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How Do We Reason About Complex 
Systems at a Commonsense Level?

Helium tank

Fuel tankOxidizer tank

Main
Engines

Flow1 = zero
Pressure1 = nominal

Pressure2= nominal

Acceleration = zero

• Model using 
propositional logic.

• Reason from model to
operate, diagnose 
and repair.
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Propositional SatisfiabilityPropositional Satisfiability

Find a truth assignment that satisfies logical sentence T:

• Reduce sentence T to clausal form.
• Perform search similar to MAC = (BT+CP)

Propositional satisfiability testing:
1990:  100 variables / 200 clauses (constraints)
1998:  10,000 - 100,000 vars / 10^6 clauses

Novel applications:
e.g. diagnosis, planning, software / circuit testing, 

machine learning, and protein folding
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Reading Assignment: 
Propositional Logic & Satisfiability

• AIMA Ch. 6 – Propositional Logic
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Outline

• Propositional Logic
• Syntax
• Semantics
• Clausal Reduction

• Propositional Satisfiability
• Appendices
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What formal languages exist 
for describing constraints?

Logic:
• Propositional logic truth of facts
• First order logic facts,objects,relations
• Temporal logic time, ….
• Modal logics knowledge, belief …
• Probability degree of belief
• Algebra values of variables
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Logic in General

• Logics
• formal languages for representing information such 

that conclusions can be drawn.

• Syntax
• defines the sentences in the language.

• Semantics
• defines the “meaning” of sentences; 

truth of a sentence in a world.
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Propositional Logic: Syntax
Propositions

• A statement that is true or false
• (valve v1)
• (= voltage high)

Propositional Sentences (S)
• S ::= proposition |
• (NOT S) |
• (OR S1 ... Sn) |
• (AND S1 ... Sn)

Some Defined Constructs
• (implies S1 S2)  =>  ((not S1)  OR S2)
• (IFF S1 S2) => (AND (IMPLIES S1 S2)(IMPLIES S2 S1))
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Propositional Sentences:
Engine Example

(mode(E1) = ok implies
(thrust(E1) = on if and only if flow(V1) = on and flow(V2) = on)) and
(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)

V1 V2

E1
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Outline

• Propositional Logic
• Syntax
• Semantics
• Clausal Reduction

• Propositional Satisfiability
• Appendices
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Propositional Logic: 
Semantics

A B C
True True True
True True False
True False True
True False False
False True True
False True False
False False True
False False False

Interpretation I of sentence S
assigns true or false to every 
proposition P of S

•S = (A or B) and C
•I = {A=True,  B=False, C=True}
•I = {A=False,  B=True, C=False}

All Interpretations
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Propositional Logic: 
Semantics
The truth of sentence S wrt interpretation I
is defined by a composition of boolean operators 
applied to I: 

• “Not S” is True iff “S” is False

Not S S
False True

True False
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Propositional Logic: 
Semantics

The truth of sentence Si wrt Interpretation I:
• “Not S” is True iff “S” is False
• “S1 and S2”  is True iff “S1” is True and “S2” is True
• “S1 or S2” is True iff “S1” is True or “S2” is True

S1 and S2 S1 S2
True True True
False True False
False False True
False False False

S1 or S2 S1 S2
True True True
True True False
True False True
False False False
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Propositional Logic: 
Semantics

The truth of sentence Si wrt Interpretation I:
• “Not S” is True iff “S” is False
• “S1 and S2”  is True iff “S1” is True and “S2” is True
• “S1 or S2” is True iff “S1” is True or “S2” is True
• “S1” implies “S2” is True iff “S1” is False or “S2” is True
• “S1” iff S2 is True iff “S1implies S2” is True 

and “S2 implies S1” is True
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Example: Determining the 
truth of a sentence

(mode(E1) = ok implies
[(thrust(E1) = on if and only if (flow(V1) = on and flow(V2) = on)) and
(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)])

Interpretation: 
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False
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Example: Determining the 
truth of a sentence

(True implies
[(False if and only if (True and False)) and
(True or False) and
not (True and False)])

Interpretation: 
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False
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Example: Determining the 
truth of a sentence

(True implies
[(False if and only if (True and False)) and
(True or False) and
not (True and False)])

