
3/19/2003 copyright Brian Williams 1

Propositional Logic
and Satisfiability

Brian C. Williams
16.410-13
November 22nd , 2004

3/19/2003 copyright Brian Williams 2

How Do We Reason About Complex
Systems at a Commonsense Level?

Helium tank

Fuel tankOxidizer tank

Main
Engines

Flow1 = zero
Pressure1 = nominal

Pressure2= nominal

Acceleration = zero

• Model using
propositional logic.

• Reason from model to
operate, diagnose
and repair.

3/19/2003 copyright Brian Williams 3

Propositional SatisfiabilityPropositional Satisfiability

Find a truth assignment that satisfies logical sentence T:

• Reduce sentence T to clausal form.
• Perform search similar to MAC = (BT+CP)

Propositional satisfiability testing:
1990: 100 variables / 200 clauses (constraints)
1998: 10,000 - 100,000 vars / 10^6 clauses

Novel applications:
e.g. diagnosis, planning, software / circuit testing,

machine learning, and protein folding

3/19/2003 copyright Brian Williams 4

Reading Assignment:
Propositional Logic & Satisfiability

• AIMA Ch. 6 – Propositional Logic

3/19/2003 copyright Brian Williams 5

Outline

• Propositional Logic
• Syntax
• Semantics
• Clausal Reduction

• Propositional Satisfiability
• Appendices

3/19/2003 copyright Brian Williams 6

What formal languages exist
for describing constraints?

Logic:
• Propositional logic truth of facts
• First order logic facts,objects,relations
• Temporal logic time, ….
• Modal logics knowledge, belief …
• Probability degree of belief
• Algebra values of variables

3/19/2003 copyright Brian Williams 7

Logic in General

• Logics
• formal languages for representing information such

that conclusions can be drawn.

• Syntax
• defines the sentences in the language.

• Semantics
• defines the “meaning” of sentences;

truth of a sentence in a world.

3/19/2003 copyright Brian Williams 8

Propositional Logic: Syntax
Propositions

• A statement that is true or false
• (valve v1)
• (= voltage high)

Propositional Sentences (S)
• S ::= proposition |
• (NOT S) |
• (OR S1 ... Sn) |
• (AND S1 ... Sn)

Some Defined Constructs
• (implies S1 S2) => ((not S1) OR S2)
• (IFF S1 S2) => (AND (IMPLIES S1 S2)(IMPLIES S2 S1))

3/19/2003 copyright Brian Williams 9

Propositional Sentences:
Engine Example

(mode(E1) = ok implies
(thrust(E1) = on if and only if flow(V1) = on and flow(V2) = on)) and
(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)

V1 V2

E1

3/19/2003 copyright Brian Williams 10

Outline

• Propositional Logic
• Syntax
• Semantics
• Clausal Reduction

• Propositional Satisfiability
• Appendices

3/19/2003 copyright Brian Williams 11

Propositional Logic:
Semantics

A B C
True True True
True True False
True False True
True False False
False True True
False True False
False False True
False False False

Interpretation I of sentence S
assigns true or false to every
proposition P of S

•S = (A or B) and C
•I = {A=True, B=False, C=True}
•I = {A=False, B=True, C=False}

All Interpretations

3/19/2003 copyright Brian Williams 12

Propositional Logic:
Semantics
The truth of sentence S wrt interpretation I
is defined by a composition of boolean operators
applied to I:

• “Not S” is True iff “S” is False

Not S S
False True

True False

3/19/2003 copyright Brian Williams 13

Propositional Logic:
Semantics

The truth of sentence Si wrt Interpretation I:
• “Not S” is True iff “S” is False
• “S1 and S2” is True iff “S1” is True and “S2” is True
• “S1 or S2” is True iff “S1” is True or “S2” is True

S1 and S2 S1 S2
True True True
False True False
False False True
False False False

