Propositional Logic
and Satisfiability
—— I A——

Brian C. Williams
16.410-13
November 22"d 2004

How Do We Reason About Complex
Systems at a Commonsense Level?

ﬁ a0
Helium tank

—
L |
=|
Oxidizer tank ‘I I Fuel tank
Flow, = zero

: — | . +—— Pressure,= nominal
Pressurelznomlnal ! ! I |

1 1 .
Model using
LEH HjJ Lt% H:J propositional logic.
Main E Reason from model tc
Engines operate, diagnose

and repair.
3/19/2003 copyright Brian Williams 2

Acceleration = zero

Propositional Satisfiability

Find a truth assignment that satisfies logical sentence T:

 Reduce sentence T to clausal form.
* Perform search similar to MAC = (BT+CP)

Propositional satisfiability testing
1990: 100 variables / 200 clauses (constraints)
1998: 10,000 - 100,000 vars / 10”6 clauses

Novel applications
e.g. diagnosis, planning, software / circuit testing,
machine learning, and protein folding

Reading Assignment:
Propositional Logic & Satisfiability

* AIMA Ch. 6 — Propositional Logic

Outline

* Propositional Logic
e Syntax
* Semantics
« Clausal Reduction
* Propositional Satisfiability

* Appendices

What formal languages exist
for describing constraints?

Logic:
* Propositional logic
 First order logic
 Temporal logic
* Modal logics
* Probability
« Algebra

truth of facts
facts,objects,relations
time,

knowledge, belief ...
degree of belief
values of variables

Logic In General

* Logics

« formal languages for representing information such
that conclusions can be drawn.

e Syntax
 defines the sentences in the language.

e Semantics

» defines the “meaning” of sentences;
= truth of a sentence in a world.

Propositional Logic

Propositions

» A statement that is true or false

 (valve vl)
* (= voltage high)

Propositional Sentences (S)

e S ;= proposition |

(NOT S) |
(OR S1 ... Sn) |
(AND S1 ... Sn)

Some Defined Constructs
e (Implies S1 S2) => ((not S1) OR S2)

. Syntax

. (IFF S1 S2) => (AND (IMPLIES S1 S2)(IMPLIES S2 S1))

Propositional Sentences:
Engine Example

(mode(E1l) = ok implies
(thrust(E1) = on if and only if flow(V1) = on and flow(V2) = on)) and
(mode(E1l) = ok or mode(E1) = unknown) and
not (mode(E1l) = ok and mode(E1) = unknown)

V1 AV

El

Outline

* Propositional Logic
e Syntax
o Semantics
* Clausal Reduction
* Propositional Satisfiability

* Appendices

Propositional Logic:

Semantics

Interpretation | of sentence S
assigns true or false to every
proposition P of S

S=(AorB)and C
| = {A=True, B=False, C=True}
| = {A=False, B=True, C=False}

All Interpretations ——

A B C
True True True
True |True False
True False |[True
True False |False
~alse | True True
~alse | True False
~alse |False |True
~alse |False |False

Propositional Logic:
Semantics
The truth of sentence S wrt interpretation |

IS defined by a composition of boolean operators
applied to I

* “Not S” is True Iff “S” Is False
Not S S
False True

True False

Propositional Logic:

Semantics

The truth of sentence S; wrt Interpretation I:

 “Not S”Is True Iff “S” Is False

« “S;and S, Is True Iff “Sy1s True and “S,"Is True

« “S,o0rS,"is True Iff “S;”1s True or “S,"Is True
S1 and S2 S1 S2 S1 or S2 S1 S2
True True True True True True
False True False True True False
False False | True True False True
False False |False False False False

Propositional Logic:

Semantics
The truth of sentence S; wrt Interpretation I:
* “Not S”Is True lij “S” Is False
« “S;and S, Is True Iff “S,” Is True and “S,"Is True
« “S,0rS,"is True Iff “S;”1s True or “S,"Is True
e “S;” Implies “S,”is True Iff “S,” Is False or “S,”is True
« “S;"Iff S,is True lij “S;implies S,"Is True

and “S, implies S,"Is True

Example: Determining the
truth of a sentence

(mode(E1) = ok implies
[(thrust(E1) = on if and only if (flow(V1) = on and flow(V2) = on)) and
(mode(E1l) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)])

