Solving Constraint Satisfaction Problems:
Search and Forward Checking

Brian C. Williams
16.410-13
October 18, 2004

Slides adapted from:

6.034 Tomas Lozano Perez
With help from:

Stuart Russell & Peter Norvig

10/18/2004 1

Reading Assighments: Constraint Satisfaction

Readings:
« Lecture Slides (most material in slides only, READ ALL).
* AIMA Ch. 5 — Constraint Satisfaction Problems (CSPs)

« AIMA Ch. 24.4 pp. 881-884 — Visual Interpretation
of line drawings as solving CSPs.

Problem Set #5:

« Covers constraints.

« Online.

« Out Thursday morning, October 14t
» Extended to Friday, October 221,

« Get started early!

Outline

* Review:
« Constraint satisfaction problems (CSP)
 Arc-consistency and propagation

« Analysis of constraint propagation

* Solving CSPs Through Search

« Case Study: Scheduling

CSPS and Encoding 4 Queens

Problem: Place queens so that no 4 1o

two queens can attack each other. 2(] Q
« Assuming one queen per column, i Q 5
< what row should each queen be in? 1 2 3 4

A Constraint Satisfaction Problem is a triple <V,D,C>:

Variables V Q4, Q,, Q;, Q,,
Domains D {1,2,3,4}

Constraints C ={c,lije {1,234} i#j}
Gij - Q and Q,on different rows, off diagonal
eg, €2={(1.3) (1.4)(24) (3,1) (4,1) (4.2)}

CSP solution: any assignment to V, such that all constraints in C are satisfied.

4

Arc Consistency

Arc consistency eliminates values of a variable domain that
can never satisfy a particular single constraint (an arc).

= arc (V;, V)) is directed arc consistent if
VxeD; 3yeD; such that (x,y) is allowed by constraint C;

V; - \%
2% = (13

Achieving Arc Consistency via Constraint Propagation

* Directed arc (V;, V)) is arc consistent if
VxeD; AyeD; such that (x,y) is allowed by constraint C;

Constraint propagation: To achieve arc consistency of CSP:
1. initialize (fifo) queue with all directed arcs of CSP.
2. Foreach arc (V;, V) on queue until quiescence:

a. Delete every value from the tail domain D; of arc (V;, V)
that fails directed arc consistency.

b. If one or more elements deleted from D,
Then add every arc (V,, V,) with head V,to queue (no duplicates)

Constraint Propagation: Graph Coloring

Arc examined

Value deleted

V>V,

V5V,

V>V,

V>V,

V>V,

V3>V,

Different lor

Vi constraint

INIT: All arcs on examination queue.
IF Element of variable domain removed,

THEN add all arcs to that variable to queue.

Constraint Propagation: Graph Coloring

Arc examined

Value deleted

V>V,

none

V5V,

none

V>V,

V,=G

V>V,

V>V,

V3>V,

V>V,

V>V,

Different clor

Vi constraint

INIT: All arcs on examination queue.
IF Element of variable domain removed,

THEN add all arcs to that variable to queue.

Constraint Propagation: Graph Coloring

Arc examined

Value deleted

V>V, none
V>V, none
V>V, V,=G
V>V, none
V>V, V,=G
V>V,
V>V,
V>V,
V>V,

Different clor

Vi constraint

INIT: All arcs on examination queue.
IF Element of variable domain removed,

THEN add all arcs to that variable to queue.

Constraint Propagation: Graph Coloring

Arc examined

Value deleted

V>V, none
V>V, none
V>V, V,=G
V>V, none
V>V, V,=G
V3>V, none
V>V, none
V>V, none
V>V, V;=R
V>V, none

Different clor

Vi constraint

INIT: All arcs on examination queue.
IF Element of variable domain removed,

THEN add all arcs to that variable to queue.

Solve Graph Coloring 2

Arc examined

Value deleted

1:V,5V,

2:V,>V,

3: V>V,

4:VV,

5:V,>V,

6: V5>V,

Different a@lor

constraint

INIT: All arcs on examination queue.
IF Element of variable domain removed,

THEN add all arcs to that variable to queue.

Solution to Graph Coloring 2

Arc examined

Value deleted

1: V>V, V=R
2: V>V, none
3: V>V, none
4: V3>V, V, =

5: V>V, none
6:V;>V, none
7:V>V, none

Different a@lor

constraint

INIT: All arcs on examination queue.
IF Element of variable domain removed,

THEN add all arcs to that variable to queue.

\)

Outline

* Review:
« Constraint satisfaction problems (CSP)
« Arc-consistency and propagation

« Analysis of constraint propagation

* Solving CSPs Through Search

What is the Complexity of Constraint Propagation?

Assume:
« Domains are of size at most d.

« There are e binary constraints.

Which is the correct complexity?

