plrop

Constructing the plan graph...
(Consistency)

Initial proposition layer
= Write down just the initial conditions
Action layer |
= |f action’s preconditions appear consistent in i-1 (non-mutex)
= Then add action to layer |
Proposition layer i+1
= For each action at layer i
= Add all its effects at layer i+1

|dentify mutual exclusions
= Actions in layer |
= Propositions in layer i1+ 1

Repeat until all goal propositions appear non-mutex

Mutual Exclusion: Actions

= Actions A,B are mutually exclusive at level |
If no valid plan could possibly contain both at I:

= They have inconsistent effects.
= A deletes B’s effects,

= Effects Interfere with preconditions.
= A deletes B’s preconditions, or
= Vice versa or

= They compete for needs.
= A and B have inconsistent preconditions

Mutual exclusion: Actions

noGarb

carr

cleanH cleanH

\ doIIy
quiet qmet

/
\ caok
\ \[dlnner

wrap
\l present

!
0 Plrop 0 Actlon 1 IIDrop

|
1 Alction

|
2 Plrop

Mutual exclusion: Actions

noGarb

carr

cleanH cleanH

\ doIIy
quiet qmet

/
Neaok
\ \[dlnner

wrap
\l present

!
0 Plrop 0 Actlon 1 IIDrop

|
1 Alction

|
2 Plrop

Mutual exclusion: Actions

noGarb

carr

cleanH cleanH

\ doIIy
quiet qmet

/
\ caok
\ \[dlnner

wrap
\l present

!
0 Plrop 0 Actlon 1 IIDrop

|
1 Alction

|
2 Plrop

Mutual exclusion: Actions

/,[noGarb]
carr

0..
0

cleanH cIeanH

\ doIIy
quiet qmet

\cook .
\ \[dlnner]

wrap
\lpresent]

! | !
0 Plrop 0 Al\ction 1 IIDrop

|
1 Alction

|
2 Plrop

Layer 1: complete action mutexs

noGarb

carr 7
cleanH cleanH

\ doIIy
quiet quiet

\ COOoK -
dinner

S
wrap \

present

! | !
0 Plrop 0 Al\ction 1 IIDrop

|
1 Alction

|
2 Plrop

Mutual Exclusion: Actions

= Actions A,B are mutually excl usie at lewe | |
If no valid plan could possibly contain both at i:

= They Interfere
= A deletes B’s preconditions, or
= Vice versa

= They have inconsistent effects:
= A deletes B'’s effects, or
= Vice versa

= They have competing needs:
= A & B have inconsistent preconditions

Mutual Exclusion:
Proposition Layer

Propositions P,Q are n on gstentat |
= If no valid plan could possibly contain both at |

= |f at 1, all ways to achieve P exclude all ways to
achieve Q

‘e,
.
S
IS

Layer 1. Add Proposition Mutexs

noGarb
carr / Do all goal
cleanH “A cleanH propositions
\ do“y appear non-mutex?
quiet \ quiet
COOK ~_
\ dinner]

wrap

ey

present]

! | ! | !
0 Plrop 0 Al\ction 1 IIDrop 1 Alction 2 Plrop

Round 2: Extending The Plan Graph

noGarb =[noGarb]
carr './/v carr ..//
cleanH cleanH A CleanH
\ dolly dolly-.,
quiet \ qmet \ A quiet
COOk \ COOI\
\ -
dlnner \ — [dlnner]
wrap wrap\
present R [present]

! | ! | !
0 Plrop 0 Al\ction 1 IIDrop 1 Alction 2 Plrop

Outline

= Operator-based Planning

= Graph Plan
= The Graph Plan Planning Problem
= Graph Construction
= Solution Extraction
* Properties
= Termination with Failure

Graphplan

= Create plan graph level 1 from initial state

= Loop

1. If goal < propositions of the highest level
(nonmutex)

2. Then search graph for solution
= |f solution found, then return and terminate

3. Extend graph one more level

ary
neces>
. checks
forwa directon
cch: olution; -
ple SeA™ " tor
A kind O ff ?\Aem) ond™t? ss
(but -‘nsuf Jxch verite
a
packw

2. Search for a Solution

Recursively find consistent actions achieving all goals at
timet, then time t-1, . . . :

= Find action to achieve each goal G at time t

= For each action A making G true at t

= If Aisn’t mutex with previously chosen action at t,
Then select it

= Finally,
= |f no action of G works,
= Then backtrack on previous G.