S1 or S2 S1 S2
True True True
True True False
True False True
False False False

3/19/2003 copyright Brian Williams 14

Propositional Logic:
Semantics

The truth of sentence Si wrt Interpretation I:
• “Not S” is True iff “S” is False
• “S1 and S2” is True iff “S1” is True and “S2” is True
• “S1 or S2” is True iff “S1” is True or “S2” is True
• “S1” implies “S2” is True iff “S1” is False or “S2” is True
• “S1” iff S2 is True iff “S1implies S2” is True

and “S2 implies S1” is True

3/19/2003 copyright Brian Williams 15

Example: Determining the
truth of a sentence

(mode(E1) = ok implies
[(thrust(E1) = on if and only if (flow(V1) = on and flow(V2) = on)) and
(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)])

Interpretation:
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False

3/19/2003 copyright Brian Williams 16

Example: Determining the
truth of a sentence

(True implies
[(False if and only if (True and False)) and
(True or False) and
not (True and False)])

Interpretation:
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False

3/19/2003 copyright Brian Williams 17

Example: Determining the
truth of a sentence

(True implies
[(False if and only if (True and False)) and
(True or False) and
not (True and False)])

Interpretation:
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False

3/19/2003 copyright Brian Williams 18

Example: Determining the
truth of a sentence

(True implies
[(False if and only if (True and False)) and
(True or False) and
not False])

Interpretation:
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False

3/19/2003 copyright Brian Williams 19

Example: Determining the
truth of a sentence

(True implies
[(False if and only if (True and False)) and
(True or False) and

True])

Interpretation:
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False

3/19/2003 copyright Brian Williams 20

Example: Determining the
truth of a sentence

(True implies
[(False if and only if False) and
True and

True])

Interpretation:
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False

3/19/2003 copyright Brian Williams 21

Example: Determining the
truth of a sentence

(True implies
[(False if and only if False) and
True and

True])

Interpretation:
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False

3/19/2003 copyright Brian Williams 22

Example: Determining the
truth of a sentence

(True implies
[(False implies False) and (False implies False)) and
True and

True])

Interpretation:
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False

3/19/2003 copyright Brian Williams 23

Example: Determining the
truth of a sentence

(True implies
[(not False or False) and (not False or False)) and
True and

True])

Interpretation:
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False

3/19/2003 copyright Brian Williams 24

Example: Determining the
truth of a sentence

(True implies
[(True or False) and (True or False)) and
True and

True])

Interpretation:
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False

3/19/2003 copyright Brian Williams 25

Example: Determining the
truth of a sentence

(True implies
[(True and True) and
True and

True])

Interpretation:
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False

3/19/2003 copyright Brian Williams 26

Example: Determining the
truth of a sentence

(True implies
[True and
True and

True])

Interpretation:
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False

3/19/2003 copyright Brian Williams 27

Example: Determining the
truth of a sentence

(True implies
True)

Interpretation:
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False

3/19/2003 copyright Brian Williams 28

Example: Determining the
truth of a sentence

(not True or
True)

Interpretation:
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False

3/19/2003 copyright Brian Williams 29

Example: Determining the
truth of a sentence

(False or
True)

Interpretation:
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False

3/19/2003 copyright Brian Williams 30

Example: Determining the
truth of a sentence

True!

Interpretation:
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False

If a sentence S evaluates to True in interpretation I, then:
• I satisfies S
• I is a Model of S

3/19/2003 copyright Brian Williams 31

Outline

• Propositional Logic
• Syntax
• Semantics
• Clausal Reduction

• Propositional Satisfiability
• Appendices

3/19/2003 copyright Brian Williams 32

Propositional Clauses:
A Simpler Form
• Literal: proposition or its negation

• B, Not A
• Clause: disjunction of literals

• (not A or B or E)
• Conjunctive Normal Form

• Phi = (A or B or C) and
(not A or B or E) and
(not B or C or D)

• Viewed as a set of clauses

3/19/2003 copyright Brian Williams 33

Reduction to Clausal Form:
Engine Example

(mode(E1) = ok implies
(thrust(E1) = on iff (flow(V1) = on and flow(V2) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)

not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V1) = on;
not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V2) = on;
not (mode(E1) = ok) or not (flow(V1) = on) or not (flow(V2) = on)

or thrust(E1) = on;
mode(E1) = ok or mode(E1) = unknown;
not (mode(E1) = ok) or not (mode(E1) = unknown);