Interpretation: 
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False
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Example: Determining the 
truth of a sentence

(True implies
[(False if and only if (True and False)) and
(True or False) and
not False])

Interpretation: 
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False
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Example: Determining the 
truth of a sentence

(True implies
[(False if and only if (True and False)) and
(True or False) and

True])

Interpretation: 
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False
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Example: Determining the 
truth of a sentence

(True implies
[(False if and only if False) and
True and

True])

Interpretation: 
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False
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Example: Determining the 
truth of a sentence

(True implies
[(False if and only if False) and
True and

True])

Interpretation: 
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False
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Example: Determining the 
truth of a sentence

(True implies
[(False implies False ) and (False implies False )) and
True and

True])

Interpretation: 
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False
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Example: Determining the 
truth of a sentence

(True implies
[(not False or False ) and (not False or False )) and
True and

True])

Interpretation: 
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False
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Example: Determining the 
truth of a sentence

(True implies
[(True or False ) and (True or False )) and
True and

True])

Interpretation: 
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False
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Example: Determining the 
truth of a sentence

(True implies
[(True and True) and
True and

True])

Interpretation: 
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False
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Example: Determining the 
truth of a sentence

(True implies
[True and
True and

True])

Interpretation: 
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False
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Example: Determining the 
truth of a sentence

(True implies
True)

Interpretation: 
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False
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Example: Determining the 
truth of a sentence

(not True or
True)

Interpretation: 
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False
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Example: Determining the 
truth of a sentence

(False or
True)

Interpretation: 
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False
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Example: Determining the 
truth of a sentence

True!

Interpretation: 
mode(E1) = ok is True
thrust(E1) = on is False
flow(V1) = on is True
flow(V2) = on is False
mode(E1) = unknown is False

If a sentence S evaluates to True in interpretation I, then: 
• I satisfies S
• I is a Model of S
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Outline

• Propositional Logic
• Syntax
• Semantics
• Clausal Reduction 

• Propositional Satisfiability
• Appendices
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Propositional Clauses:
A Simpler Form
• Literal: proposition or its negation

• B, Not A 
• Clause: disjunction of literals

• (not A or B or E)
• Conjunctive Normal Form

• Phi = (A or B or C) and 
(not A or B or E) and 
(not B or C or D)

• Viewed as a set of clauses
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Reduction to Clausal Form:
Engine Example 

(mode(E1) = ok implies
(thrust(E1) = on iff (flow(V1) = on and flow(V2) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)

not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V1) = on;
not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V2) = on;
not (mode(E1) = ok) or not (flow(V1) = on) or not (flow(V2) = on) 

or thrust(E1) = on;
mode(E1) = ok or mode(E1) = unknown;
not (mode(E1) = ok) or not (mode(E1) = unknown);
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Reducing Propositional 
Formula to Clauses (CNF)
See Appendix for Detailed Example:

1) Eliminate IFF and Implies
• E1 iff E2 => (E1 implies E2) and (E2 implies E1)

• E1 implies E2 => not E1 or E2

2) Move negations in towards propositions using 
De Morgan’s Theorem:
• Not (E1 and E2) => (not E1) or (not E2)

• Not (E1 or E2) => (not E1) and (not E2)

• Not (not E1) => E1

3) Move conjunctions out using Distributivity
• E1 or (E2 and E3) =>(E1 or E2) and (E1 or E3)
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Outline

• Propositional Logic
• Syntax
• Semantics
• Clausal Reduction

• Propositional Satisfiability
• Backtrack Search
• Unit Propagation
• DPLL: Unit Propagation + Backtrack Search 

• Appendices
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Propositional Clauses form a 
Constraint Satisfaction Problem

• Variables: Propositions
• Domain: {True, False}
• Constraints: Clauses that must be true

• Clause (not A or B or E)
• A disjunction of Literals

• Literal: Proposition or its negation
• Positive Literal B
• Negative Literal Not A
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Propositional Satisfiability
• An interpretation (truth assignment to all 

propositions) such that all clauses are satisfied:

• A clause is satisfied if and only if
at least one literal is true.

• A clause is violated if and only if
all literals are false.