1. 0(d?)
2. Ofed?)
3. O(edd)
4. O(eY)

Complexity of Constraint Propagation

Assume:
« Domains are of size at most d.

« There are e binary constraints.

Complexity:
* There are 2 * e arcs to check

« Verifying arc consistency takes O(d?) for each arc.

Is arc consistency sound and complete?

An arc consistent solution is any selection of values for every
variable from the arc consistent domains.

Completeness: Does arc consistency rule out, as an arc consistent
solution, any valid solutions to CSP?

*Yes
*No

Soundness: Is every arc-consistent solution a valid solution to CSP?

*Yes
« An arc is checked at most O(d) times,
once for each element of its tail. *No @
= Arc consistency is O(ed?) -
15 I
Soundness: Arc consistency does not .
; ; . Outline
rule out all infeasible candidates
* Review:

Graph Coloring

@ arc consistent, but N0

- solutions.
GCoOo—CD

arc consistent, but 2

@ solutions, not 8.

e
|

« Constraint satisfaction problems (CSP)
 Arc-consistency and propagation

« Analysis of constraint propagation

« Solving CSPs Through Search

Y

To Solve CSPs we combine
arc consistency and search

1. Arc consistency (Constraint propagation),

» Eliminates values that are shown locally to not be a
part of any solution.

2. Search

« Explores consequences of committing to particular
assignments.

Methods That Incorporate Search:

« Standard Search

« Back Track search (BT)

* BT with Forward Checking (FC)
+ Dynamic Variable Ordering (DV)
* lterative Repair

« Backjumping (BJ)

Solving CSPs with Standard Search

«+ State « Variable assignments thus far
« Initial State » No assignments
« Operator « New assignment =

« Select any unassigned variable
« Select any one of its domain values
+ Child extend assignments with new
+ Goal Test
« All variables are assigned
« All constraints are satisfied

« Branching factor? v
1
=> Sum of domain size of all variables O(v*d) v @

« Performance?
= Exponential of branching factor O([v*d]")

Search Performance on N Queens

1
[Q
197

AW N B

« Standard Search « A handful of queens

« Backtracking

Solving CSPs with Standard Search
Standard Search:
« Children select any value to any variable [O(v*d)]

« Test complete assignments against CSP

Observations:

1. The order in which variables are assigned does not change the solution.

= Many paths denote the same solution (n!),
= so expand only one path (i.e., one variable ordering)

2. We can identify a dead end before assigning all variables

2 Extensions to inconsistent partial assignments are always
inconsistent

2 So check after each assignment. V1

L >y
Eo—CED

BackTrack Search (BT)

1. Expand the assignments of only one variable at each step.

2. Pursue depth first.

3. Check consistency after each expansion, and backup.

N R B
V, assignments G

(@] N

V, assignments

V, assignments

Preselect order Expand

of variables to designated V1
assign variable v, -
Eo—>"

BackTrack Search (BT)

1. Expand the assignments of only one variable at each step.

2. Pursue depth first.

3. Check consistency after each e)gaQsion, and backup.

V, assignments G

V, assignments

V, assignments

Preselect order Assign Backup at V.
of variables to designated inconsistent @ 1

assign variable assignment v, -
V.
G Oo—CGD°

Search Performance on N Queens

Back jumping

Backtracking At dead end backup to most recent variable,
Backjumping At dead end backup to most recent variable that

1 Je eliminated a value in the current (empty) domain.
2 I Q 6-Queens
3|Q 1 1 312 variables: board columns
4 0 2 dlalalale domains: board rows
Q 2 25
3 11Q(2]3]3 3
4 113 253
» Standard Search * A handful of queens 4
) . About 15 5 Ql21]1]12]|2
+ Backtracking out 1> queens 6 2 13 5
1 2 3 4 5 6 6
2 2
Back jumping Back jumping

Backtracking At dead end backup to most recent variable,

Backjumping At dead end backup to most recent variable that
eliminated a value in the current (empty) domain.

6-Queens

1 1 312 variables: board columns
2 domains: board rows

Q1 (11]1(1 2 25
314 11]1Q12)3]3 3
4 411(3 4 253

2536

5| |ol2]1]2]2 4
6 210Q]1]3 5

1 2 3 4 5 6 6

Backtracking At dead end backup to most recent variable,

Backjumping At dead end backup to most recent variable that
eliminated a value in the current (empty) domain.