= Finally
= |f action found for each goal at time t,

= Then recurse on preconditions of actions selected, t-1,
= Else backtrack to next solution at t+1.

Searching for a Solution

Recursively find consistent actions achieving all goals at
timet, then time t-1, . . . :

= Select actions at t-1 to achieve each goal G at t,
by solving CSP;:
= Variables: One for each goal G,
= Domain: For variable G;, all actions in layer t-1 that add G..
= Constraints: Action mutex of layer t-1
= Finally
= |f solution to CSP found (action found for each goal at time t),

= Then recurse on preconditions of actions selected for layer t-1,
= Else backtrack to next solution at t+1.

= No-ops are always favored.

= To guarantee that the plan will not contain
redundant plan steps.

Search Action Layer O

/ noGarb]
carr

S

cleanH ‘A cleanH noGarb /\
dolly ./. carry dolly
. A
quiet > quiet

\ dinner
COO0K cook cook

T [B
wrap wrap wrap
\f present]

! | !
0 Plrop 0 A}ction 1 IIDrop

Extend & Search Action Layer 1

noGarb =[noGarb]
carr './/v carr ..//
cleanH cleanH A CleanH
\ dolly dolly-.,
quiet \ qmet \ A quiet
COOk \ COOI\
\ i
dlnner \ — [dlnner]
wrap wrap\
present R [present]

! | ! | !
0 Plrop 0 Al\ction 1 IIDrop 1 Alction 2 Plrop

Search Action Layer 1

-_ [noGarb]

/\\ T ...//
noGarb ‘v
E— A cleanH

noop carry dafly

dO“Vn.
dinner /\ /\, —.:ACIUiE'[

noop cook noop cook

Lese“A /\ /\ /\ —\b‘[dinner]
Nnoop wrap NOOP wrap NOOP wrap NOOP wrap
Wrap\

| |
1 AcI:tion 2 Plrop

—

[present]

Search Action Layer O

/{ noGarb]—» [noGarb]
carr _—

carr <, /
cIeanH A cleanH

cleanH
\ dolly dolly-.,
quiet qmet l"quiet
\cook \ \ COOI\
dlnner —\b‘[dlnner]
wrap

!
0 Plrop 0 AI\ction

present]—p>\‘ present

!
1 I:’rop 1 Alction 2 Plrop

Search Action Layer O

/L noGarb]
carr

S

cleanH < cIeanH /\

\ d ” noGarb carry dolly
0 y
quiet qmet ' '
\ COOk dinner cuok cook
\
dlnner] ! '
Wl’ap present wrap WiaD
present]

! !
0 Plrop 0 Al\ction 1 IIDrop

Search Action Layer 1 Again!

-_ [noGarb]

/\\ T ...//
noGarb ‘v
Em— A cleanH

noop carry dafly

. dol |V~,.
dinner /\ /\, —.:ACIUiE'[

noop cook noop cook \\\

COOK
present —\b‘ [dinner]
naop wrap noop wrap noop wrap noop wrap
Wrap\

: [present]

| |
1 AcI:tion 2 Plrop

Search Action Layer O

/{ noGarb]—» [noGarb]
carr _—

S

. carr <, /
cleanH ‘A cleanH A cleanH

dO”y ‘e,

dO“Vn.

L 4 L 4

4 4

L 4

L 4

quiet A% quiet 4 \ A quiet

COOk L COOI\
*[dinner —\b‘[dinner]
Wrap \ Wra\

present : [present]

! | ! | !
0 Plrop 0 Al\ction 1 IIDrop 1 Alction 2 Plrop

Search Action Layer O

/L noGarb]
carr

S

cleanH cIeanH /\

\ d I noGarb carry dolly
0 y
quiet qmet] I !
\ COOk quiet noop neoo
\
dlnner]
Wl’ap dinner cuak cook
present

! | !
0 Plrop 0 Al\ction 1 IIDrop

Search Action Layer 1 Again!

—_— [noGarb]

/\\ T ...//
noGarb ‘o
Tt A cleanH

noop carry dafly

. dO“Vn.
AA " i
noop cook noop cook
cool\
present _\,[dinner]

Neop wap Noop wrap NOOP wrap NOOP wrap \

wrap\

| |
1 AcI:tion 2 Plrop

[present]

Search Action Layer O

/{ noGarb]—» [noGarb]

carr / carr //
cleanH (X cleanH A cleanH
\ dolly dolly-.,
. ...'A .
quiet \ qmet —&quiet
COOk\ \ COOI\
N (.
dinner — [dlnner]

\
wrap wrap\
\f presenﬂ R [present]

! !
0 Plrop 0 Actlon 1 IIDrop 1 Actlon 2 Plrop

Search Action Layer O

/L noGarb]
carr

IS
S

4

L 4

cleanH ‘%cleanH]
\ dolly .
quiet \ qmet
cook \
dlnner
wrap
present]
| |
0 Plrop 0 Al\ction 1 IIDrop

present

wrap

Search Action Layer 1 Again!

