Constraint Satisfaction Problems: Formulation, Arc Consistency & Propagation

Brian C. Williams 16.410-13 October 13th, 2004

Slides adapted from: 6.034 Tomas Lozano Perez and AIMA Stuart Russell & Peter Norvig

Reading Assignments: Constraints

Readings:

- Lecture Slides (most material in slides only, READ ALL).
- AIMA Ch. 5 Constraint Satisfaction Problems (CSPs)
- AIMA Ch. 24.4 pp. 881-884 Visual Interpretation of line drawings as solving CSPs.

Problem Set #5:

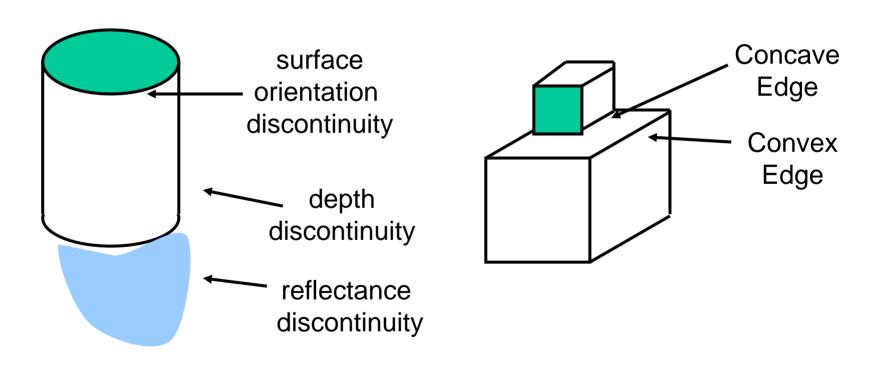
- Covers constraints.
- Online.
- Out Thursday morning, October 14th.
- Due Wednesday, October 20th.
- Get started early!

Outline

- Constraint satisfaction problems (CSP)
- Solving CSPs
 - Arc-consistency and propagation
 - Analysis of constraint propagation
 - Search (next lecture)

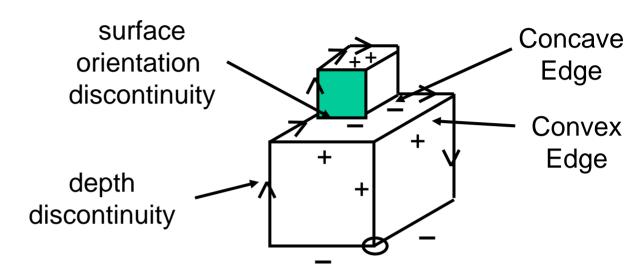
Line Labeling In Visual Interpretation

Problem: Given line drawing, assign consistent types to each edge.



Huffman Clowes (1971): Opaque, trihedral solids. No surface marks.

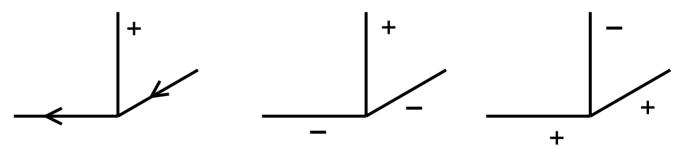
Line Labeling In Visual Interpretation



Constraint:

13 Physically realizable

vertex labelings

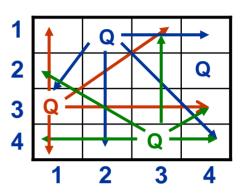


Huffman Clowes (1971): Opaque, trihedral solids. No surface marks.

Constraint Satisfaction Problems

4 Queens Problem:

Place 4 queens on a 4x4 chessboard so that no queen can attack another.



How do we formulate?

Variables Chessboard positions

Domains Queen 1-4 or blank

Constraints Two positions on a line (vertical,

horizontal, diagonal) cannot both be Q

Constraint Satisfaction Problem (CSP)

A Constraint Satisfaction Problem is a triple < V, D, C>, where:

- V is a set of variables V_i
- D is a set of variable domains,
 - The domain of variable V_i is denoted D_i
- C is a set of constraints on assignments to V
 - Each constraint specifies a set of one or more allowed variable assignments.