3/19/2003 copyright Brian Williams 34

Reducing Propositional
Formula to Clauses (CNF)
See Appendix for Detailed Example:

1) Eliminate IFF and Implies
• E1 iff E2 => (E1 implies E2) and (E2 implies E1)

• E1 implies E2 => not E1 or E2

2) Move negations in towards propositions using
De Morgan’s Theorem:
• Not (E1 and E2) => (not E1) or (not E2)

• Not (E1 or E2) => (not E1) and (not E2)

• Not (not E1) => E1

3) Move conjunctions out using Distributivity
• E1 or (E2 and E3) =>(E1 or E2) and (E1 or E3)

3/19/2003 copyright Brian Williams 35

Outline

• Propositional Logic
• Syntax
• Semantics
• Clausal Reduction

• Propositional Satisfiability
• Backtrack Search
• Unit Propagation
• DPLL: Unit Propagation + Backtrack Search

• Appendices

3/19/2003 copyright Brian Williams 36

Propositional Clauses form a
Constraint Satisfaction Problem

• Variables: Propositions
• Domain: {True, False}
• Constraints: Clauses that must be true

• Clause (not A or B or E)
• A disjunction of Literals

• Literal: Proposition or its negation
• Positive Literal B
• Negative Literal Not A

3/19/2003 copyright Brian Williams 37

Propositional Satisfiability
• An interpretation (truth assignment to all

propositions) such that all clauses are satisfied:

• A clause is satisfied if and only if
at least one literal is true.

• A clause is violated if and only if
all literals are false.

C1: Not A or B
C2: Not C or A
C3: Not B or C

3/19/2003 copyright Brian Williams 38

Satisfiability Testing ProceduresSatisfiability Testing Procedures
Reduce to CNF (Clausal Form) then:

1. Apply systematic, complete procedure
• Depth-first backtrack search

(Davis, Putnam, & Loveland 1961)
• unit propagation, shortest clause heuristic

2. Apply stochastic, incomplete procedure
• GSAT (Selman et. al 1993) – see Appendix

3/19/2003 copyright Brian Williams 39

Outline

• Propositional Logic
• Propositional Satisfiability

• Backtrack Search
• Unit Propagation
• DPLL: Unit Propagation + Backtrack Search

• Appendices

3/19/2003 copyright Brian Williams 40

Propositional Satisfiability
using Backtrack Search

• Assign true or false to an
unassigned proposition.

• Backtrack as soon as a
clause is violated.

Example:
• C1: Not A or B
• C2: Not C or A
• C3: Not B or C

A
F

F
B

C
F

S
S

S

3/19/2003 copyright Brian Williams 41

Propositional Satisfiability
using Backtrack Search

• Assign true or false to an
unassigned proposition.

• Backtrack as soon as a
clause is violated.

Example:
• C1: Not A or B
• C2: Not C or A
• C3: Not B or C

A
F

F
B

C
F T

S
u

S

3/19/2003 copyright Brian Williams 42

Propositional Satisfiability
using Backtrack Search

• Assign true or false to an
unassigned proposition.

• Backtrack as soon as a
clause is violated.

Example:
• C1: Not A or B
• C2: Not C or A
• C3: Not B or C

A
F

F
B

C
F T

T

C
F

S
S

v

3/19/2003 copyright Brian Williams 43

Propositional Satisfiability
using Backtrack Search

• Assign true or false to an
unassigned proposition.

• Backtrack as soon as a
clause is violated.

Example:
• C1: Not A or B
• C2: Not C or A
• C3: Not B or C

A
F

F
B

C
F T

T

C
TF

S

S

v

3/19/2003 copyright Brian Williams 44

Propositional Satisfiability
using Backtrack Search

• Assign true or false to an
unassigned proposition.

• Backtrack as soon as a
clause is violated.

Example:
• C1: Not A or B
• C2: Not C or A
• C3: Not B or C

A
F

F
B

C
F T

T

C
TF

B

T

C

F

S

S

v

3/19/2003 copyright Brian Williams 45

Propositional Satisfiability
using Backtrack Search

• Assign true or false to an
unassigned proposition.

• Backtrack as soon as a
clause is violated.