> [noGarb]

/\ T 7
noGarb ‘v
A cleanH
noop carry dolly
. dO“Vn.
dinner /\ /\ —.:ACIUiE'[

noop cook noop cook \

COOK__
present —\b‘ [dinner]
Nneop w=ap NYop wap NOOP wrap NOOP wrap
Wrap\

| |
1 AcI:tion 2 Plrop

[present]

Search Action Layer O
noGarb =[noGarb]

carr <, / carr //
cleanH cleanH 7'A cleanH
\ dolly \ dolly-.,
quiet quiet ;"quiet

\ cook \
N cool\
\‘[dinner —\b‘[dlnner]

wrap p\
present]—> present

!
0 Plrop 0 Actlon 1 IIDrop 1 Alction 2 Plrop

Search Action Layer O

noGarb
carr /
cleanH cIeanH
\ dolly “.
quiet \ qmet
cook\
dlnner]
wrap
present]
! !
0 Plrop OAI\ction 1 IIDrop

/

dinner cook

|

present wrap

Consistent!

Solution: Cook & Wrap, then Carry

noGarb > [noGarb]
cIeanH "' cleanH A cleanH

\douy 4 dolly ..
..OA - 0.... -
quiet » quiet A quiet
CO0K & .
\[dinner EF[dinner]

wra
\f present]E> [present]

! | ! | !
0 Plrop 0 Al\ction 1 IIDrop 1 Alction 2 Plrop

Memos of Inconsistent Subgoals

To prevent wasted search effort:

= |f a goal set at layer k cannot be achieved,
Then memoize set at layer K.

= Check each new goal set at k against
memos.

= If memo, then fall,
= Else test by solving a CSP.

Search Layer 0: Record Memo

/ noGarb]
carr

IS
S

L 4

cleanH ‘A cleanH

\ dolly /
. A
quiet » quiet

wrap
\f present |

|
0 A}ction

! !
0 Plrop 1 IIDrop

noGarb

/\

carry dolly

——

cuook cook

N

wrap wiap

present

Layer 0 Memos
* noGarb, dinner, present

Search Layer 1. Chz2ck memos

l noGarb]'——b[noGarb]

_—
carr ~<//' carr.,,//
’ A cleanH

cleanH A -leant

\ dolly /] dolly-.,
quiet

wrap
Layer 0 Memos \

* noGarb, dinner, present T present]-——» [present]

! | | | !
0 Plrop 0 Al\ction L Prop 1 Alction 2 Plrop

cleanH

[l R e—— [noGarb]

o4
4

A cleanH

dolly /
Ty

carr //
A cleanH

quiet \ - quiet A quiet
COOk L COOI\
- dinner —\b‘[dinner]
wrap wra
Layer 0 Memos . \
 noGarb, dinner, present present > [present]
. noGarb dinner, qwet | | |
0 Prop 0 Al\ctlon T |rrop 1 Alction 2 Plrop

o4
4

cleanH

quiet \
cook

Layer 0 Memos wrap
* noGarb, dinner, present
* noGarb, dinner, quiet
. noGF\rb, cleanH, qresent

0 Plrop 0 Al\ction

% cleanH

dolly /
."m‘

' present

I
o

rop

[l R e—— [noGarb]

carr //
A cleanH

—\}[dinner]

wrap\

\

S [present]

| !
1 Alction 2 Plrop

Solution: Not Recorded as a Memo

noGarb =[noGarb]
carry 7 carry %/
| cleanH | / A cleanH A cleanH
dolly dolly »
quiet qmet \ A quiet
Cook
\\
\ dlnner o [dinner]
Layer 0 Memos ™ Wrap wrap
* noGarb, dinner, presen \
- noGarb, dinner, quiet present]EF [present]
* noGagrb, cleanH, present | | |
0 Plrop 0 Al\ction 1 IIDrop 1 A?tion 2 Plrop

Outline

= Operator-based Planning

= Graph Plan
= The Graph Plan Planning Problem
= Graph Construction
= Solution Extraction
* Properties
= Termination with Failure

Plan Graph Properties:
Fixed Points

= Propositions monotonically increase

= once they are added to a layer they are never
removed In successive layers;

= Mutexes monotonically decrease
= once a mutex has decayed it can never reappeatr,

=» The graph will eventually reach a fix point
 level where facts and mutexs no longer change.