Example:

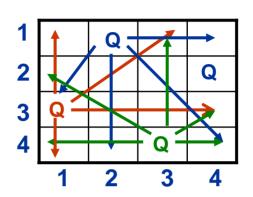
- A,B in {1,2}
- $C = \{\{<1,2><2,1>\}\}$

A CSP Solution: is any assignment to V, such that all constraints in C are satisfied.

Good Encodings Are Essential: 4 Queens

4 Queens Problem:

Place 4 queens on a 4x4 chessboard so that no queen can attack another.



How big is the encoding?

Variables Chessboard positions

Domains Queen 1-4 or blank

Constraints Two positions on a line (vertical,

horizontal, diagonal) cannot both be Q

What is a better encoding?

Good Encodings Are Essential: 4 Queens

Place queens so that no queen can attack another.

What is a better encoding?

- Assume one queen per column.
- Determine what row each queen should be in.

Variables $Q_1, Q_2, Q_3, Q_4,$

Domains {1, 2, 3, 4}

Constraints $Q_i \lt\gt Q_i$ On different rows

 $|Q_i - Q_i| \ll |i-j|$ Stay off the diagonals

Example: $C_{1,2} = \{(1,3) \ (1,4) \ (2,4) \ (3,1) \ (4,1) \ (4,2)\}$

Good Encodings Are Essential: 4 Queens

Place queens so that no queen can attack another.

Variables

$$Q_1, Q_2, Q_3, Q_4,$$

Constraints $Q_i <> Q_i$

$$Q_i <> Q_i$$

$$|Q_{i} - Q_{i}| <> |i-j|$$

Q 2 3 3

On different rows

Stay off the diagonals

Example: $C_{1,2} = \{(1,3) \ (1,4) \ (2,4) \ (3,1) \ (4,1) \ (4,2)\}$

What is C_{13} ?

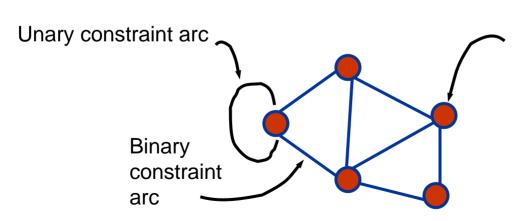
A general class of CSPs

Finite Domain, Binary CSPs

- each constraint relates at most two variables.
- each variable domain is finite.
- all n-ary CSPs reducible to binary CSPs.

Depict as a Constraint Graph

- Nodes are variables.
- Arcs are binary constraints.



Variable V_i with values in domain D_i

Unary constraints just cut down domains

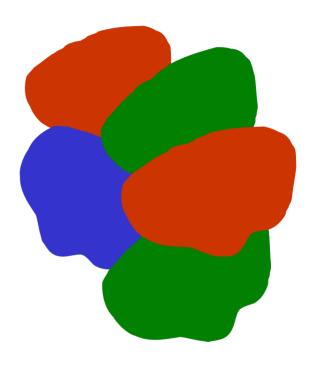
Example: CSP Classic - Graph Coloring

Pick colors for map regions, without coloring adjacent regions with the same color

Variables

Domains

Constraints

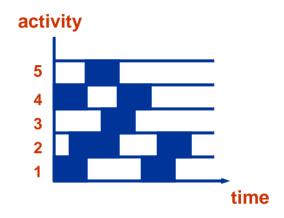


Real World Example: Scheduling as a CSP

Choose time for activities:

- Observations on Hubble telescope.
- Jobs performed on machine tools.
- Terms to take required classes.

Variables are activities



Domains

sets of possible start times (or "chunks" of time)

Constraints

- Activities that use the same resource cannot overlap in time, and
- 2. Preconditions are satisfied.

Case Study: Course Scheduling

Given:

- 40 required courses (8.01, 8.02, 6.840), and
- 10 terms (Fall 1, Spring 1, , Spring 5).

Find: a legal schedule.

Constraints

Note, traditional CSPs are not for expressing (soft) <u>preferences</u> e.g. minimize difficulty, balance subject areas, etc.

But see recent work on semi-ring CSPs!