Example:
• C1: Not A or B
• C2: Not C or A
• C3: Not B or C

A
F

F
B

C
F T

T

C
TF

B

T

C

F T

C
F

S
S

v

3/19/2003 copyright Brian Williams 46

Propositional Satisfiability
using Backtrack Search

• Assign true or false to an
unassigned proposition.

• Backtrack as soon as a
clause is violated.

Example:
• C1: Not A or B
• C2: Not C or A
• C3: Not B or C

A
F

F
B

C
F T

T

C
TF

B

T

C

F T

C
TF

S

S
S

3/19/2003 copyright Brian Williams 47

Clausal Backtrack Search:
Recursive Definition

BT(Phi, A)
Input: A cnf theory Phi,

An assignment A to propositions in Phi
Output: A decision of whether Phi is satisfiable.
1. If a clause is violated, Return false;
2. Else If all propositions are assigned, Return true;
3. Else Q = some unassigned proposition in Phi;
4. Return (BT(Phi, A[Q = True]) or
5. BT(Phi, A[Q = False])

3/19/2003 copyright Brian Williams 48

Outline

• Propositional Logic
• Propositional Satisfiability

• Backtrack Search
• Unit Propagation
• DPLL: Unit Propagation + Backtrack Search

• Appendices

3/19/2003 copyright Brian Williams 49

Unit Propagation
Idea: Arc consistency (AC-3) on binary clauses

(not A or B)

{F} {T,F} ?

{T} {T,F} ?

Unit resolution rule:
If all literals are false save L, then assign true to L:
• (not A) (not B) (A or B or C)

C

3/19/2003 copyright Brian Williams 50

Unit Propagation Examples

• C1: Not A or B
• C2: Not C or A
• C3: Not B or C
• C4: A

C4
A

True
C1

B
True

C3
C

True

Satisfied

Satisfied

Satisfied

Satisfied

3/19/2003 copyright Brian Williams 51

Unit Propagation Examples

• C1: Not A or B
• C2: Not C or A
• C3: Not B or C
• C4: A

• C4’: Not B

C1 C3C4

C1 C2
C4’

A
True

B
True

C
True

A
False

B
False

C
False

C4
A

True

Satisfied

Satisfied

Satisfied

Satisfied

3/19/2003 copyright Brian Williams 52

Unit Propagation

r

true

q

false

C2: ¬ p ∨ ¬ t

p

t

C1 : ¬r ∨ q ∨ p

procedure propagate(C) // C is a clause
if all literals in C are false except L, and L is unassigned
then assign true to L and

record C as a support for L and
for each clause C’ mentioning “not L”,

propagate(C’)
end propagate

3/19/2003 copyright Brian Williams 53

Unit Propagation

r

true

q

false

C2: ¬ p ∨ ¬ t
C1 : ¬r ∨ q ∨ p

p

t

procedure propagate(C) // C is a clause
if all literals in C are false except L, and L is unassigned
then assign true to L and

record C as a support for L and
for each clause C’ mentioning “not L”,

propagate(C’)
end propagate

3/19/2003 copyright Brian Williams 54

Unit Propagation

C1 : ¬r ∨ q ∨ p

r q

p

true false
t

C2: ¬ p ∨ ¬ ttrue

procedure propagate(C) // C is a clause
if all literals in C are false except L, and L is unassigned
then assign true to L and

record C as a support for L and
for each clause C’ mentioning “not L”,

propagate(C’)
end propagate

3/19/2003 copyright Brian Williams 55

Unit Propagation

C1 : ¬r ∨ q ∨ p

r q

p

true false
t

C2: ¬ p ∨ ¬ ttrue

procedure propagate(C) // C is a clause
if all literals in C are false except L, and L is unassigned
then assign true to L and

record C as a support for L and
for each clause C’ mentioning “not L”,

propagate(C’)
end propagate

3/19/2003 copyright Brian Williams 56

Unit Propagation

r q

p

true false

true

t

C2: ¬ p ∨ ¬ t
C1 : ¬r ∨ q ∨ p

procedure propagate(C) // C is a clause
if all literals in C are false except L, and L is unassigned
then assign true to L and

