Markov Decision Processes: Reactive Planning to Maximize Reward

Brian C. Williams 16.410 November 8th, 2004

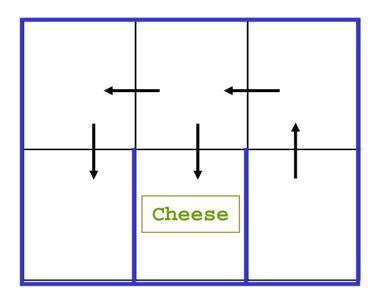
Slides adapted from: Manuela Veloso, Reid Simmons, & Tom Mitchell, CMU

Reading and Assignments

- Markov Decision Processes
 - Read AIMA Chapter 17, Sections 1 − 3.
- This lecture based on development in:

"Machine Learning" by Tom Mitchell Chapter 13: Reinforcement Learning

How Might a Mouse Search a Maze for Cheese?



- State Space Search?
- As a Constraint Satisfaction Problem?
- Goal-directed Planning?
- Linear Programming?

What is missing?

Ideas in this lecture

- Problem is to accumulate rewards, rather than to achieve goal states.
- Approach is to generate reactive policies for how to act in all situations, rather than plans for a single starting situation.
- Policies fall out of value functions, which describe the greatest lifetime reward achievable at every state.
- Value functions are iteratively approximated.

MDP Examples: TD-Gammon [Tesauro, 1995] Learning Through Reinforcement

Learns to play Backgammon

States:

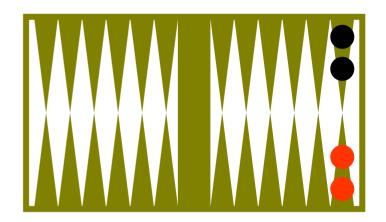
Board configurations (10²⁰)

Actions:

Moves

Rewards:

- +100 if win
- 100 if lose
- 0 for all other states
- Trained by playing 1.5 million games against self.
- Currently, roughly equal to best human player.

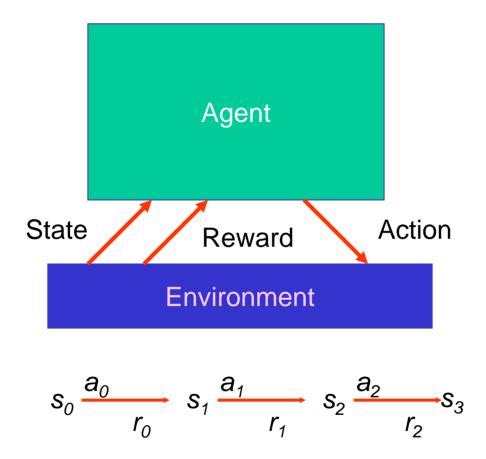


MDP Examples: Aerial Robotics [Feron et al.] Computing a Solution from a Continuous Model

Markov Decision Processes

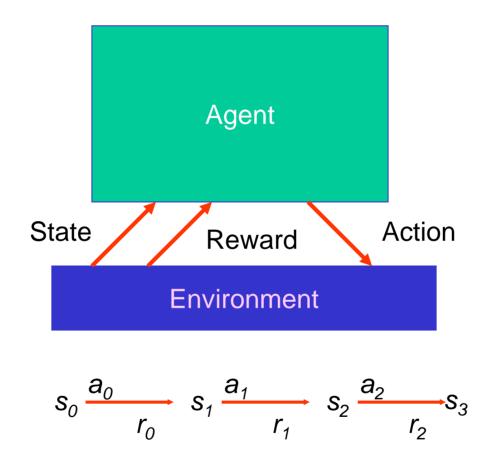
- Motivation
- What are Markov Decision Processes (MDPs)?
 - Models
 - Lifetime Reward
 - Policies
- Computing Policies From a Model
- Summary

MDP Problem



Given an environment model as a MDP create a policy for acting that maximizes lifetime reward

MDP Problem: Model



Given an environment <u>model as a MDP</u> create a policy for acting that maximizes <u>lifetime reward</u>

Markov Decision Processes (MDPs)

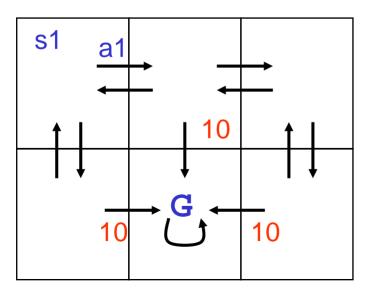
Model:

- Finite set of states, S
- Finite set of actions, A
- (Probabilistic) state transitions, $\delta(s,a)$
- Reward for each state and action, R(s,a)

Process:

- Observe state s_t in S
- Choose action a₁ in A
- Receive immediate reward r_t
- State changes to s_{t+1}

Example:



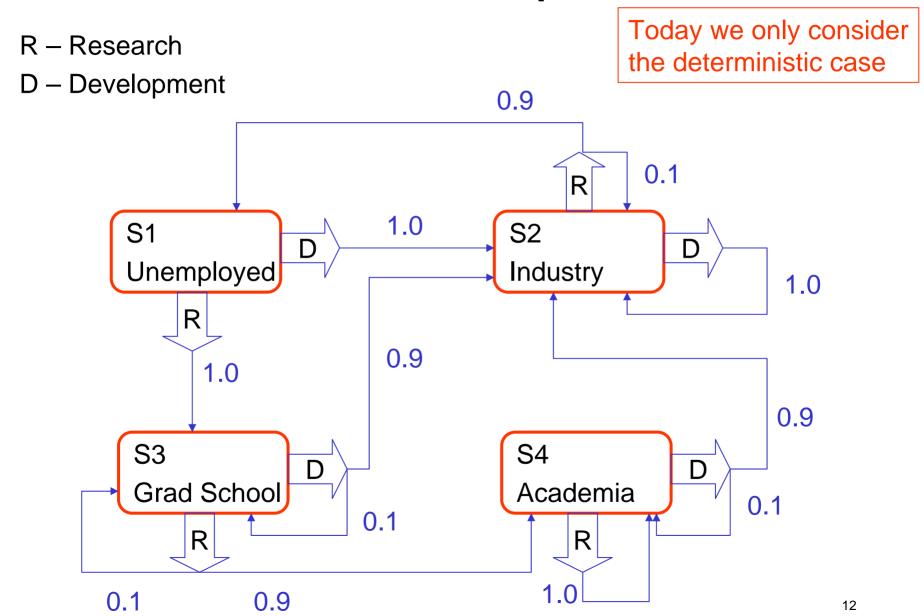
$$s_0 \xrightarrow[r_0]{a_0} s_1 \xrightarrow[r_1]{a_1} s_2 \xrightarrow[r_2]{a_2} s_3$$

- Legal transitions shown
- Reward on unlabeled transitions is 0.

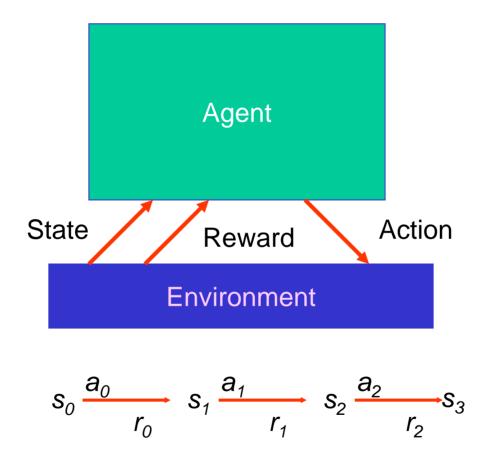
MDP Environment Assumptions

- Markov Assumption: Next state and reward is a function only of the current state and action:
 - $S_{t+1} = \delta(S_t, a_t)$
 - $r_t = r(s_t, a_t)$
- Uncertain and Unknown Environment: δ and r may be nondeterministic and unknown

MDP Nondeterministic Example

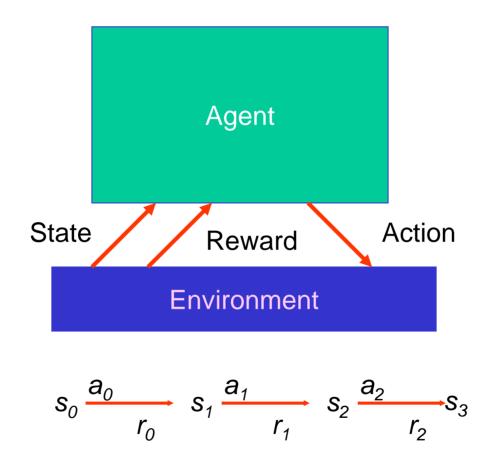


MDP Problem: Model



Given an environment <u>model as a MDP</u> create a policy for acting that maximizes <u>lifetime reward</u>

