
Markov Decision Processes:
Reactive Planning to Maximize Reward

Brian C. Williams
16.410
November 8th, 2004

Slides adapted from:
Manuela Veloso,
Reid Simmons, &
Tom Mitchell, CMU

111/8/2004

Reading and Assignments

• Markov Decision Processes
• Read AIMA Chapter 17, Sections 1 – 3.

This lecture based on development in:

“Machine Learning” by Tom Mitchell
Chapter 13: Reinforcement Learning

2

How Might a Mouse Search a Maze for Cheese?

Cheese

• State Space Search?
• As a Constraint Satisfaction Problem?
• Goal-directed Planning?
• Linear Programming?

What is missing?
3

Ideas in this lecture

• Problem is to accumulate rewards,
rather than to achieve goal states.

• Approach is to generate reactive policies for how to act in all
situations, rather than plans for a single starting situation.

• Policies fall out of value functions, which describe the
greatest lifetime reward achievable at every state.

• Value functions are iteratively approximated.

4

MDP Examples: TD-Gammon [Tesauro, 1995]
Learning Through Reinforcement

Learns to play Backgammon

States:
• Board configurations (1020)

Actions:
• Moves

Rewards:
• +100 if win
• - 100 if lose
• 0 for all other states

• Trained by playing 1.5 million games against self.

Currently, roughly equal to best human player.
5

MDP Examples: Aerial Robotics [Feron et al.]
Computing a Solution from a Continuous Model

6

Markov Decision Processes

• Motivation
• What are Markov Decision Processes (MDPs)?

• Models
• Lifetime Reward
• Policies

• Computing Policies From a Model
• Summary

7

MDP Problem

Agent

Environment

State Reward Action

s0 r0

a0 s1
a1

r1

s2
a2

r2

s3

Given an environment model as a MDP create a policy for acting
that maximizes lifetime reward

8

MDP Problem: Model

Agent

Environment

State Reward Action

s0 r0

a0 s1
a1

r1

s2
a2

r2

s3

Given an environment model as a MDP create a policy for acting
that maximizes lifetime reward

9

Markov Decision Processes (MDPs)
Process:Model:

• Finite set of states, S
• Finite set of actions, A
• (Probabilistic) state

transitions, δ(s,a)
• Reward for each state

and action, R(s,a)

• Observe state st in S
• Choose action at in A
• Receive immediate reward rt

• State changes to st+1

10

G

10

1010

• Legal transitions shown
• Reward on unlabeled
transitions is 0.

s0 r0

a0 s1
a1

r1

s2
a2

r2

s3

Example:

s1 a1

MDP Environment Assumptions

• Markov Assumption:
Next state and reward is a function only of the current state
and action:

• st+1 = δ(st, at)
• rt = r(st, at)

• Uncertain and Unknown Environment:
δ and r may be nondeterministic and unknown

11

MDP Nondeterministic Example

12

S1
Unemployed

D

R

S2
Industry

D

S3
Grad School

D

R

S4
Academia

D

R

R

0.1

0.9

1.0

0.9

0.1

1.0

0.9

0.1

1.00.90.1

1.0

R – Research
D – Development

Today we only consider
the deterministic case

MDP Problem: Model

Agent

Environment

State Reward Action

s0 r0

a0 s1
a1

r1

s2
a2

r2

s3

Given an environment model as a MDP create a policy for acting
that maximizes lifetime reward

13

MDP Problem: Lifetime Reward

Agent

Environment

State Reward Action

s0 r0

a0 s1
a1

r1

s2
a2

r2

s3

Given an environment model as a MDP create a policy for acting
that maximizes lifetime reward

14

Lifetime Reward
• Finite horizon:

• Rewards accumulate for a fixed period.
• $100K + $100K + $100K = $300K

• Infinite horizon:
• Assume reward accumulates for ever
• $100K + $100K + . . . = infinity