record C as a support for L and
for each clause C’ mentioning “not L”,

propagate(C’)
end propagate

3/19/2003 copyright Brian Williams 57

Unit Propagation
false

r q

p

C2: ¬ p ∨ ¬ t

true false

true

t

C1 : ¬r ∨ q ∨ p

procedure propagate(C) // C is a clause
if all literals in C are false except L, and L is unassigned
then assign true to L and

record C as a support for L and
for each clause C’ mentioning “not L”,

propagate(C’)
end propagate

3/19/2003 copyright Brian Williams 58

Outline

• Propositional Logic
• Propositional Satisfiability

• Backtrack Search
• Unit Propagation
• DPLL: Unit Propagation + Backtrack Search

• Appendices

3/19/2003 copyright Brian Williams 59

How Do We Combine Unit Resolution
and Back Track Search?
Backtrack Search
• Assign true or false to an

unassigned proposition.
• Backtrack as soon as a clause

is violated.
• Theory is satisfiable if

assignment is complete.

Example:
• C1: Not A or B
• C2: Not C or A
• C3: Not B or C

A
F T

B
F T

C
F T

C
F T

B
F T

C C
F TF T

Similar to MAC and Forward Checking:
Perform limited form of inference
apply inference rule after assigning each variable.

3/19/2003 copyright Brian Williams 60

Propositional Satisfiability by DPLL
[Davis, Putnam, Logmann, Loveland, 1962]

Propagate:
C = F
B = F

A

F

Example:
• C1: Not A or B
• C2: Not C or A
• C3: Not B or C

S

S

S

Initially:
• Unit propagate.

Repeat:
1. Assign true or false to an

unassigned proposition.
2. Unit propagate.
3. Backtrack as soon as a

clause is violated.
4. Satisfiable if assignment

is complete.

3/19/2003 copyright Brian Williams 61

Propositional Satisfiability by DPLL
[Davis, Putnam, Logmann, Loveland, 1962]

Propagate:
C = F
B = F

A

F T
Propagate:
B = T
C = T

Example:
• C1: Not A or B
• C2: Not C or A
• C3: Not B or C

S
S

S

Initially:
• Unit propagate.

Repeat:
1. Assign true or false to an

unassigned proposition.
2. Unit propagate.
3. Backtrack as soon as a

clause is violated.
4. Satisfiable if assignment

is complete.

3/19/2003 copyright Brian Williams 62

DPLL Procedure
[Davis, Putnam Logmann, Loveland, 1962]

DPLL(Phi,A)
Input: A cnf theory Phi,

An assignment A to propositions in Phi
Output: A decision of whether Phi is satisfiable.
1. A’ = propagate(Phi);
2. If a clause is violated given A’ return(false);
3. Else if all propositions in A’ are assigned, return(true);
4. Else Q = some unassigned proposition in Phi;
6. Return (DPLL(Phi, A’[Q = True]) or
7. DPLL(Phi, A’[Q = False])

3/19/2003 copyright Brian Williams 63

Satisfiability Testing ProceduresSatisfiability Testing Procedures
• Reduce to CNF (Clausal Form) then:

• Apply systematic, complete procedure
• Depth-first backtrack search (Davis, Putnam, & Loveland 1961)

• unit propagation, shortest clause heuristic
• State-of-the-art implementations:

• ntab (Crawford & Auton 1997)
• itms (Nayak & Williams 1997)
• many others! See SATLIB 1998 / Hoos & Stutzle

• Apply stochastic, incomplete procedures
• GSAT (Selman et. al 1993)

• Walksat (Selman & Kautz 1993)
• greedy local search + noise to escape local minima

3/19/2003 copyright Brian Williams 64

Required Appendices

You are responsible for reading
and knowing this material:

1. Characteristics of DPLL
2. Local Search using GSAT
3. Reduction to Clausal Form

3/19/2003 copyright Brian Williams 65

Hardness of 3SAT

0
2 3 4 5

Ratio of Clauses-to-Variables
6 7 8

1000

3000

D
P

C
al

ls

2000

4000

50 var
40 var
20 var

3/19/2003 copyright Brian Williams 66

The 4.3 Point

0.0
2 3 4 5

Ratio of Clauses-to-Variables
6 7 8

0.2

0.6

Pr
ob

ab
ili

ty
D

P
C

al
ls

0.4

50 var
40 var
20 var

50% sat

Mitchell, Selman, and Levesque 1991

0.8

1.0

0

1000

3000

2000

4000

3/19/2003 copyright Brian Williams 67

3/19/2003 copyright Brian Williams 68

Intuition

• At low ratios:
• few clauses (constraints)
• many assignments
• easily found

• At high ratios:
• many clauses
• inconsistencies easily detected

3/19/2003 copyright Brian Williams 69

Fr
ac

tio
n

of
 F

or
m

ul
ae

 U
ns

at
is

fie
d

2

U N S A T

P h a s e

S A T

P h a s e

2 0

1 0 0

2 4

4 0

5 0
1

0
3

0 . 2

1 . 0

0 . 4

0 . 6

0 . 8

M / N

4 5 6 7

Phase Transitions for
Different Numbers of Variables
Phase Transitions for
Different Numbers of Variables

3/19/2003 copyright Brian Williams 70

Phase transition 2-, 3-, 4-, 5-, and 6-SATPhase transition 2-, 3-, 4-, 5-, and 6-SAT

3/19/2003 copyright Brian Williams 71

Required Appendices

You are responsible for reading
and knowing this material:

1. Characteristics of DPLL
2. Local Search using GSAT
3. Reduction to Clausal Form

3/19/2003 copyright Brian Williams 72

Incremental Repair
(min-conflict heuristic)

Spike Hubble Telescope Scheduler [Minton et al.]

1. Initialize a candidate solution using “greedy” heuristic
– get solution “near” correct one.

2. Select a variable in conflict and assign it a value that
minimizes the number of conflicts (break ties
randomly).

R,G,B

GR, G

Graph Coloring
Initial Domains

Different-color constraint
V1

V2 V3

3/19/2003 copyright Brian Williams 73

1. Init: Pick random assignment

2. Check effect of flipping each
assignment, counting violated
clauses.

3. Pick assignment with fewest
violations,

4. End if consistent, Else goto 2

GSAT

• C1: Not A or B
• C2: Not C or Not A
• C3: or B or Not C

A
True

B
False

C
True

C1, C2, C3 violated

C3 violated

False

C2 violated

True False

C1 violated

3/19/2003 copyright Brian Williams 74

1. Init: Pick random assignment

2. Check effect of flipping each
assignment, counting violated
clauses.

3. Pick assignment with fewest
violations,

4. End if consistent, Else goto 2

GSAT

• C1: Not A or B
• C2: Not C or Not A
• C3: or B or Not C

A
True

B
False

C
False

C1 violated

Satisfied

False

Satisfied

True True

C1,C2,C3 violated

3/19/2003 copyright Brian Williams 75

1. Init: Pick random assignment

2. Check effect of flipping each
assignment, counting violated
clauses.

3. Pick assignment with fewest
violations,

4. End if consistent, Else goto 2

GSAT

• C1: Not A or B
• C2: Not C or Not A
• C3: or B or Not C

A
True

B
True

C
False

Satisfied

Problem: Pure hill climbers get stuck in local minima.

Solution: Add random moves to get out of minima (WalkSAT)

3/19/2003 copyright Brian Williams 76

Required Appendices

You are responsible for reading
and knowing this material:

1. Local Search using GSAT
2. Characteristics of DPLL
3. Reduction to Clausal Form

3/19/2003 copyright Brian Williams 77

Reduction to Clausal Form:
Engine Example

(mode(E1) = ok implies
(thrust(E1) = on iff flow(V1) = on and flow(V2) = on)) and

(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)

not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V1) = on;
not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V2) = on;
not (mode(E1) = ok) or not (flow(V1) = on) or not (flow(V2) = on) or

thrust(E1) = on;
mode(E1) = ok or mode(E1) = unknown;
not (mode(E1) = ok) or not (mode(E1) = unknown);

3/19/2003 copyright Brian Williams 78

Reducing Propositional
Formula to Clauses (CNF)

1) Eliminate IFF and Implies
• E1 iff E2 => (E1 implies E2) and (E2 implies E1)