MDP Problem: Lifetime Reward

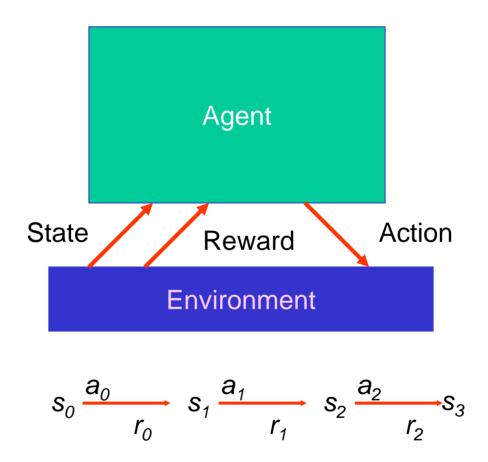


Given an environment model as a MDP create a policy for acting that maximizes <u>lifetime reward</u>

Lifetime Reward

- Finite horizon:
 - Rewards accumulate for a fixed period.
 - \$100K + \$100K + \$100K = \$300K
- Infinite horizon:
 - Assume reward accumulates for ever
 - \$100K + \$100K + ... = infinity
- Discounting:
 - Future rewards not worth as much (a bird in hand ...)
 - Introduce discount factor γ \$100K + γ \$100K + γ 2 \$100K... converges
 - Will make the math work

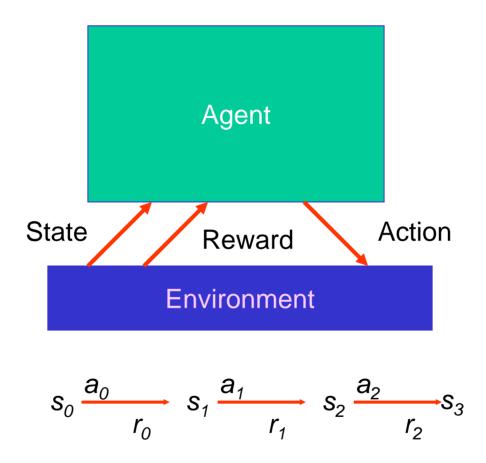
MDP Problem: Lifetime Reward



Given an environment model as a MDP create a policy for acting that maximizes lifetime reward

$$V = r_0 + \gamma r_1 + \gamma^2 r_2 \dots$$

MDP Problem: Policy



Given an environment model as a MDP create a <u>policy</u> for acting that maximizes <u>lifetime reward</u>

$$V = r_0 + \gamma r_1 + \gamma^2 r_2 \dots$$

Assume deterministic world

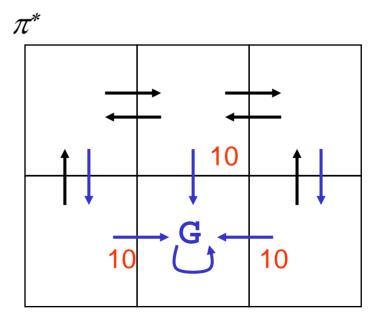
Policy $\pi: S \rightarrow A$

Selects an action for each state.

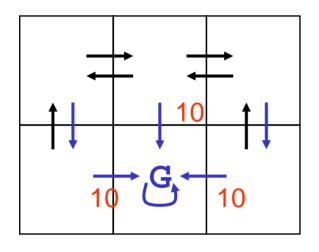
Optimal policy $\pi^*: S \rightarrow A$

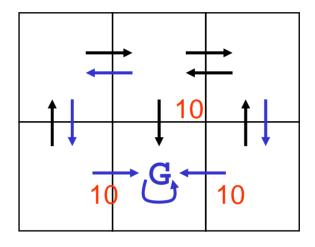
 Selects action for each state that maximizes lifetime reward.

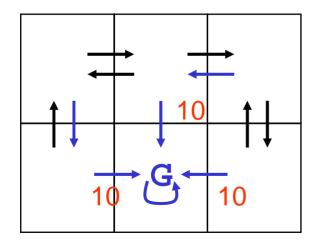




- There are many policies, not all are necessarily optimal.
- There may be several optimal policies.