Interpretation:
mode(E1l) = ok is True
thrust(El) = on is False
flow(V1) = on IS True
flow(V2) = on Is False

mode(E1l) = unknown Is False

Example: Determining the
truth of a sentence

(True implies
[(False If and only if (True and False)) and
(True or False) and
not (True and False)])

Interpretation:
mode(E1) = ok Is True
thrust(El) = on IS False
flow(V1) = on Is True
flow(V2) = on Is False

mode(E1) = unknown Is False

Example: Determining the
truth of a sentence

(True implies
[(False If and only if (True and False)) and
(True or False) and
not (True and False)])

Interpretation:
mode(E1) = ok Is True
thrust(El) = on IS False
flow(V1) = on Is True
flow(V2) = on Is False

mode(E1) = unknown Is False

Example: Determining the
truth of a sentence

(True implies
[(False if and only if (True and False)) and
(True or False) and

not False])
Interpretation:
mode(E1l) = ok is True
thrust(El) = on Is False
flow(V1) = on Is True
flow(V2) = on Is False

mode(E1) = unknown Is False

Example: Determining the
truth of a sentence

(True implies
[(False if and only if (True and False)) and
(True or False) and

True))

Interpretation:
mode(E1l) = ok is True
thrust(El) = on Is False
flow(V1) = on Is True
flow(V2) = on Is False

mode(E1) = unknown Is False

Example: Determining the
truth of a sentence

(True implies
[(False if and only if Ealse) and

True and
True))
Interpretation:
mode(E1l) = ok is True
thrust(El) = on Is False
flow(V1) = on IS True
flow(V2) = on Is False

mode(E1) = unknown Is False

Example: Determining the
truth of a sentence

(True implies

[(False if and only if False) and

True and
True))
Interpretation:
mode(E1l) = ok is True
thrust(El) = on Is False
flow(V1) = on IS True
flow(V2) = on Is False

mode(E1) = unknown Is False

Example: Determining the
truth of a sentence

(True implies
[(False implies False) and (False implies False)) and
True and

True))

Interpretation:
mode(E1l) = ok is True
thrust(El) = on IS False
flow(V1) = on IS True
flow(V2) = on Is False

mode(E1) = unknown Is False

Example: Determining the
truth of a sentence

(True implies

[(not False or False) and (not False or False)) and

True and

True))

Interpretation:
mode(E1l) = ok is True
thrust(El) = on Is False
flow(V1) = on IS True
flow(V2) = on Is False

mode(E1) = unknown Is False

Example: Determining the
truth of a sentence

(True implies
[(True or False) and (True or False)) and
True and

True))

Interpretation:
mode(E1l) = ok is True
thrust(El) = on IS False
flow(V1) = on IS True
flow(V2) = on Is False

mode(E1) = unknown Is False

Example: Determining the
truth of a sentence

(True implies
[(True and True) and
True and

True))

Interpretation:
mode(E1l) = ok
thrust(El) = on
flow(V1) = on
flow(V2) = on
mode(E1) = unknown

Is True
Is False
IS True
Is False
Is False

Example: Determining the
truth of a sentence

(True implies
[True and
True and

True))

Interpretation:
mode(E1l) = ok
thrust(El) = on
flow(V1) = on
flow(V2) = on
mode(E1) = unknown

Is True
Is False
IS True
Is False
Is False

Example: Determining the
truth of a sentence

(True implies

True)
Interpretation:
mode(E1l) = ok is True
thrust(E1) = on Is False
flow(V1) = on Is True
flow(V2) = on Is False

mode(E1) = unknown Is False

Example: Determining the
truth of a sentence

(not True or

True)
Interpretation:
mode(E1l) = ok is True
thrust(E1) = on Is False
flow(V1) = on Is True
flow(V2) = on Is False

mode(E1) = unknown Is False

Example: Determining the
truth of a sentence

(False or
True)
Interpretation:
mode(E1l) = ok is True
thrust(E1) = on Is False
flow(V1) = on Is True
flow(V2) = on Is False

mode(E1) = unknown Is False

Example: Determining the
truth of a sentence

True!