• Discounting:
• Future rewards not worth as much

(a bird in hand …)
• Introduce discount factor γ

$100K + γ $100K + γ 2 $100K. . . converges
• Will make the math work

15

MDP Problem: Lifetime Reward

Agent

Environment

State Reward Action

s0 r0

a0 s1
a1

r1

s2
a2

r2

s3

Given an environment model as a MDP create a policy for acting
that maximizes lifetime reward

V = r0 + γ r1 + γ 2 r2 . . . 16

MDP Problem: Policy

Agent

Environment

State Reward Action

s0 r0

a0 s1
a1

r1

s2
a2

r2

s3

Given an environment model as a MDP create a policy for acting
that maximizes lifetime reward

V = r0 + γ r1 + γ 2 r2 . . . 17

18

Assume deterministic world

Policy π : S A
• Selects an action for each state.

G

10

1010

π

G

10

1010

π∗

Optimal policy π∗ : S A
• Selects action for each state that maximizes lifetime

reward.

• There are many policies, not all are necessarily optimal.
• There may be several optimal policies.

G

10

1010
G

10

1010

G

10

1010

19

Markov Decision Processes

• Motivation
• What are Markov Decision Processes (MDPs)?

• Models
• Lifetime Reward
• Policies

• Computing Policies From a Model
• Summary

20

Markov Decision Processes

• Motivation
• Markov Decision Processes
• Computing Policies From a Model

• Value Functions
• Mapping Value Functions to Policies
• Computing Value Functions through Value Iteration
• An Alternative: Policy Iteration (appendix)

• Summary

21

Value Function Vπ for a Given Policy π

• Vπ(st) is the accumulated lifetime reward resulting from
starting in state st and repeatedly executing policy π:

Vπ(st) = rt + γ rt+1 + γ 2 rt+2 . . .
Vπ(st) = ∑i γ i rt+I

where rt, rt+1 , rt+2 . . . are generated by following π, starting
at st .

Vπ

10 10
0

99 10

G

10

1010

π

Assume γ = .9

22

An Optimal Policy π* Given Value Function V*
Idea: Given state s
1. Examine all possible actions ai in state s.
2. Select action ai with greatest lifetime reward.

G
10

1010

π

10 10
0

99 10

Lifetime reward Q(s, ai) is:
• the immediate reward for taking action r(s,a) …
• plus life time reward starting in target state V(δ(s, a)) …
• discounted by γ.

π*(s) = argmaxa [r(s,a) + γV∗(δ(s, a))]

Must Know:
• Value function
• Environment model.

• δ : S x A → S
• r : S x A → ℜ

23

Example: Mapping Value Function to Policy

• Agent selects optimal action from V:
π(s) = argmaxa [r(s,a) + γV(δ(s, a)]

90

81

100

90

0

100

G100

100

Model + V: γ = 0.9

24

Example: Mapping Value Function to Policy

• Agent selects optimal action from V:
π(s) = argmaxa [r(s,a) + γV(δ(s, a)]

90

81

100

90

0

100

G100

100

Model + V:
a

b
• a: 0 + 0.9 x 100 = 90
• b: 0 + 0.9 x 81 = 72.9

select a

γ = 0.9

G
π:

25

Example: Mapping Value Function to Policy

• Agent selects optimal action from V:
π(s) = argmaxa [r(s,a) + γV(δ(s, a)]

90

81

100

90

0

100

G100

100

Model + V:

a
b

• a: 100 + 0.9 x 0 = 100
• b: 0 + 0.9 x 90 = 81

select a

γ = 0.9

π:

G

26

Example: Mapping Value Function to Policy

• Agent selects optimal action from V:
π(s) = argmaxa [r(s,a) + γV(δ(s, a)]

90

81

100

90

0

100

G100

100

Model + V:

a b

• a: ?
• b: ?
• c: ?

select ?