Markov Decision Processes

- Motivation
- What are Markov Decision Processes (MDPs)?
 - Models
 - Lifetime Reward
 - Policies
- Computing Policies From a Model
- Summary

Markov Decision Processes

- Motivation
- Markov Decision Processes
- Computing Policies From a Model
 - Value Functions
 - Mapping Value Functions to Policies
 - Computing Value Functions through Value Iteration
 - An Alternative: Policy Iteration (appendix)
- Summary

Value Function V^{π} for a Given Policy π

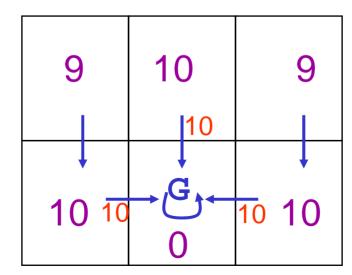
• $V^{\pi}(s_t)$ is the accumulated lifetime reward resulting from starting in state s_t and repeatedly executing policy π :

$$V^{\pi}(s_{t}) = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} ...$$

$$V^{\pi}(s_{t}) = \sum_{i} \gamma^{i} r_{t+1}$$

where r_t , r_{t+1} , r_{t+2} . . . are generated by following π , starting at s_t .

Assume $\gamma = .9$



An Optimal Policy π^* Given Value Function V^*

Idea: Given state s

- 1. Examine all possible actions a; in state s.
- 2. Select action a with greatest lifetime reward.

Lifetime reward Q(s, a_i) is:

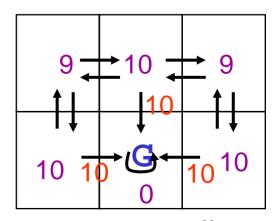
- the immediate reward for taking action r(s,a) ...
- plus life time reward starting in target state $V(\delta(s, a))$...
- discounted by γ.

$$\pi^*(s) = \operatorname{argmax}_a [r(s,a) + \gamma V^*(\delta(s,a))]$$

Must Know:

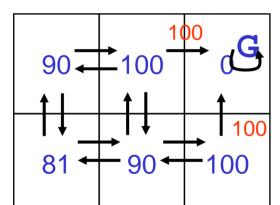
- Value function
- Environment model.
 - $\delta: S \times A \rightarrow S$
 - $r: S \times A \rightarrow \Re$

 π



Agent selects optimal action from V:

$$\pi(s) = \operatorname{argmax}_{a} [r(s,a) + \gamma V(\delta(s, a))]$$

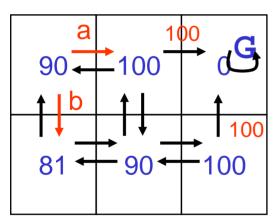


$$\gamma = 0.9$$

Agent selects optimal action from V:

$$\pi(s) = \operatorname{argmax}_{a} [r(s,a) + \gamma V(\delta(s, a))]$$

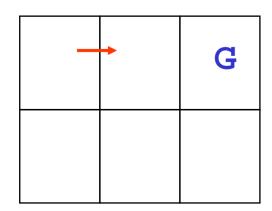
Model + V:



$$\gamma = 0.9$$

- a: $0 + 0.9 \times 100 = 90$
- b: $0 + 0.9 \times 81 = 72.9$
- > select a

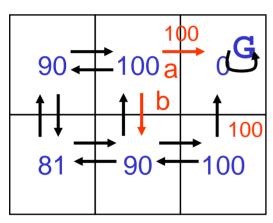
 π :



Agent selects optimal action from V:

$$\pi(s) = \operatorname{argmax}_{a} [r(s,a) + \gamma V(\delta(s, a))]$$

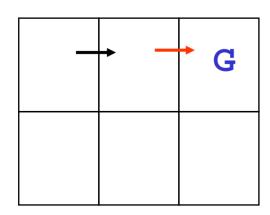
Model + V:



$$\gamma = 0.9$$

- a: $100 + 0.9 \times 0 = 100$
- b: $0 + 0.9 \times 90 = 81$
- > select a

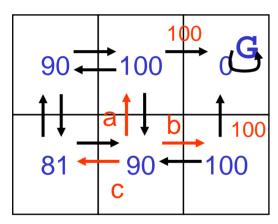
 π :



Agent selects optimal action from V:

$$\pi(s) = \operatorname{argmax}_{a} [r(s,a) + \gamma V(\delta(s, a))]$$

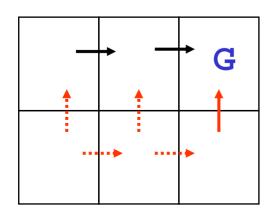
Model + V:



$$\gamma = 0.9$$

- a: ?
- b: ?
- c: ?
- > select?