FiX point Example:
Door Domain

Move from room 1 to room 2

= pre: robotin 1, door is open
= add: robot in 2

= del: robotin 1

Open door

= pre: door closed
= add: door open

= del: door closed

Close door

= pre: door open

= add: door closed
= del: door open

Layer O Layer 1 Layer 2 Layer 3

Layer 3 is the fixed point (called level out) of the graph

Graph Search Properties

= Graphplan may need to expand well beyond the
fix point to find a solution.

= Why?

Gripper Example

Move from one room to another
= pre: robot in first room

= add: robot in second room

= del: robot in first room

Pick up ball

= pre: gripper free, ball in room
= add: holding ball

= del: gripper free, ball in room

Drop ball

= pre: holding ball, in room

= add: ball in room, gripper free
= del: holding ball

Gripper Example

= FIX point occurs at layer 4,

= All facts concerning ball and robot locations
are pairwise non-mutex after 4 steps.

= Solution layer depends on # balls moved.

= E.g., for 30 balls

= solution is at layer 59,
= 54 layers with identical facts, actions and mutexes.

Properties:
Optimality and Redundancy

= Plans guarantee parallel optimality.

= Parallel plan will take as short a time as possible.

= Plans don’t guarantee sequential optimality.

= Might be possible to achieve all goals
at a later layer using fewer actions.

= Plans do not contain redundant steps.

= By preferring no-ops.

Outline

= Operator-based Planning

= Graph Plan
= The Graph Plan Planning Problem
= Graph Construction
= Solution Extraction
* Properties
= Termination with Failure

Termination Property

= Graphplan returns failure if and only if
no plan exists.

Simple Termination

= |f the fix point is reached and:
= A goals is not asserted OR
= Two goals are mutex

Then return "No solution," without any search .

= Else may be higher order exclusions (memos),
preventing a solution.

=» Requires more sophisticated termination test.

Why Continue After FixPoint?

= propositions, actions and mutexes no longer
change after fix point.

= N-ary exclusions (memos) DO change.
= New layers add time to graph.

= Time allows actions to be spaced so that memos decay.

= Memos monotonically decrease
= Any goal set achievable at layer i, is achievable at i + n.

=» Track memos & terminate on their fix point.

Recap: Graph Plan

= Graphplan developed in 1995 by Avrim Blum
and Merrick Furst, at CMU.

= Graphplan searches a compact encoding of
the state space, constructed from the
operators and initial state.

= Encoding pre-prunes many invalid plans that
violate reachability and mutual exclusion.

= Graphplan has been extended to reason with
temporally extended actions, metric and non-
atomic preconditions and effects.

Appendix

Termination Test

= A graph “levels off” if the memos at layer n+1 are the same as at n.

= |f the Graph levels off at layer n, and the current search stage is t >n,
Then Graphplan can output "No Solution”.

Layer Layer Layer
n+1 t

n
t = t
Sn - Sn+1

A 4

Where S™, = the sets of goals found
unsolvable at layer k during search from m

Termination Property

= Theorem: Graphplan returns with failure iff the
problem is unsolvable.

= Proof of, If the problem is unsolvable, then

Gra
goa
t wil

ohplan returns with failure: The number of
sets found unsolvable at layer n from layer

never be smaller than the number at n from

layer t+1. In addition, there is a finite maximum
number of goal sets. Hence, if the problem is
unsolvable, eventually two successive layers will
contain the same memoized sets.

If Graphplan outputs "No Solution," then the problem is unsolvable.

= Suppose the fix point is at layer n and Graphplan has completed an
unsuccessful search starting at layer t > n.

= A plan to achieve any goal set that is unsolvable at layer n+1 must,
one step earlier, achieve some set unsolvable at layer n.

= Suppose Graphplan returns "No Solution," but the problem is
solvable:

Layer Layer Layer Layer Solution Layer

n n+1 q q+1 q

S'inSt S"inSt,,

a

= |fSt =St then S'and S" must both be in St ,,. This means that some
setin St ,, will need to be achieved in n+1. this situation is
contradictory.