6-Queens

1 1 312 variables: board columns
2 domains: board rows
Qf1(1]1]1(1 2 25
314 11]1Q12)3]3 3
4l [a]1|3|Q]4 23
2536
5| |ol2]1]2]2 4
6 210Q]1]3 5
1 2 3 4 5 6 6 25364

mhould look to

variable 4. Changing variable
5 won't help

Search Performance on N Queens

1 e
2[] Q
3|Q
4 Q
« Standard Search « A handful of queens
« Backtracking « About 15 queens
+ Backjumping . 2?77

« BT with Forward Checking

Combine Backtracking and
Limited Constraint Propagation
Initially: Prune domains using constraint propagation (optional)

Loop:
« If complete consistent assignment, then return it, Else...
« Choose unassigned variable
» Choose assignment from its pruned domain
* Prune (some) domains using constraint propagation
« if a domain has no remaining elements, then backtrack.
Question: Full propagation is O(ed?),
How much propagation should we do?
Very little:

«Just check arc consistency for those arcs that terminate
on the new assignment [O(ed)].

« called forward checking (FC).

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of
neighboring domains that are inconsistent with the new assignment.

Y

R
V, assignments /v

V, assignments ~

V, assignments

1. Perform initial pruning.

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of
neighboring domains that are inconsistent with the new assignment.

Y

R
V, assignments /v

V, assignments ~

V, assignments

1. Perform initial pruning.

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of
neighboring domains that are inconsistent with the new assignment.

Y

R
V, assignments /v

V, assignments ~

V, assignments

1. Perform initial pruning.

Backtracking with Forward Checking (BT-FC)

1. After selecting each assignment, remove any values of
neighboring domains that are inconsistent with the new assignment.

Y

R
V, assignments /v

V, assignments

G
—

V, assignments

Note: No need to
check new
assignment against
previous assignments

1. Perform initial pruning.
u

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of
neighboring domains that are inconsistent with the new assignment.

Y

R
V, assignments /v
V, assignments %

V, assignments

3. We have a conflict whenever a domain becomes empty.

* Back track

1. Perform initial pruning.

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of
neighboring domains that are inconsistent with the new assignment.

Y

R
V, assignments /v
V, assignments %

V, assignments

3. We have a conflict whenever a domain becomes empty.

* Back track

1. Perform initial pruning.

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of
neighboring domains that are inconsistent with the new assignment.

)

V, assignments ES\

V, assignments

V, assignments

3. We have a conflict whenever a domain becomes empty.
* Back track

* Restore domain values

1. Perform initial pruning.

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of
neighboring domains that are inconsistent with the new assignment.

)

V, assignments ES\

V, assignments

V, assignments

3. We have a conflict whenever a domain becomes empty.
* Back track

* Restore domain values

1. Perform initial pruning.

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of
neighboring domains that are inconsistent with the new assignment.

)

V, assignments ES\

V, assignments

V, assignments

3. We have a conflict whenever a domain becomes empty.
* Back track

* Restore domain values

1. Perform initial pruning.

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of
neighboring domains that are inconsistent with the new assignment.

V, assignments ES\
V, assignments (R_(_/

V, assignments

3. We have a conflict whenever a domain becomes empty.
* Back track

* Restore domain values

1. Perform initial pruning.

40

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of
neighboring domains that are inconsistent with the new assignment.

V, assignments

Famn
G
V, assignments (w
o~

V, assignments

3. We have a conflict whenever a domain becomes empty.
* Back track

* Restore domain values

1. Perform initial pruning.

a1

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of
neighboring domains that are inconsistent with the new assignment.

O

B
V, assignments \

V, assignments ~

V, assignments

3. We have a conflict whenever a domain becomes empty.
* Back track

* Restore domain values

1. Perform initial pruning.

a2

. |

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of
neighboring domains that are inconsistent with the new assignment.

O

B
V, assignments \

V, assignments ~

V, assignments

3. We have a conflict whenever a domain becomes empty.
* Back track

* Restore domain values

1. Perform initial pruning.

a3

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of
neighboring domains that are inconsistent with the new assignment.

O

B
V, assignments \
V, assignments Kfz\-/

V, assignments

3. We have a conflict whenever a domain becomes empty.
* Back track

* Restore domain values

1. Perform initial pruning.

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of
neighboring domains that are inconsistent with the new assignment.

O

B
V, assignments \
V, assignments ffz\-/

V, assignments

3. We have a conflict whenever a domain becomes empty.
* Back track

* Restore domain values

1. Perform initial pruning.

a5

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of
neighboring domains that are inconsistent with the new assignment.

B
V, assignments \
V, assignments Kfz\-/

V, assignments E

3. We have a conflict whenever a domain becomes empty.

* Back track

* Restore domain values

Solution!

1. Perform initial pruning.

a6

Backtracking with Forward Checking (BT-FC)

2. After selecting each assignment, remove any values of
neighboring domains that are inconsistent with the new assignment.

O

B
V, assignments \

V, assignments G

V, assignments Ri

3. We have a conflict whenever a domain becomes empty.

* Back track BT-FC is generally

faster than pure BT
because it avoids
rediscovering
inconsistencies.