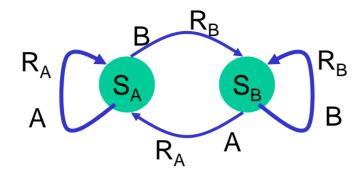
 π :



Markov Decision Processes

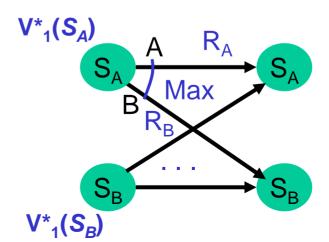
- Motivation
- Markov Decision Processes
- Computing Policies From a Model
 - Value Functions
 - Mapping Value Functions to Policies
 - Computing Value Functions through Value Iteration
 - An Alternative: Policy Iteration
- Summary

Example

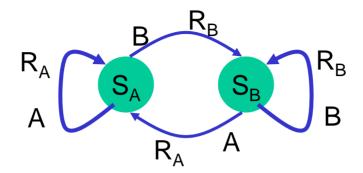


Optimal value function for a one step horizon:

$$V^*_1(s) = \max_{a_i} [r(s, a_i)]$$



Example



Optimal value function for a one step horizon:

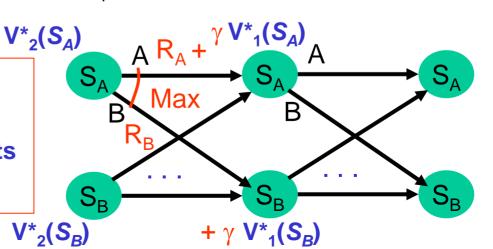
$$V^*_1(s) = \max_{a_i} [r(s, a_i)]$$

Optimal value function for a two step horizon:

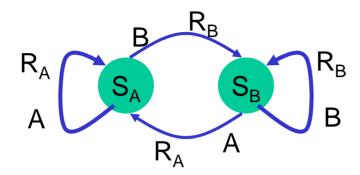
$$V_{2}^{*}(s) = \max_{a_{i}} [r(s,a_{i}) + \gamma V_{1}^{*}(\delta(s, a_{i}))]$$

Instance of the Dynamic Programming Principle:

- Reuse shared sub-results
- Exponential saving



Example



Optimal value function for a one step horizon:

$$V^*_1(s) = \max_{a_i} [r(s, a_i)]$$

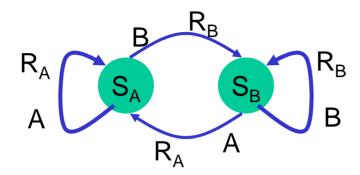
Optimal value function for a two step horizon:

$$V_{2}^{*}(s) = \max_{a_{i}} [r(s,a_{i}) + \gamma V_{1}^{*}(\delta(s,a_{i}))]$$

Optimal value function for an n step horizon:

$$V_{n}^{*}(s) = \max_{a_{i}} [r(s, a_{i}) + \gamma V_{n-1}^{*}(\delta(s, a_{i}))]$$

Example



Optimal value function for a one step horizon:

$$V^*_1(s) = \max_{a_i} [r(s, a_i)]$$

Optimal value function for a two step horizon:

$$V_{2}^{*}(s) = \max_{a_{i}} [r(s, a_{i}) + \gamma V_{1}^{*}(\delta(s, a_{i}))]$$

Optimal value function for an n step horizon:

$$V_{n}^{*}(s) = \max_{a_{i}} [r(s, a_{i}) + \gamma V_{n-1}^{*}(\delta(s, a_{i}))]$$

> Optimal value function for an infinite horizon:

$$V^*(s) = \max_{a_i} \left[r(s, a_i) + \gamma V^*(\delta(s, a_i)) \right]$$

Solving MDPs by Value Iteration

Insight: Can calculate optimal values iteratively using Dynamic Programming.