Alternative formulations for variables & values

VARIABLES

DOMAINS

A. 1 var per Term

```
(Fall 1) (Spring 1) (Fall 2) (Spring 2) . . .
```

B. 1 var per Term-Slot

```
subdivide each term into 4 course slots:
```

```
(Fall 1,1) (Fall 1, 2) (Fall 1, 3) (Fall 1, 4)
```

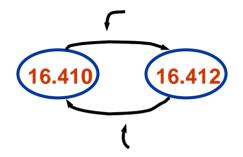
C. 1 var per Course

Encoding Constraints

Assume: Variables = Courses, Domains = term-slots

Constraints:

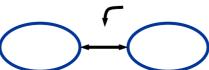
Prerequisite →



For each course and one of its prerequisites.

Courses offered only during certain terms →

Avoid time conflicts →



For pairs of courses offered at same time

Good News / Bad News

Good News

- very general & interesting family of problems.
- Problem formulation extensively used in autonomy and aerospace applications.

Bad News

includes NP-Hard (intractable) problems

Outline

- Constraint satisfaction problems (CSP)
- Solving CSPs
 - Arc-consistency and propagation
 - Analysis of constraint propagation
 - Search (next lecture)

Solving CSPs

Solving CSPs involves some combination of:

- 1. Constraint propagation (inference)
 - Eliminates values that can't be part of any solution.

2. Search

Explores alternate valid assignments.

Arc Consistency

Arc consistency eliminates values of each variable domain that can never satisfy a particular constraint (an arc).

$$V_i \rightarrow V_j = \{1,2,3\}$$

- Directed arc (V_i, V_i) is arc consistent if
 - For every x in D_i, there exists some y in D_j such that assignment (x,y) is allowed by constraint C_{ij}
 - Or $\forall x \in D_i \exists y \in D_j$ such that (x,y) is allowed by constraint C_{ij} where
 - ∀ denotes "for all"
 - ∃ denotes "there exists"
 - ∈ denotes "in"

Arc Consistency

Arc consistency eliminates values of each variable domain that can never satisfy a particular constraint (an arc).

$$V_i \rightarrow V_j = \{1,2,3\}$$

- Directed arc (V_i, V_i) is arc consistent if
 - $\forall x \in D_i \exists y \in D_j$ such that (x,y) is allowed by constraint C_{ij}

Example: Given: Variables V_1 and V_2 with Domain $\{1,2,3,4\}$

Constraint: {(1, 3) (1, 4) (2, 1)}

What is the result of arc consistency?

Achieving Arc Consistency via Constraint Propagation

Arc consistency eliminates values of each variable domain that can never satisfy a particular constraint (an arc).

• Directed arc (V_i, V_j) is arc consistent if $\forall x \in D_i \exists y \in D_j$ such that (x,y) is allowed by constraint C_{ij}

Constraint propagation: To achieve arc consistency:

- Delete every value from each tail domain D_i of each arc that fails this condition,
- Repeat until quiescence:
 - If element deleted from D_i then
 - check directed arc consistency for each arc with head D_i
 - Maintain arcs to be checked on FIFO queue (no duplicates).

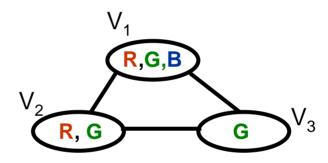
Graph Coloring

Initial Domains



Each undirected constraint arc denotes two directed constraint arcs.

Arc examined	Value deleted



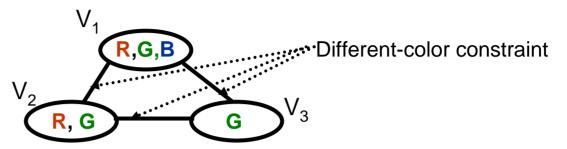
Arcs to examine

$$V_1 - V_2$$
, $V_1 - V_3$, $V_2 - V_3$

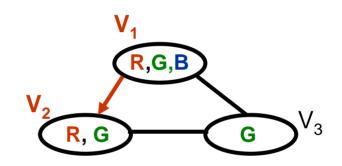
- Introduce queue of arcs to be examined.
- Start by adding all arcs to the queue.