C1: Not A or B
C2: Not C or A
C3: Not B or C
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Satisfiability Testing ProceduresSatisfiability Testing Procedures
Reduce to CNF (Clausal Form) then:

1. Apply systematic, complete procedure
• Depth-first backtrack search 

(Davis, Putnam, & Loveland 1961)
• unit propagation, shortest clause heuristic

2. Apply stochastic, incomplete procedure
• GSAT (Selman et. al 1993) – see Appendix
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Outline

• Propositional Logic
• Propositional Satisfiability

• Backtrack Search
• Unit Propagation
• DPLL: Unit Propagation + Backtrack Search 

• Appendices
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Propositional Satisfiability
using Backtrack Search

• Assign true or false to an 
unassigned proposition.

• Backtrack as soon as a 
clause is violated.

Example:
• C1: Not A or B
• C2: Not C or A
• C3: Not B or C

A
F

F
B

C
F

S
S

S
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Propositional Satisfiability
using Backtrack Search

• Assign true or false to an 
unassigned proposition.

• Backtrack as soon as a 
clause is violated.

Example:
• C1: Not A or B
• C2: Not C or A
• C3: Not B or C

A
F

F
B

C
F T

S
u

S
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Propositional Satisfiability
using Backtrack Search

• Assign true or false to an 
unassigned proposition.

• Backtrack as soon as a 
clause is violated.

Example:
• C1: Not A or B
• C2: Not C or A
• C3: Not B or C

A
F

F
B

C
F T

T

C
F

S
S

v



3/19/2003 copyright Brian Williams 43

Propositional Satisfiability
using Backtrack Search

• Assign true or false to an 
unassigned proposition.

• Backtrack as soon as a 
clause is violated.

Example:
• C1: Not A or B
• C2: Not C or A
• C3: Not B or C

A
F

F
B

C
F T

T

C
TF

S

S

v
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Propositional Satisfiability
using Backtrack Search

• Assign true or false to an 
unassigned proposition.

• Backtrack as soon as a 
clause is violated.

Example:
• C1: Not A or B
• C2: Not C or A
• C3: Not B or C

A
F

F
B

C
F T

T

C
TF

B

T

C

F

S

S

v
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Propositional Satisfiability
using Backtrack Search

• Assign true or false to an 
unassigned proposition.

• Backtrack as soon as a 
clause is violated.

Example:
• C1: Not A or B
• C2: Not C or A
• C3: Not B or C

A
F

F
B

C
F T

T

C
TF

B

T

C

F T

C
F

S
S

v
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Propositional Satisfiability
using Backtrack Search

• Assign true or false to an 
unassigned proposition.

• Backtrack as soon as a 
clause is violated.

Example:
• C1: Not A or B
• C2: Not C or A
• C3: Not B or C

A
F

F
B

C
F T

T

C
TF

B

T

C

F T

C
TF

S

S
S
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Clausal Backtrack Search: 
Recursive Definition

BT(Phi, A)
Input: A cnf theory Phi, 

An assignment A to propositions in Phi
Output: A decision of whether Phi is satisfiable.
1. If a clause is violated, Return false;
2. Else If all propositions are assigned, Return true;
3. Else Q = some unassigned proposition in Phi;
4. Return (BT(Phi, A[Q = True]) or 
5. BT(Phi, A[Q = False])
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Outline

• Propositional Logic
• Propositional Satisfiability

• Backtrack Search
• Unit Propagation
• DPLL: Unit Propagation + Backtrack Search 

• Appendices
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Unit Propagation
Idea: Arc consistency (AC-3) on binary clauses

(not A or B)

{F}                   {T,F}  ?

{T}                    {T,F}  ?