Interpretation:
mode(E1l) = ok Is True
thrust(El) = on Is False
flow(V1) = on IS True
flow(V2) = on Is False
mode(E1l) = unknown is False

If a sentence S evaluates to True in interpretation |, then:
e | satisfies S
* | Is a Model of S

Outline

* Propositional Logic
e Syntax
* Semantics
* Clausal Reduction
* Propositional Satisfiability

* Appendices

Propositional Clauses:
A Simpler Form

 Literal: proposition or its negation
* B, Not A

« Clause: disjunction of literals
e (notAorBorE)

e Conjunctive Normal Form

« Phi=(AorBorC)and
(not Aor B or E) and
(not B or C or D)

* Viewed as a set of clauses

Reduction to Clausal Form:
Engine Example

(mode(El) = ok implies

(thrust(E1) = on iff (flow(V1) = on and flow(V2) = on))) and
(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1l) = ok and mode(E1) = unknown)

. =

not (mode(E1l) = ok) or not (thrust(E1l) = on) or flow(V1) = on;

not (mode(E1) = ok) or not (thrust(E1l) = on) or flow(V2) = on;

not (mode(E1l) = ok) or not (flow(V1) = on) or not (flow(V2) = on)
or thrust(E1l) = on;

mode(E1l) = ok or mode(E1) = unknown,;

not (mode(E1) = ok) or not (mode(E1) = unknown);

Reducing Propositional
Formula to Clauses (CNF)

See Appendix for Detailed Example:

1) Eliminate IFF and Implies
 E1iff E2 => (E1 implies E2) and (E2 implies E1)
 E1 implies E2 =>not E1 or E2
2) Move negations in towards propositions using
De Morgan’s Theorem:

* Not (E1 and E2) => (not E1) or (not E2)

* Not (E1 or E2) => (not E1) and (not E2)
 Not (not E1) => E1

3) Move conjunctions out using Distributivity
« Elor(E2and E3)=>(E1 or E2) and (E1 or E3)

Outline

* Propositional Logic
e Syntax
e Semantics
» Clausal Reduction

* Propositional Satisfiability

« Backtrack Search

* Unit Propagation

« DPLL: Unit Propagation + Backtrack Search
* Appendices

Propositional Clauses form a
Constraint Satisfaction Problem

« Variables: Propositions
 Domain: {True, False}
 Constraints: Clauses that must be true

« Clause (not AorBorE)
« A disjunction of Literals

* Literal: Proposition or its negation
 Positive Literal B
* Negative Literal \[o] W

Propositional Satisfiability

An interpretation (truth assignment to all
propositions) such that all clauses are satisfied:

A clause is satisfied if and only if
at least one literal is true.

A clause Is violated if and only If
all literals are false.

Cl:NotAorB
C2: Not Cor A
C3:NotBorC

Satisfiability Testing Procedures

Reduce to CNF (Clausal Form) then:

1. Apply systematic, complete procedure

« Depth-first backtrack search
(Davis, Putnam, & Loveland 1961)

unit propagation, shortest clause heuristic

2. Apply stochastic, incomplete procedure
e GSAT (Selman et. al 1993) — see Appendix

Outline

* Propositional Logic
e Propositional Satisfiability

« Backtrack Search

« Unit Propagation

« DPLL: Unit Propagation + Backtrack Search
* Appendices

Propositional Satisfiability
using Backtrack Search

* Assign true or false to an
unassigned proposition.

A
 Backtrack as soon as a F
clause is violated.
F
Example: /
- Cl:NotAorB s C
« C2:NotCor X S F

e C3:NotBorC S

Propositional Satisfiability
using Backtrack Search

* Assign true or false to an
unassigned proposition.