Algorithm:

Iteratively calculate value using Bellman's Equation:

$$V^*_{t+1}(s) \leftarrow \max_a [r(s,a) + \gamma V^*_t(\delta(s,a))]$$

Terminate when values are "close enough"

$$|V^*_{t+1}(s) - V^*_{t}(s)| < \varepsilon$$

• Agent selects optimal action by one step lookahead on V^* : $\pi^*(s) = \operatorname{argmax}_a [r(s,a) + \gamma V^*(\delta(s,a))]$

Convergence of Value Iteration

If terminate when values are "close enough"

$$|V_{t+1}(s) - V_t(s)| < \varepsilon$$

Then:

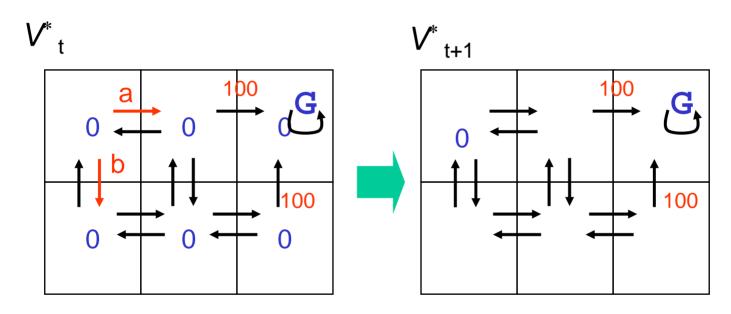
$$\text{Max}_{s \text{ in S}} |V_{t+1}(s) - V^*(s)| < 2\varepsilon \gamma/(1 - \gamma)$$

- Converges in polynomial time.
- Convergence guaranteed even if updates are performed infinitely often, but asynchronously and in any order.

Example of Value Iteration

$$V^*_{t+1}(s) \leftarrow \max_a [r(s,a) + \gamma V^*_{t}(\delta(s,a))]$$

$$\gamma = 0.9$$

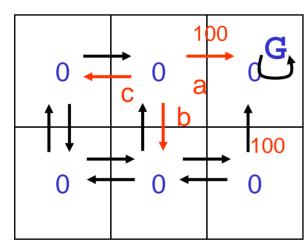


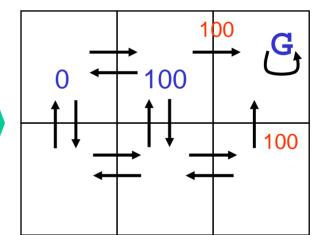
- a: $0 + 0.9 \times 0 = 0$
- b: $0 + 0.9 \times 0 = 0$
- \rightarrow Max = 0

Example of Value Iteration

$$V^*_{t+1}(s) \leftarrow \max_a [r(s,a) + \gamma V^*_{t}(\delta(s,a))]$$

$$\gamma = 0.9$$

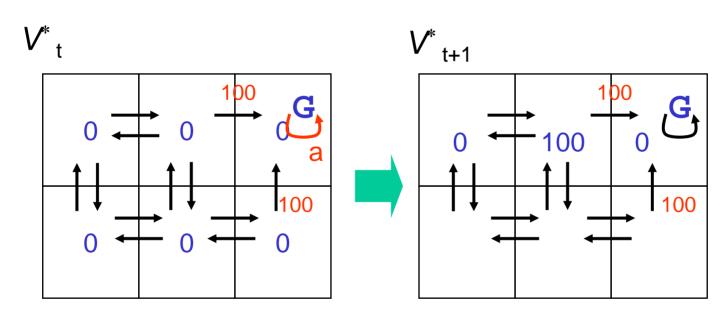




- a: $100 + 0.9 \times 0 = 100$
- b: $0 + 0.9 \times 0 = 0$
- c: $0 + 0.9 \times 0 = 0$
- > Max = 100

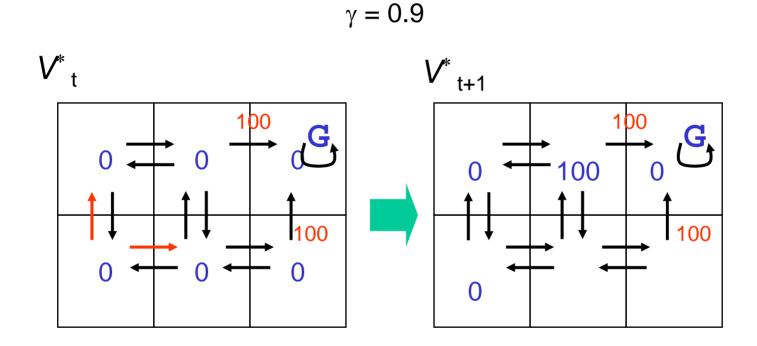
$$V^*_{t+1}(s) \leftarrow \max_a [r(s,a) + \gamma V^*_{t}(\delta(s,a))]$$