Unit resolution rule:
If all literals are false save L, then assign true to L:
• (not A)    (not B)    (A or B or C) 

C
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Unit Propagation Examples

• C1: Not A or B
• C2: Not C or A
• C3: Not B or C
• C4: A

C4
A

True
C1

B
True

C3
C

True

Satisfied

Satisfied

Satisfied

Satisfied
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Unit Propagation Examples

• C1: Not A or B
• C2: Not C or A
• C3: Not B or C
• C4: A

• C4’: Not B

C1 C3C4

C1 C2
C4’

A
True

B
True

C
True

A
False

B
False

C
False

C4
A

True

Satisfied

Satisfied

Satisfied

Satisfied
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Unit Propagation

r

true

q

false

C2: ¬ p ∨ ¬ t

p

t

C1 : ¬r ∨ q ∨ p

procedure propagate(C) // C is a clause
if all literals in C are false except L, and L is unassigned 
then assign true to L and 

record C as a support for L and
for each clause C’ mentioning “not L”, 

propagate(C’)
end propagate
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Unit Propagation

r

true

q

false

C2: ¬ p ∨ ¬ t
C1 : ¬r ∨ q ∨ p

p

t

procedure propagate(C) // C is a clause
if all literals in C are false except L, and L is unassigned 
then assign true to L and 

record C as a support for L and
for each clause C’ mentioning “not L”, 

propagate(C’)
end propagate
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Unit Propagation

C1 : ¬r ∨ q ∨ p

r q

p

true false
t

C2: ¬ p ∨ ¬ ttrue

procedure propagate(C) // C is a clause
if all literals in C are false except L, and L is unassigned 
then assign true to L and 

record C as a support for L and
for each clause C’ mentioning “not L”, 

propagate(C’)
end propagate
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Unit Propagation

C1 : ¬r ∨ q ∨ p

r q

p

true false
t

C2: ¬ p ∨ ¬ ttrue

procedure propagate(C) // C is a clause
if all literals in C are false except L, and L is unassigned 
then assign true to L and 

record C as a support for L and
for each clause C’ mentioning “not L”, 

propagate(C’)
end propagate
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Unit Propagation

r q

p

true false

true

t

C2: ¬ p ∨ ¬ t
C1 : ¬r ∨ q ∨ p

procedure propagate(C) // C is a clause
if all literals in C are false except L, and L is unassigned 
then assign true to L and 

record C as a support for L and
for each clause C’ mentioning “not L”, 

propagate(C’)
end propagate
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Unit Propagation
false

r q

p

C2: ¬ p ∨ ¬ t

true false

true

t

C1 : ¬r ∨ q ∨ p

procedure propagate(C) // C is a clause
if all literals in C are false except L, and L is unassigned 
then assign true to L and 

record C as a support for L and
for each clause C’ mentioning “not L”, 

propagate(C’)
end propagate
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Outline

• Propositional Logic
• Propositional Satisfiability

• Backtrack Search
• Unit Propagation
• DPLL: Unit Propagation + Backtrack Search

• Appendices
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How Do We Combine Unit Resolution 
and Back Track Search?
Backtrack Search
• Assign true or false to an 

unassigned proposition.
• Backtrack as soon as a clause 

is violated.
• Theory is satisfiable if 

assignment is complete.

Example:
• C1: Not A or B
• C2: Not C or A
• C3: Not B or C

A
F T

B
F T

C
F T

C
F T

B
F T

C C
F TF T

Similar to MAC and Forward Checking:
Perform limited form of inference
apply inference rule after assigning each variable.
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Propositional Satisfiability by DPLL
[Davis, Putnam, Logmann, Loveland, 1962]

Propagate:
C = F
B = F

A

F

Example:
• C1: Not A or B
• C2: Not C or A
• C3: Not B or C

S

S

S

Initially:
• Unit propagate.

Repeat:
1. Assign true or false to an 

unassigned proposition.
2. Unit propagate.
3. Backtrack as soon as a 

clause is violated.
4. Satisfiable if assignment 

is complete.
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Propositional Satisfiability by DPLL
[Davis, Putnam, Logmann, Loveland, 1962]

Propagate:
C = F
B = F

A

F T
Propagate:
B = T
C = T

Example:
• C1: Not A or B
• C2: Not C or A
• C3: Not B or C

S
S

S

Initially:
• Unit propagate.