Graph Coloring

Initial Domains



Arc examined	Value deleted
V ₁ > V ₂	none



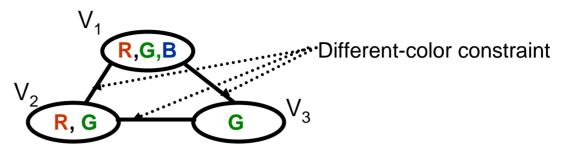
Arcs to examine

$$V_1 < V_2, V_1 - V_3, V_2 - V_3$$

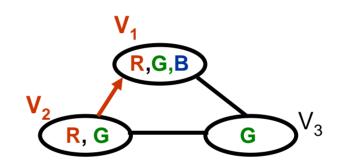
- Delete unmentioned tail values
 V_i V_i denotes two arcs between V_i and V_i.
 - Vi < Vj denotes an arc from V_i and V_{i-24}

Graph Coloring

Initial Domains



Arc examined	Value deleted
$V_1 > V_2$	none
$V_2 > V_1$	none



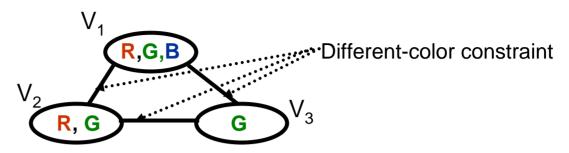
Arcs to examine

$$V_1 - V_3$$
, $V_2 - V_3$

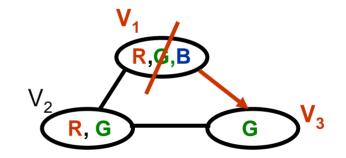
- Delete unmentioned tail values
 V_i V_i denotes two arcs between V_i and V_i.
 - Vi < Vj denotes an arc from V_i and V_{i-25}

Graph Coloring

Initial Domains



Arc examined	Value deleted
$V_1 - V_2$	none
V ₁ >V ₃	V ₁ (G)



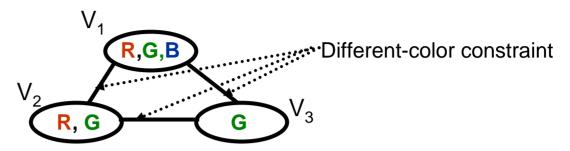
Arcs to examine

$$V_1 < V_3, V_2 - V_3, V_2 > V_1, V_1 < V_3,$$

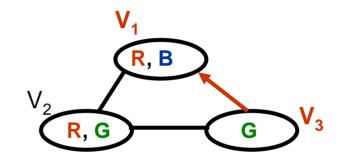
IF THEN

Graph Coloring

Initial Domains



Arc examined	Value deleted
$V_1 - V_2$	none
V ₁ >V ₃	V ₁ (G)
V ₁ <v<sub>3</v<sub>	none



Arcs to examine

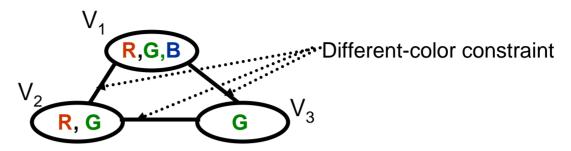
 $V_2 - V_3, V_2 > V_1$

Delete unmentioned tail values

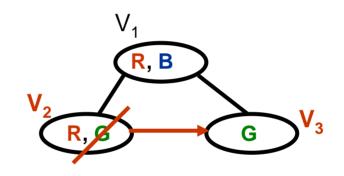
IF THEN

Graph Coloring

Initial Domains



Arc examined	Value deleted
$V_1 - V_2$	none
V ₁ -V ₃	V ₁ (G)
$V_2 > V_3$	V ₂ (G)



Arcs to examine

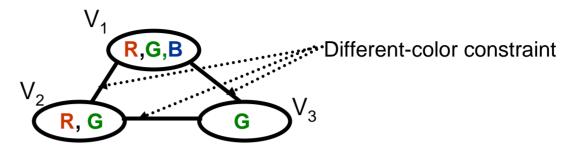
$$V_2 < V_3, V_2 > V_1, V_1 > V_2$$

Delete unmentioned tail values

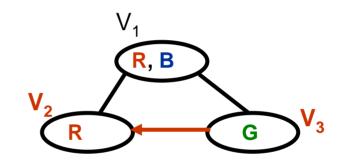
IF THEN

Graph Coloring

Initial Domains



Arc examined	Value deleted
$V_1 - V_2$	none
V ₁ -V ₃	V ₁ (G)
$V_2 > V_3$	V ₂ (G)
$V_3 > V_2$	none