A
 Backtrack as soon as a F
clause is violated.

Example:

e C1:NotAorB s C
e C2: NofC or X F E
e C3:NotBorC S

Propositional Satisfiability
using Backtrack Search

* Assign true or false to an
unassigned proposition.

A
 Backtrack as soon as a F
clause is violated.

= T
Example:

e« Cl1:NotAorB s C &
e C2:NotCorX S F EF
e C3:NotBorC

Propositional Satisfiability
using Backtrack Search

* Assign true or false to an
unassigned proposition.

A
 Backtrack as soon as a F
clause is violated.

= T
Example:

- C1:NotAorB s C C
e C2: Nof C or X F EF E
- C3:NgtBorC S

Propositional Satisfiability
using Backtrack Search

* Assign true or false to an
unassigned proposition.

 Backtrack as soon as a
clause iIs violated.

Example: }/
e Cl:NotAorB

e C2:NotCorA S j&r F

e« C3:NotBorC s

Propositional Satisfiability
using Backtrack Search

* Assign true or false to an
unassigned proposition.

 Backtrack as soon as a
clause iIs violated.

Example: }/
« Cl:NotAorB s C
« C2:NotCorA S j&r F F
e C3:NetBorC

Propositional Satisfiability
using Backtrack Search

* Assign true or false to an
unassigned proposition.

 Backtrack as soon as a
clause iIs violated.

Example: }/

« CL:NotAorB s C

e C2:NotCorA_ S j&r F F \@T
 C3:NetBorC s

Clausal Backtrack Search:
Recursive Definition

BT(Phi, A)
Input: A cnf theory Phi,
An assignment A to propositions in Phi
Output: A decision of whether Phi is satisfiable.
1. If a clause is violated, Return false;
2. Else If all propositions are assigned, Return true,
3. Else Q = some unassigned proposition in Phi;
4, Return (BT(Phi, A[Q = True]) or
5. BT(Phi, A[Q = False])

Outline

* Propositional Logic
e Propositional Satisfiability

« Backtrack Search

 Unit Propagation

« DPLL: Unit Propagation + Backtrack Search
* Appendices

Unit Propagation

ldea: Arc consistency (AC-3) on binary clauses

(not A or B)

{F} «~— {T.F} ?

i ~—— {TF}?

Unit resolution rule:
If all literals are save L, then assign true to L:

. (not A) (notB) (A orB orC)
C

Unit Propagation Examples

e Cl: NotAorn B

e C2:NotCorA

e C3: NotB oriC

« C41A True True True
Cl C3

— A > B > C

Unit Propagation Examples

e C1: NotlAjorB
e C2: Not/Clor A
e C3:NotBorC

« C4A True True True
Cl C3
— A B C
e C4’: Not'B /C4’
C2
Ao Cl o e

Unit Propagation

true
t
It o
C,-pvt
C,iarvqvp
P
procedure propagate(C) // Cis a clause

If all literals in C are false except L, and L is unassigned
then assign true to L and
record C as a support for L and
for each clause C’ mentioning “not L”,
propagate(C’)
end propagate

Unit Propagation

true
t
It o
} Cr-pvVvt
C,i=rvgvp
P
procedure propagate(C) // Cis a clause

= if all literals in C are false except L, and L is unassigned
then assign true to L and
record C as a support for L and
for each clause C’ mentioning “not L”,
propagate(C’)
end propagate

Unit Propagation

true
t
It o
: true Cyimpv -t
C,:-rvqgvp .
procedure propagate(C) // Cis a clause

If all literals in C are false except L, and L is unassigned
= then assign true to L and
record C as a support for L and
for each clause C’ mentioning “not L”,
propagate(C’)
end propagate

Unit Propagation

true

t
BE
| true Cyi-opv -t

C,irv vp\.

procedure propagate(C) // Cis a clause
If all literals in C are false except L, and L is unassigned
then assign true to L and
= record C as a support for L and
for each clause C’ mentioning “not L”,
propagate(C’)
end propagate