$$\gamma = 0.9$$

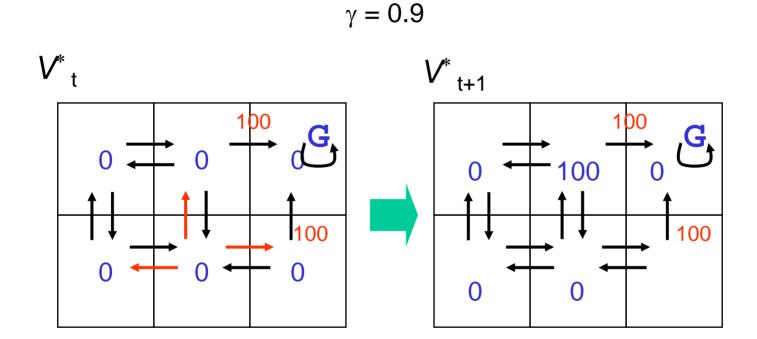


- a: $0 + 0.9 \times 0 = 0$
- \rightarrow Max = 0

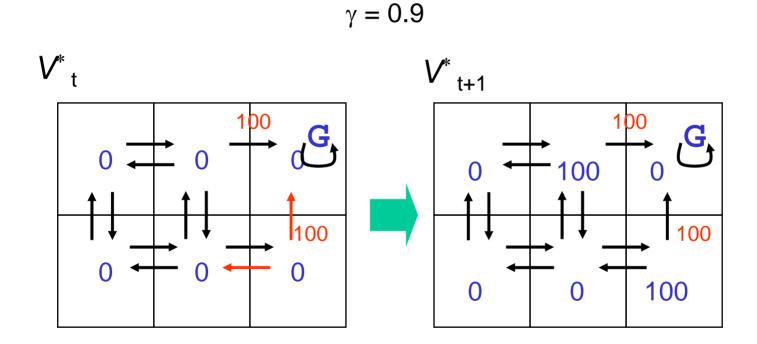
$$V^*_{t+1}(s) \leftarrow \max_a [r(s,a) + \gamma V^*_{t}(\delta(s,a))]$$



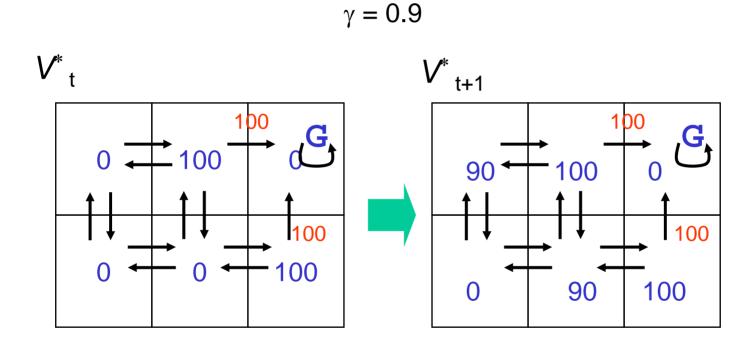
$$V^*_{t+1}(s) \leftarrow \max_a [r(s,a) + \gamma V^*_{t}(\delta(s,a))]$$



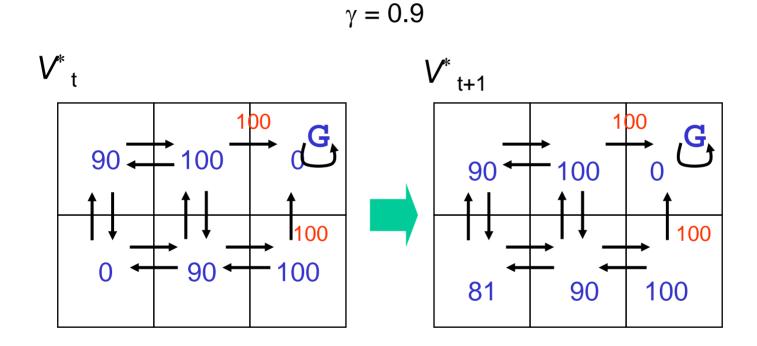
$$V^*_{t+1}(s) \leftarrow \max_a [r(s,a) + \gamma V^*_{t}(\delta(s,a))]$$