* Restore domain values

1. Perform initial pruning.

a1

Search Performance on N Queens

1 e
2[] Q
3|Q
4 Q
+ Standard Search « A handful of queens
« Backtracking « About 15 queens
+ Backjumping Dvardrd

BT with Forward Checking « About 30 queens

a8

BT-FC with dynamic ordering

Traditional backtracking uses fixed ordering of variables & values

Typically better to choose ordering dynamically as search proceeds.

* Most constrained variable
when doing forward-checking, pick variable with fewest legal
values in domain to assign next

= minimizes branching factor
« Least constraining value

choose value that rules out the smallest number of values in
variables connected to the chosen variable by constraints.

= Leaves most options to find satisfying assignment.

a9

Colors: R, G, B,

Which country should we color next — E most-constrained variable
(smallest domain)

What color should we pick for it? — RED least-constraining value
(eliminates fewest values from
neighboring domains)

Search Performance on N Queens

1 t |Q
2[] Q
31— |
4 Q
« Standard Search « A handful of queens
« Backtracking « About 15 queens
« Backjumping -7

« BT with Forward Checking < About 30 queens
Dynamic Variable Ordering « About 1,000 queens

Incremental Repair (min-conflict heuristic)

1. Initialize a candidate solution using “greedy” heuristic — get
solution “near” correct one.

2. Select a variable in conflict and assign it a value that minimizes
the number of conflicts (break ties randomly).

Heuristic used in a local hill-climber (without or with backup).

RRR:3| BRR GRR RGR RRG

Min-conflict heuristic

Pure hill climber (w/o backtracking) gets stuck in local minima:

» Add random moves to attempt to get out of minima
— generally quite effective.

» Add weights on violated constraints & increase weight every
cycle the constraint remains violated.

Sec
(Sparc 1) 100 L
10 b Performance on A qeens.
(with good initial guesses)
1
10t
102

100 102 103 10¢ 105 10 Size(n)

GSAT: Randomized hill climber used to solve propositional logic
SATisfiability problems. -

Search Performance on N Queens

1 t |Q

2[] Q

3|Q

4 Q
« Standard Search « A handful of queens
« Backtracking « About 15 queens
+ Backjumping . ?2?7?

« BT with Forward Checking « About 30 queens
+ Dynamic Variable Ordering « About 1,000 queens

+ lterative Repair « About 10,000,000 queens
(except truly hard problems)

Outline

* Review:
« Constraint satisfaction problems (CSP)
« Arc-consistency and propagation

« Analysis of constraint propagation

* Solving CSPs Through Search

 Case Study: Scheduling

Real World Example: Scheduling as a CSP

Choose time for activities:

« Observations on Hubble telescope. e

« Jobs performed on machine tools. j,

« Terms to take required classes. i
Variables are activities ' time
Domains sets of possible start times (or “chunks” of time)

Constraints 1. Activities that use the same
resource cannot overlap in time, and

2. Preconditions are satisfied.

Case Study: Course Scheduling
« 40 required courses (8.01, 8.02, 6.840), and
« 10 terms (Fall 1, Spring 1,, Spring 5).

Find: a legal schedule.

Constraints « Pre-requisites satisfied,
« Courses offered only on certain terms,

« Limited number of courses taken per term
(say 4), and

« Avoid time conflicts.

Note, traditional CSPs are not for expressing (soft) preferences
e.g. minimize difficulty, balance subject areas, etc.

But see recent work on semi-ring CSPs! 5

Alternative formulations for variables & values
VARIABLES DOMAINS
A. 1var per Term

(Fall 1) (Spring 1)
(Fall 2) (Spring 2) .. .

All legal combinations of 4 courses,

all offered during that term.

B. 1 var per Term-Slot

subdivide each term All courses offered during that term.
into 4 course slots:

(Fall 1,1) (Fall 1, 2)
(Fall1, 3) (Fall 1, 4)

C. 1var per Course Terms or term-slots.

Term-slots make it easier to
express the constraint limiting the
number of courses per term. 5

Encoding Constraints

Assume: Variables = Courses, Domains = term-slots

. At least
Constraints: term

ore
Prerequisite » For pairs of courses that

must be ordered.

(At least
term
after

Courses offered only during certain terms =% Filter domain

Term dots not equal
I'ss q
Limit # courses = Use term-slots only once

for all pairs of vars.

(_term not equal
Avoid time conflicts » O_O For course pairs offered at
same or overlapping times

50

To Solve CSPs we combine
arc consistency and search

1. Arc consistency (Constraint propagation),

» Eliminates values that are shown locally to not be a
part of any solution.

2. Search

« Explores consequences of committing to particular
assignments.

Methods That Incorporate Search:

+ Standard Search

* Back Track search (BT)

« Backjumping (BJ)

« BT with Forward Checking (FC)
+ Dynamic Variable Ordering (DV)

+ lterative Repair

10