Repeat:
1. Assign true or false to an 

unassigned proposition.
2. Unit propagate.
3. Backtrack as soon as a 

clause is violated.
4. Satisfiable if assignment 

is complete.
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DPLL Procedure
[Davis, Putnam Logmann, Loveland, 1962]

DPLL(Phi,A)
Input: A cnf theory Phi, 

An assignment A to propositions in Phi
Output: A decision of whether Phi is satisfiable.
1. A’ = propagate(Phi);
2. If a clause is violated given A’ return(false);
3. Else if all propositions in A’ are assigned, return(true);
4. Else Q = some unassigned proposition in Phi;
6. Return (DPLL(Phi, A’[Q = True]) or 
7. DPLL(Phi, A’[Q = False])
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Satisfiability Testing ProceduresSatisfiability Testing Procedures
• Reduce to CNF (Clausal Form) then:

• Apply systematic, complete procedure
• Depth-first backtrack search (Davis, Putnam, & Loveland 1961)

• unit propagation, shortest clause heuristic
• State-of-the-art implementations: 

• ntab (Crawford & Auton 1997)
• itms (Nayak & Williams 1997)
• many others! See SATLIB 1998 / Hoos & Stutzle

• Apply stochastic, incomplete procedures
• GSAT (Selman et. al 1993)

• Walksat (Selman & Kautz 1993)
• greedy local search + noise to escape local minima
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Required Appendices

You are responsible for reading 
and knowing this material:

1. Characteristics of DPLL
2. Local Search using GSAT
3. Reduction to Clausal Form
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Hardness of 3SAT
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The 4.3 Point
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Intuition

• At low ratios:
• few clauses (constraints)
• many assignments
• easily found

• At high ratios:
• many clauses
• inconsistencies easily detected
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Phase Transitions for 
Different Numbers of Variables
Phase Transitions for 
Different Numbers of Variables
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Phase transition 2-, 3-, 4-, 5-, and 6-SATPhase transition 2-, 3-, 4-, 5-, and 6-SAT
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Required Appendices

You are responsible for reading 
and knowing this material:

1. Characteristics of DPLL 
2. Local Search using GSAT
3. Reduction to Clausal Form
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Incremental Repair
(min-conflict heuristic)

Spike Hubble Telescope Scheduler [Minton et al.]

1. Initialize a candidate solution using “greedy” heuristic 
– get solution “near” correct one.

2. Select a variable in conflict and assign it a value that 
minimizes the number of conflicts (break ties 
randomly).

R,G,B

GR, G

Graph Coloring
Initial Domains

Different-color constraint
V1

V2 V3
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1. Init: Pick random assignment

2. Check effect of flipping each 
assignment, counting violated 
clauses.

3. Pick assignment with fewest 
violations, 

4. End if consistent, Else goto 2

GSAT

• C1: Not A or B
• C2: Not C or Not A
• C3: or B or Not C

A
True

B
False

C
True

C1, C2, C3 violated

C3 violated

False

C2 violated

True False

C1 violated
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1. Init: Pick random assignment

2. Check effect of flipping each 
assignment, counting violated 
clauses.

3. Pick assignment with fewest 
violations, 

4. End if consistent, Else goto 2

GSAT

• C1: Not A or B
• C2: Not C or Not A
• C3: or B or Not C

A
True

B
False

C
False

C1 violated

Satisfied

False

Satisfied

True True

C1,C2,C3 violated
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1. Init: Pick random assignment

2. Check effect of flipping each 
assignment, counting violated 
clauses.

3. Pick assignment with fewest 
violations, 

4. End if consistent, Else goto 2

GSAT

• C1: Not A or B
• C2: Not C or Not A
• C3: or B or Not C

A
True

B
True

C
False

Satisfied

Problem: Pure hill climbers get stuck in local minima. 

Solution: Add random moves to get out of minima (WalkSAT)
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Required Appendices

You are responsible for reading 
and knowing this material:

1. Local Search using GSAT
2. Characteristics of DPLL 
3. Reduction to Clausal Form
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Reduction to Clausal Form:
Engine Example

(mode(E1) = ok implies
(thrust(E1) = on iff flow(V1) = on and flow(V2) = on)) and

(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)

not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V1) = on;
not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V2) = on;
not (mode(E1) = ok) or not (flow(V1) = on) or not (flow(V2) = on) or

thrust(E1) = on;
mode(E1) = ok or mode(E1) = unknown;
not (mode(E1) = ok) or not (mode(E1) = unknown);
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Reducing Propositional 
Formula to Clauses (CNF)

1) Eliminate IFF and Implies
• E1 iff E2 => (E1 implies E2) and (E2 implies E1)