Unit Propagation

true

t
RE
! true Gyl pVv -t

C,irv vp\./

procedure propagate(C) // Cis a clause
If all literals in C are false except L, and L is unassigned
then assign true to L and
record C as a support for L and
= for each clause C’ mentioning “not L”,
propagate(C’)
end propagate

Unit Propagation

true

It g L

! true Cpi-pVv -t

C,irv vp\./

procedure propagate(C) // Cis a clause
If all literals in C are false except L, and L is unassigned
then assign true to L and
record C as a support for L and
for each clause C’ mentioning “not L”,
=) propagate(C’)
end propagate

Outline

* Propositional Logic
* Propositional Satisfiability

« Backtrack Search

« Unit Propagation

« DPLL: Unit Propagation + Backtrack Search
* Appendices

How Do We Combine Unit Resolution
and Back Track Search?

Backtrack Search A

« Assign true or false to an
unassigned proposition. = T

+ Backtrack as soon as a clause \
is violated. B © B ©

F/ T
® ® ® ®
Example: F EF T F/\TF &T
Cl:NotAorB

Theory is satisfiable if
assignment is complete.

C2: NotCor A

C3:NotBorC . _
= Similar to MAC and Forward Checking:

= Perform limited form of inference
= apply inference rule after assigning each variable.

Propositional Satisfiability by DPLL

[Davis, Putnam, Logmann, Loveland, 1962]

Example:

MR . Cl:NotAorB S
* Unit propagate. e« C2:NotCorA s
Repeat: e« C3:NotBorZ s
1. Assign true or false to an A

unassigned proposition. ST ~
2. Unit propagate. C=F F
3. Backtrackassoonasa B=F

clause is violated.
4. Satisfiable if assignment ©

IS complete.

Propositional Satisfiability by DPLL

[Davis, Putnam, Logmann, Loveland, 1962]

Example:

* CIL:NetAorB_ s
* C2:NotCorA s
« C3:NetBorC s

Initially:
* Unit propagate.

Repeat:

1. Assign true or false to an

unassigned proposition. Ae

_ Propagate: Propagate:
2. Unit propagate. C=F F T B=T
3. Backtrack as soon as a B=F C=T
clause is violated.
O O

4. Satisfiable if assignment
IS complete.

DPLL Procedure

[Davis, Putham Logmann, Loveland, 1962]

DPLL(Phi,A)

Input: A cnf theory Phi,
An assignment A to propositions in Phi

Output: A decision of whether Phi is satisfiable.

1. A’ = propagate(Phi);

2. If a clause is violated given A’ return(false);

3. Else if all propositions in A’ are assigned, return(true);
4. Else Q = some unassigned proposition in Phi;
6. Return (DPLL(Phi, A’[Q = True]) or

7. DPLL(Phi, A'[Q = False])

Satisfiability Testing Procedures

 Reduce to CNF (Clausal Form) then:

* Apply systematic, complete procedure

* Depth-first backtrack search (Davis, Putnam, & Loveland 1961)
* unit propagation, shortest clause heuristic

« State-of-the-art implementations:
* ntab (Crawford & Auton 1997)
* itms (Nayak & Williams 1997)

 many others! See SATLIB 1998 / Hoos & Stutzle

* Apply stochastic, incomplete procedures
e GSAT (Selman et. al 1993)

« Walksat (Selman & Kautz 1993)
 greedy local search + noise to escape local minima

Required Appendices
S ——

You are responsible for reading
and knowing this material.:

1. Characteristics of DPLL
2. Local Search using GSAT
3. Reduction to Clausal Form

DP Calls

4000

£10/0]0)

N
o
o
o

1000

-—rw-r‘-ﬂJ

2

Hardness of 3SAT

3 4 5 6 7 8
Ratio of Clauses-to-Variables

4000

3000

DP Calls

1000

Probability

2000

)