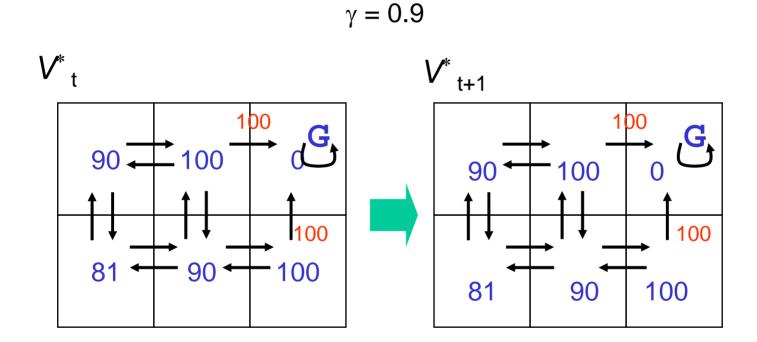
$$V^*_{t+1}(s) \leftarrow \max_a [r(s,a) + \gamma V^*_{t}(\delta(s,a))]$$



$$V^*_{t+1}(s) \leftarrow \max_a [r(s,a) + \gamma V^*_{t}(\delta(s,a))]$$



$$V^*_{t+1}(s) \leftarrow \max_a [r(s,a) + \gamma V^*_{t}(\delta(s,a))]$$



Markov Decision Processes

- Motivation
- Markov Decision Processes
- Computing policies from a modelValue Functions
 - Mapping Value Functions to Policies
 - Computing Value Functions through Value Iteration
 - An Alternative: Policy Iteration (appendix)
- Summary

Appendix: Policy Iteration

Idea: Iteratively improve the policy

- 1. Policy Evaluation: Given a policy π_i calculate $V_i = V^{\pi i}$, the utility of each state if π_i were to be executed.
- 2. Policy Improvement: Calculate a new maximum expected utility policy π_{i+1} using one-step look ahead based on V_i .
- π_i improves at every step, converging if $\pi_i = \pi_{i+1}$.
- Computing V_i is simpler than for Value iteration (no max):

$$V^*_{t+1}(s) \leftarrow r(s, \pi_i(s)) + \gamma V^*_{t}(\delta(s, \pi_i(s)))]$$

- Solve linear equations in O(N³)
- Solve iteratively, similar to value iteration.

Markov Decision Processes

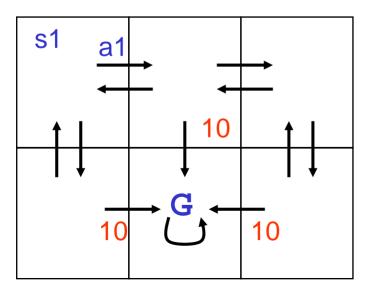
- Motivation
- Markov Decision Processes
- Computing policies from a model
 - Value Iteration
 - Policy Iteration
- Summary

Markov Decision Processes (MDPs)

Model:

- Finite set of states, S
- Finite set of actions, A
- Probabilistic state transitions, $\delta(s,a)$
- Reward for each state and action, R(s,a)

Deterministic Example:



Process:

- Observe state s_t in S
- Choose action a_t in A
- Receive immediate reward r_t
- State changes to s_{t+1}

$$s_0 \xrightarrow[r_0]{a_0} s_1 \xrightarrow[r_1]{a_1} s_2 \xrightarrow[r_2]{a_2} s_3$$

Crib Sheet: MDPs by Value Iteration

Insight: Can calculate optimal values iteratively using Dynamic Programming.

Algorithm:

Iteratively calculate value using Bellman's Equation:

$$V^*_{t+1}(s) \leftarrow \max_a [r(s,a) + \gamma V^*_{t}(\delta(s,a))]$$

Terminate when values are "close enough"

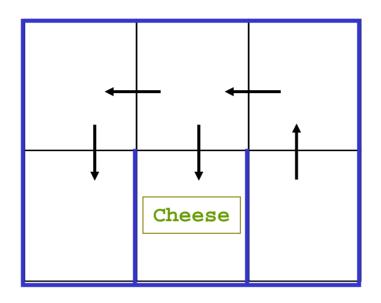
$$|V^*_{t+1}(s) - V^*_{t}(s)| < \varepsilon$$

Agent selects optimal action by one step lookahead on V*:
 π*(s) = argmax_a [r(s,a) + γV*(δ(s, a)]

Ideas in this lecture

- Objective is to accumulate rewards, rather than goal states.
- Objectives are achieved along the way, rather than at the end.
- Task is to generate policies for how to act in all situations, rather than a plan for a single starting situation.
- Policies fall out of value functions, which describe the greatest lifetime reward achievable at every state.
- Value functions are iteratively approximated.

How Might a Mouse Search a Maze for Cheese?



- By Value Iteration?
- What is missing?