• E1 implies E2 => not E1 or E2
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Eliminate IFF:
Engine Example

(mode(E1) = ok implies
(thrust(E1) = on iff (flow(V1) = on and flow(V2) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)

(mode(E1) = ok implies
((thrust(E1) = on implies (flow(V1) = on and flow(V2) = on)) and 
((flow(V1) = on and flow(V2) = on) implies thrust(E1) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)
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Eliminate Implies:
Engine Example

(mode(E1) = ok implies
((thrust(E1) = on implies (flow(V1) = on and flow(V2) = on)) and
((flow(V1) = on and flow(V2) = on) implies thrust(E1) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)

(not (mode(E1) = ok) or
((not (thrust(E1) = on) or (flow(V1) = on and flow(V2) = on)) and
(not (flow(V1) = on and flow(V2) = on)) or thrust(E1) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)
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Reducing Propositional 
Formula to Clauses (CNF)

2) Move negations in towards propositions using 
De Morgan’s Theorem:
• Not (E1 and E2) => (not E1) or (not E2)

• Not (E1 or E2) => (not E1) and (not E2)

• Not (not E1) => E1
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Move Negations In:
Engine Example

(not (mode(E1) = ok) or
((not (thrust(E1) = on) or (flow(V1) = on and flow(V2) = on)) and 
(not (flow(V1) = on and flow(V2) = on)) or thrust(E1) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and
not (mode(E1) = ok and mode(E1) = unknown)

(not (mode(E1) = ok) or
((not (thrust(E1) = on) or (flow(V1) = on and flow(V2) = on)) and 
(not (flow(V1) = on) or not (flow(V2) = on)) or thrust(E1) = on) ) and

(mode(E1) = ok or mode(E1) = unknown) and
(not (mode(E1) = ok) or not (mode(E1) = unknown)))



3/19/2003 copyright Brian Williams 83

Reducing Propositional 
Formula to Clauses (CNF)

3) Move conjunctions out using distributivity
• E1 or (E2 and E3) =>(E1 or E2) and (E1 or E3)
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Move Conjunctions Out:
Engine Example

(not (mode(E1) = ok) or
((not (thrust(E1) = on) or (flow(V1) = on and flow(V2) = on)) and
(not (flow(V1) = on) or not (flow(V2) = on) or thrust(E1) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and
(not (mode(E1) = ok) or not (mode(E1) = unknown))

(not (mode(E1) = ok) or
(((not (thrust(E1) = on) or flow(V1) = on) and

(not (thrust(E1) = on) or flow(V2) = on)) and
(not (flow(V1) = on) or not (flow(V2) = on) or thrust(E1) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and
(not (mode(E1) = ok) or not (mode(E1) = unknown))
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Move Conjunctions Out:
Engine Example

(not (mode(E1) = ok) or
(((not (thrust(E1) = on) or flow(V1) = on) and

(not (thrust(E1) = on) or flow(V2) = on)) and 
(not (flow(V1) = on) or not (flow(V2) = on) or thrust(E1) = on))) and

(mode(E1) = ok or mode(E1) = unknown) and
(not (mode(E1) = ok) or not (mode(E1) = unknown))

(not (mode(E1) = ok)  or not (thrust(E1) = on) or flow(V1) = on) and
(not (mode(E1) = ok) or not (thrust(E1) = on) or flow(V2) = on)) and 
(not (mode(E1) = ok)  or not (flow(V1) = on) or not (flow(V2) = on) 

or thrust(E1) = on) and
(mode(E1) = ok or mode(E1) = unknown) and
(not (mode(E1) = ok) or not (mode(E1) = unknown))
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Reducing Propositional 
Formula to Clauses (CNF)

1) Eliminate IFF and Implies
• E1 iff E2 => (E1 implies E2) and (E2 implies E1)

• E1 implies E2 => not E1 or E2

2) Move negations in towards propositions using 
De Morgan’s Theorem:
• Not (E1 and E2) => (not E1) or (not E2)

• Not (E1 or E2) => (not E1) and (not E2)

• Not (not E1) => E1

3) Move conjunctions out using Distributivity
• E1 or (E2 and E3) =>(E1 or E2) and (E1 or E3)