The 4.3 Point

3 4 5 6 7
Ratio of Clauses-to-Variables

Mitchell, Selman, and Levesque 1991

Compu tational
effort

MORE

& Solvabla

& Imposable

Ratio of constraints to vanables{ Alpha)

INntuition

* At low ratios:

 few clauses (constraints)
* many assignments
 easily found

At high ratios:

* many clauses
* Inconsistencies easily detected

Phase Transitions for
Different Numbers of Variables

Fraction of Formulae Unsatisfied

M/ N

3/19/2003 copyright Brian Williams

69

Phase transition 2-, 3-, 4-, 5-, and 6-SAT

Threxh=1ldxe E==x

u
1
f
H
N
H
u
=
A
1
-
W
n
-d
4
n
n
d
W
o
a2

Fr.o=cta

Required Appendices
S ——

You are responsible for reading
and knowing this material:

1. Characteristics of DPLL
2. Local Search using GSAT
3. Reduction to Clausal Form

Incremental Repair
(min-conflict heuristic)

Spike Hubble Telescope Scheduler [Minton et al.]

1. Initialize a candidate solution using “greedy” heuristic
— get solution “near” correct one.

2. Select a variable in conflict and assign it a value that
minimizes the number of conflicts (break ties
randomly).

Different-color constraint

Graph Coloring

Initial Domains

GSAT ,

- C1:NotAorB 3.

e C2: Not C or Not A
e C3:0orBorNotC

True
C1, C2, C3 violated A

False

C3 violated

Init: Pick random assignment

. Check effect of flipping each

assignment, counting violated
clauses.

Pick assignment with fewest
violations,

End if consistent, Else goto 2

False True
B C

C2 violated C1 violated

1. Init: Pick random assignment

GSAT 2. Check effect of flipping each
assignment, counting violated
clauses.

« C1: Not A or B 3. Pick assignment with fewest
violations,

e C2: Not C or Not A

4. End If consistent, Else goto 2
e C3:0orBorNotC J

True False False
C1 violated A B C

False True

Satisfied Satisfied C1,C2,C3 violated

1. Init: Pick random assignment

GSAT 2. Check effect of flipping each
assignment, counting violated
clauses.

« C1: Not A or B 3. Pick assignment with fewest
violations,

e C2: Not C or Not A

4. End If consistent, Else goto 2
e C3:0orBorNotC J

True True False
Satisfied A B C

Problem: Pure hill climbers get stuck in local minima.

Solution: Add random moves to get out of minima (WalkSAT)

Required Appendices
S ——

You are responsible for reading
and knowing this material:

1. Local Search using GSAT
2. Characteristics of DPLL
3. Reduction to Clausal Form

Reduction to Clausal Form:
Engine Example

(mode(E1l) = ok implies

(thrust(E1l) = on iff flow(V1) = on and flow(V2) = on)) and
(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1l) = ok and mode(E1) = unknown)

. =

not (mode(E1) = ok) or not (thrust(El) = on) or flow(V1) = on;

not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V2) = on;

not (mode(E1) = ok) or not (flow(V1) = on) or not (flow(V2) = on) or
thrust(El) = on;

mode(E1l) = ok or mode(E1) = unknown,;

not (mode(E1) = ok) or not (mode(E1) = unknown);

Reducing Propositional
Formula to Clauses (CNF)

1) Eliminate IFF and Implies
 E1Ii1ff E2 => (E1 implies E2) and (E2 implies E1)
« E1 implies E2 =>not E1 or E2

Eliminate IFF:
Engine Example

(mode(E1l) = ok implies

(thrust(E1) = on iff (flow(V1) = on and flow(V2) = on))) and
(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1l) = ok and mode(E1) = unknown)

. =

(mode(E1l) = ok implies
((thrust(E1l) = on implies (flow(V1) = on and flow(V2) = on)) and
((flow(V1) = on and flow(V2) = on) implies thrust(E1l) = on))) and
(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1l) = ok and mode(E1) = unknown)