Arcs to examine

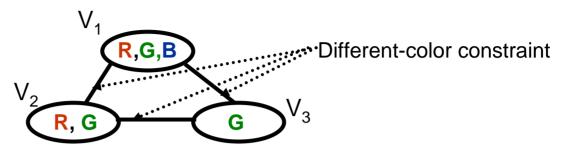
 $V_2 > V_1$, $V_1 > V_2$

Delete unmentioned tail values

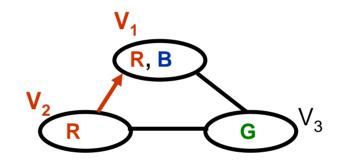
IF THEN

Graph Coloring

Initial Domains



Arc examined	Value deleted
$V_1 - V_2$	none
V ₁ -V ₃	V ₁ (G)
$V_2 - V_3$	V ₂ (G)
V ₂ >V ₁	none



Arcs to examine

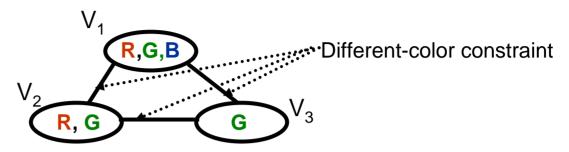
 $V_1 > V_2$

Delete unmentioned tail values

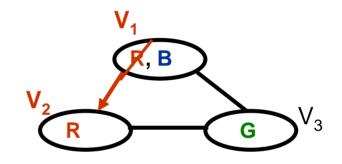
IF THEN

Graph Coloring

Initial Domains



Arc examined	Value deleted
$V_1 - V_2$	none
V ₁ -V ₃	V ₁ (G)
$V_2 - V_3$	V ₂ (G)
$V_2 > V_1$	none
V ₁ >V ₂	V ₁ (R)



Arcs to examine

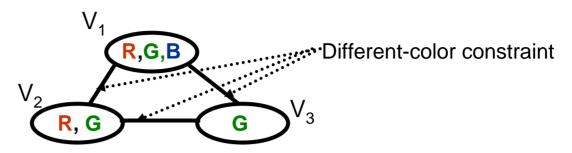
 $V_2 > V_1, V_3 > V_1$

Delete unmentioned tail values

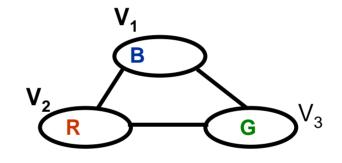
IF THEN

Graph Coloring

Initial Domains



Arc examined	Value deleted
$V_1 - V_2$	none
V ₁ -V ₃	V ₁ (G)
$V_2 - V_3$	V ₂ (G)
V ₂ -V ₁	V ₁ (R)
V ₂ >V ₁	none
V ₃ >V ₁	none



Arcs to examine

IF examination queue is empty

THEN arc (pairwise) consistent.

Outline

- Constraint satisfaction problem (CSPS)
- Solving CSPs
 - Arc-consistency and propagation
 - Analysis of constraint propagation
 - Search (next lecture)

What is the Complexity of Constraint Propagation?

Assume:

- domains are of size at most d
- •there are <u>e</u> binary constraints.

Which is the correct complexity?

- 1. $O(d^2)$
- 2. $O(ed^2)$
- 3. $O(ed^3)$
- 4. O(e^d)

Is arc consistency sound and complete?

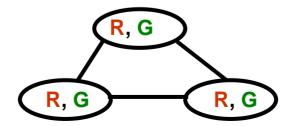
Each *arc consistent solution* selects a value for every variable from the arc consistent domains.

Completeness: Does arc consistency rule out any valid solutions?

- •Yes
- No

Soundness: Is every arc-consistent solution a solution to the CSP?

- Yes
- No



Next Lecture: To Solve CSPs we combine arc consistency and search

- 1. Arc consistency (Constraint propagation),
 - Eliminates values that are shown locally to not be a part of any solution.

Search

Explores consequences of committing to particular assignments.

Methods Incorporating Search:

- Standard Search
- BackTrack search (BT)
- BT with Forward Checking (FC)
- Dynamic Variable Ordering (DV)
- Iterative Repair
- Backjumping (BJ)