• E1 implies E2 => not E1 or E2

3/19/2003 copyright Brian Williams 79

Eliminate IFF:
Engine Example

(mode(E1) = ok implies
(thrust(E1) = on iff (flow(V1) = on and flow(V2) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)

(mode(E1) = ok implies
((thrust(E1) = on implies (flow(V1) = on and flow(V2) = on)) and
((flow(V1) = on and flow(V2) = on) implies thrust(E1) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)

3/19/2003 copyright Brian Williams 80

Eliminate Implies:
Engine Example

(mode(E1) = ok implies
((thrust(E1) = on implies (flow(V1) = on and flow(V2) = on)) and
((flow(V1) = on and flow(V2) = on) implies thrust(E1) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)

(not (mode(E1) = ok) or
((not (thrust(E1) = on) or (flow(V1) = on and flow(V2) = on)) and
(not (flow(V1) = on and flow(V2) = on)) or thrust(E1) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)

3/19/2003 copyright Brian Williams 81

Reducing Propositional
Formula to Clauses (CNF)

2) Move negations in towards propositions using
De Morgan’s Theorem:
• Not (E1 and E2) => (not E1) or (not E2)

• Not (E1 or E2) => (not E1) and (not E2)

• Not (not E1) => E1

3/19/2003 copyright Brian Williams 82

Move Negations In:
Engine Example

(not (mode(E1) = ok) or
((not (thrust(E1) = on) or (flow(V1) = on and flow(V2) = on)) and
(not (flow(V1) = on and flow(V2) = on)) or thrust(E1) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)

(not (mode(E1) = ok) or
((not (thrust(E1) = on) or (flow(V1) = on and flow(V2) = on)) and
(not (flow(V1) = on) or not (flow(V2) = on)) or thrust(E1) = on)) and

(mode(E1) = ok or mode(E1) = unknown) and
(not (mode(E1) = ok) or not (mode(E1) = unknown)))

3/19/2003 copyright Brian Williams 83

Reducing Propositional
Formula to Clauses (CNF)

3) Move conjunctions out using distributivity
• E1 or (E2 and E3) =>(E1 or E2) and (E1 or E3)

3/19/2003 copyright Brian Williams 84

Move Conjunctions Out:
Engine Example

(not (mode(E1) = ok) or
((not (thrust(E1) = on) or (flow(V1) = on and flow(V2) = on)) and
(not (flow(V1) = on) or not (flow(V2) = on) or thrust(E1) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and
(not (mode(E1) = ok) or not (mode(E1) = unknown))

(not (mode(E1) = ok) or
(((not (thrust(E1) = on) or flow(V1) = on) and

(not (thrust(E1) = on) or flow(V2) = on)) and
(not (flow(V1) = on) or not (flow(V2) = on) or thrust(E1) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and
(not (mode(E1) = ok) or not (mode(E1) = unknown))

3/19/2003 copyright Brian Williams 85

Move Conjunctions Out:
Engine Example

(not (mode(E1) = ok) or
(((not (thrust(E1) = on) or flow(V1) = on) and

(not (thrust(E1) = on) or flow(V2) = on)) and
(not (flow(V1) = on) or not (flow(V2) = on) or thrust(E1) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and
(not (mode(E1) = ok) or not (mode(E1) = unknown))

(not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V1) = on) and
(not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V2) = on)) and
(not (mode(E1) = ok) or not (flow(V1) = on) or not (flow(V2) = on)

or thrust(E1) = on) and
(mode(E1) = ok or mode(E1) = unknown) and
(not (mode(E1) = ok) or not (mode(E1) = unknown))

3/19/2003 copyright Brian Williams 86

Reducing Propositional
Formula to Clauses (CNF)

1) Eliminate IFF and Implies
• E1 iff E2 => (E1 implies E2) and (E2 implies E1)

• E1 implies E2 => not E1 or E2

2) Move negations in towards propositions using
De Morgan’s Theorem:
• Not (E1 and E2) => (not E1) or (not E2)

• Not (E1 or E2) => (not E1) and (not E2)

• Not (not E1) => E1

3) Move conjunctions out using Distributivity
• E1 or (E2 and E3) =>(E1 or E2) and (E1 or E3)