γ = 0.9

c

π:

G

27

Markov Decision Processes

• Motivation
• Markov Decision Processes
• Computing Policies From a Model

• Value Functions
• Mapping Value Functions to Policies
• Computing Value Functions through Value Iteration
• An Alternative: Policy Iteration

• Summary

28

Value Function V∗ for an optimal policy π∗

Example

SA SB

B

ARA

RB

A

RA

B

RB

• Optimal value function for a one step horizon:
V*1(s) = maxai [r(s,ai)]

B

RA

RB

SA

SB

A
Max

SA

V*1(SA)

SB
V*1(SB)

. . .
29

Value Function V∗ for an optimal policy π∗

• Optimal value function for a one step horizon:
V*1(s) = maxai [r(s,ai)]

• Optimal value function for a two step horizon:

SA SB

B

ARA

RB

A

RA

B

RB

SA

SB

B

A
SA

SB

. . .

γ
RA +A

B Max
SA

V*2(SA)

SB
V*2(SB)

. . .

V*1(SA)

RB

+ γ V*1(SB)

V*2(s) = maxai [r(s,ai) + γV 1
∗(δ(s, ai))]

Instance of the Dynamic
Programming Principle:

• Reuse shared sub-results

• Exponential saving

Example

30

Value Function V∗ for an optimal policy π∗

Example

SA SB

B

ARA

RB

A

RA

B

RB

• Optimal value function for a one step horizon:
V*1(s) = maxai [r(s,ai)]

• Optimal value function for a two step horizon:
V*2(s) = maxai [r(s,ai) + γV 1

∗(δ(s, ai))]

• Optimal value function for an n step horizon:
V*n(s) = maxai [r(s,ai) + γV n-1

∗(δ(s, ai))]

31

Value Function V∗ for an optimal policy π∗

Example

SA SB

B

ARA

RB

A

RA

B

RB

• Optimal value function for a one step horizon:
V*1(s) = maxai [r(s,ai)]

• Optimal value function for a two step horizon:
V*2(s) = maxai [r(s,ai) + γV 1

∗(δ(s, ai))]

• Optimal value function for an n step horizon:
V*n(s) = maxai [r(s,ai) + γV n-1

∗(δ(s, ai))]

Optimal value function for an infinite horizon:

V*(s) = maxai [r(s,ai) + γV∗(δ(s, ai))] 32

Solving MDPs by Value Iteration
Insight: Can calculate optimal values iteratively using

Dynamic Programming.

Algorithm:
• Iteratively calculate value using Bellman’s Equation:

V*t+1(s) ← maxa [r(s,a) + γV∗
t(δ(s, a))]

• Terminate when values are “close enough”
|V*t+1(s) - V∗

t (s) | < ε

• Agent selects optimal action by one step lookahead on V∗:
π*(s) = argmaxa [r(s,a) + γV∗(δ(s, a)]

33

Convergence of Value Iteration

• If terminate when values are “close enough”
|Vt+1(s) - V t (s) | < ε

Then:
Maxs in S |Vt+1(s) - V∗ (s) | < 2εγ/(1 - γ)

• Converges in polynomial time.
• Convergence guaranteed even if updates are performed

infinitely often, but asynchronously and in any order.

34

Example of Value Iteration

V*t+1(s) ← maxa [r(s,a) + γV∗
t(δ(s, a))]

35

0

0

0

0

0

0

G100

100

G100

100

V∗
t V∗

t+1

0

γ = 0.9

a

b

• a: 0 + 0.9 x 0 = 0
• b: 0 + 0.9 x 0 = 0

Max = 0

Example of Value Iteration

V*t+1(s) ← maxa [r(s,a) + γV∗
t(δ(s, a))]

0

0

0

0

0

0

G100

100

G100

100

V∗
t V∗

t+1

0

γ = 0.9

100a
b

c

• a: 100 + 0.9 x 0 = 100
• b: 0 + 0.9 x 0 = 0
• c: 0 + 0.9 x 0 = 0

Max = 100 36

Example of Value Iteration

V*t+1(s) ← maxa [r(s,a) + γV∗
t(δ(s, a))]

0

0

0

0

0

0

G100

100

G100

100

V∗
t V∗

t+1

0

γ = 0.9

100 0a

• a: 0 + 0.9 x 0 = 0
Max = 0

37

Example of Value Iteration

V*t+1(s) ← maxa [r(s,a) + γV∗
t(δ(s, a))]