Eliminate Implies:
Engine Example

(mode(E1l) = ok implies
((thrust(E1) = on implies (flow(V1) = on and flow(V2) = on)) and
((flow(V1) = on and flow(V2) = on) implies thrust(E1l) = on))) and
(mode(E1l) = ok or mode(E1l) = unknown) and
not (mode(E1l) = ok and mode(E1) = unknown)

. =

(not (mode(E1l) = ok) or
((not (thrust(E1l) = on) or (flow(V1) = on and flow(V2) = on)) and
(not (flow(V1) = on and flow(V2) = on)) or thrust(E1) = on))) and
(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1l) = ok and mode(E1) = unknown)

Reducing Propositional
Formula to Clauses (CNF)

2) Move negations in towards propositions using
De Morgan’s Theorem:
* Not (E1 and E2) => (not E1) or (not E2)
* Not (E1 or E2) => (not E1) and (not E2)
 Not (not E1) => E1

Move Negations In:
Engine Example

(not (mode(E1) = ok) or
((not (thrust(E1) = on) or (flow(V1) = on and flow(V2) = on)) and
(not (flow(V1) = on and flow(V2) = on)) or thrust(E1) = on))) and
(mode(E1l) = ok or mode(E1l) = unknown) and
not (mode(E1l) = ok and mode(E1l) = unknown)

(not (mode(E1) = ok) or

((not (thrust(E1) = on) or (flow(V1) = on and flow(V2) = on)) and

(not (flow(V1) = on) or not (flow(V2) = on)) or thrust(E1l) = on)) and
(mode(E1) = ok or mode(E1) = unknown) and
(not (mode(E1l) = ok) or not (mode(E1) = unknown)))

Reducing Propositional
Formula to Clauses (CNF)

3) Move conjunctions out using distributivity
« E1or(E2 and E3) =>(E1 or E2) and (E1 or E3)

Move Conjunctions Out:
Engine Example

(not (mode(E1) = ok) or
((not (thrust(E1) = on) or (flow(V1) = on and flow(V2) = on)) and
(not (flow(V1) = on) or not (flow(V2) = on) or thrust(E1) = on))) and
(mode(E1l) = ok or mode(E1l) = unknown) and
(not (mode(E1) = ok) or not (mode(E1) = unknown))

(not (mode(E1) = ok) or

(((not (thrust(El) = on) or flow(V1) = on) and
(not (thrust(E1) = on) or flow(V2) = on)) and
(not (flow(V1) = on) or not (flow(V2) = on) or thrust(E1) = on))) and
(mode(E1) = ok or mode(E1) = unknown) and
(not (mode(E1) = ok) or not (mode(E1) = unknown))

Move Conjunctions Out:
Engine Example

(not (mode(E1l) = ok) or
(((not (thrust(E1l) = on) or flow(V1) = on) and
(not (thrust(E1) = on) or flow(V2) = on)) and
(not (flow(V1) = on) or not (flow(V2) = on) or thrust(E1) = on))) and
(mode(E1) = ok or mode(E1l) = unknown) and
(not (mode(E1) = ok) or not (mode(E1) = unknown))

. =

(not (mode(E1) = ok) or not (thrust(E1l) = on) or flow(V1) = on) and

(not (mode(E1) = ok) or not (thrust(E1l) = on) or flow(V2) = on)) and

(not (mode(E1) = ok) or not (flow(V1) = on) or not (flow(V2) = on)
or thrust(E1l) = on) and

(mode(E1l) = ok or mode(E1l) = unknown) and

(not (mode(E1) = ok) or not (mode(E1) = unknown))

Reducing Propositional
Formula to Clauses (CNF)

1) Eliminate IFF and Implies
 E1iff E2 => (E1 implies E2) and (E2 implies E1)
 E1 implies E2 => not E1 or E2

2) Move negations in towards propositions using
De Morgan’s Theorem:
* Not (E1 and E2) => (not E1) or (not E2)

 Not (E1 or E2) => (not E1) and (not E2)
 Not (not E1) => E1

3) Move conjunctions out using Distributivity
« Elor(E2 and E3) =>(E1 or E2) and (E1 or E3)