0

0

0

0

0

0

G100

100

G100

100

V∗
t V∗

t+1

0

γ = 0.9

100 0

0

38

Example of Value Iteration

V*t+1(s) ← maxa [r(s,a) + γV∗
t(δ(s, a))]

0

0

0

0

0

0

G100

100

G100

100

V∗
t V∗

t+1

0

γ = 0.9

100 0

0 0

39

Example of Value Iteration

V*t+1(s) ← maxa [r(s,a) + γV∗
t(δ(s, a))]

0

0

0

0

0

0

G100

100

G100

100

V∗
t V∗

t+1

0

γ = 0.9

100 0

0 0 100

40

Example of Value Iteration

V*t+1(s) ← maxa [r(s,a) + γV∗
t(δ(s, a))]

γ = 0.9

V∗
t V∗

t+1

0

0

100

0

0

100

G100

100

G100

100

90 100 0

0 90 100

41

Example of Value Iteration

V*t+1(s) ← maxa [r(s,a) + γV∗
t(δ(s, a))]

γ = 0.9

V∗
t V∗

t+1

90

0

100

90

0

100

G100

100

G100

100

90 100 0

81 90 100

42

Example of Value Iteration

V*t+1(s) ← maxa [r(s,a) + γV∗
t(δ(s, a))]

γ = 0.9

V∗
t V∗

t+1

90

81

100

90

0

100

G100

100

G100

100

90 100 0

81 90 100

43

Markov Decision Processes

• Motivation
• Markov Decision Processes
• Computing policies from a modelValue Functions

• Mapping Value Functions to Policies
• Computing Value Functions through Value Iteration
• An Alternative: Policy Iteration (appendix)

• Summary

44

Appendix: Policy Iteration

Idea: Iteratively improve the policy
1. Policy Evaluation: Given a policy πi calculate Vi = Vπi,

the utility of each state if πi were to be executed.
2. Policy Improvement: Calculate a new maximum expected

utility policy πi+1 using one-step look ahead based on Vi.

• πi improves at every step, converging if πi = πi+1.
• Computing Vi is simpler than for Value iteration (no max):

V*t+1(s) ← r(s, πi(s)) + γV∗
t(δ(s, πi(s)))]

• Solve linear equations in O(N3)
• Solve iteratively, similar to value iteration.

45

Markov Decision Processes

• Motivation
• Markov Decision Processes
• Computing policies from a model

• Value Iteration
• Policy Iteration

• Summary

46

Markov Decision Processes (MDPs)
Model:

• Finite set of states, S
• Finite set of actions, A
• Probabilistic state

transitions, δ(s,a)
• Reward for each state

and action, R(s,a)

Process:
• Observe state st in S
• Choose action at in A
• Receive immediate reward rt

• State changes to st+1

s0 r0

a0 s1
a1

r1

s2
a2

r2

s3

Deterministic Example:

G

10

1010

s1 a1

47

Crib Sheet: MDPs by Value Iteration

48

Insight: Can calculate optimal values iteratively using
Dynamic Programming.

Algorithm:
• Iteratively calculate value using Bellman’s Equation:

V*t+1(s) ← maxa [r(s,a) + γV∗
t(δ(s, a))]

• Terminate when values are “close enough”
|V*t+1(s) - V∗

t (s) | < ε

• Agent selects optimal action by one step lookahead on V∗:
π*(s) = argmaxa [r(s,a) + γV∗(δ(s, a)]

Ideas in this lecture

• Objective is to accumulate rewards,
rather than goal states.

• Objectives are achieved along the way,
rather than at the end.

• Task is to generate policies for how to act in all situations,
rather than a plan for a single starting situation.

• Policies fall out of value functions, which describe the
greatest lifetime reward achievable at every state.

• Value functions are iteratively approximated.

49

How Might a Mouse Search a Maze for
Cheese?

Cheese

• By Value Iteration?
• What is missing?

50

